CN111390843B - Electric tool and control method thereof - Google Patents

Electric tool and control method thereof Download PDF

Info

Publication number
CN111390843B
CN111390843B CN201910782339.4A CN201910782339A CN111390843B CN 111390843 B CN111390843 B CN 111390843B CN 201910782339 A CN201910782339 A CN 201910782339A CN 111390843 B CN111390843 B CN 111390843B
Authority
CN
China
Prior art keywords
striking
shaft
impact
striking shaft
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910782339.4A
Other languages
Chinese (zh)
Other versions
CN111390843A (en
Inventor
朱荣根
付祥青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Chervon Industry Co Ltd
Original Assignee
Nanjing Chervon Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Chervon Industry Co Ltd filed Critical Nanjing Chervon Industry Co Ltd
Publication of CN111390843A publication Critical patent/CN111390843A/en
Application granted granted Critical
Publication of CN111390843B publication Critical patent/CN111390843B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D16/00Portable percussive machines with superimposed rotation, the rotational movement of the output shaft of a motor being modified to generate axial impacts on the tool bit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D16/00Portable percussive machines with superimposed rotation, the rotational movement of the output shaft of a motor being modified to generate axial impacts on the tool bit
    • B25D16/006Mode changers; Mechanisms connected thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • B25F5/001Gearings, speed selectors, clutches or the like specially adapted for rotary tools

Abstract

The invention discloses an electric tool, comprising: the striking shaft comprises a striking end for striking the fastener, the striking shaft at least partially extends along the first axial direction, and the striking end is arranged at the front end of the striking shaft; the impact mechanism is used for outputting impact force to the striking shaft so as to drive the striking shaft to strike the fastener; a motor for driving the impact mechanism; a housing for supporting the striking shaft, the impact mechanism and the motor; a trigger switch mounted to the housing for user activation; the striking shaft can move forwards to a first position and backwards to a second position along a first axis relative to the machine shell, and when the trigger switch is triggered, the motor is started. The invention also discloses a control method of the electric tool, so that the use safety performance of the electric tool is improved, and the service life of the electric tool is prolonged.

Description

Electric tool and control method thereof
Technical Field
The invention relates to an electric tool and a control method thereof.
Background
When electric tools such as electric hammers and nail guns are used for driving fasteners into a base material, for example, nails are driven into the base material, one control mode is that the operation of the electric tools is started by pressing a wrench switch, so that the motor can idle, the risk of injuring users or damaging non-working targets is also caused, and when the electric tools are started, the internal elements of the electric tools can be lost due to long-term idle running, and the service life of the electric tools is shortened. Therefore, there is a need for an improved activation control method and related structure for a conventional power tool.
Disclosure of Invention
In order to overcome the defects of the prior art, the invention mainly aims to provide an electric tool and a control method thereof, wherein the electric tool has high safety performance and long service life when in use.
In order to achieve the above main object of the invention, there is provided an electric power tool including: the striking shaft comprises a striking end for striking the fastener, the striking shaft at least partially extends along the first axial direction, and the striking end is arranged at the front end of the striking shaft; the impact mechanism is used for outputting impact force to the striking shaft so as to drive the striking shaft to strike the fastener; a motor for driving the impact mechanism; a housing for supporting the striking shaft, the impact mechanism and the motor; a trigger switch mounted to the housing for triggering by a user; the striking shaft can move forwards to a first position and backwards to a second position along a first axis relative to the machine shell; when the striking shaft moves backward to the second position or moves to a third position between the first position and the second position along the first axial direction relative to the casing and the trigger switch is triggered, the motor is started.
Optionally, the electric tool includes a detection assembly and a control device, and the control device is connected to the motor to control whether the motor is started; the detection assembly comprises a state sensor for detecting the displacement of the striking shaft, and when the striking shaft moves backwards to a second position or moves to a third position between the first position and the second position along the first axial direction and the trigger switch is triggered, a signal is sent to the control device to control the motor to start.
Optionally, the detection component detects the displacement of the impact process of the striking shaft, and controls the motor to stop rotating when the trigger switch is turned off.
Optionally, the state sensor is a hall sensor, the detection assembly further includes a magnetic member disposed opposite to the hall sensor, at least a portion of the striking shaft is disposed as the magnetic member, and the hall sensor detects a displacement state of the striking shaft among the first position, the second position, and the third position.
Optionally, the detection component is fixed by the casing, and is arranged opposite to the striking shaft, and when the striking shaft moves to the first position, the striking shaft and the detection component are attached or adsorbed.
Optionally, the impact mechanism comprises: an impact block formed with an impact surface for impacting the impact shaft to output an impact force; the supporting shaft is used for supporting the impact block; the electric tool also comprises an elastic device sleeved on the impact block, wherein the elastic device is used for assisting the reciprocating impact motion of the impact block and storing and providing part of energy for the impact block to generate the impact motion.
In order to achieve the above main object, a control method of an electric power tool is provided, including: the striking shaft comprises a striking end for striking the fastener, the striking shaft at least partially extends along the first axial direction, and the striking end is arranged at the front end of the striking shaft; a motor for driving the striking shaft; a housing for supporting the striking shaft and the motor; a trigger switch mounted to the housing for user activation; the striking shaft can move forwards to a first position and backwards to a second position along a first axis relative to the machine shell; the control method of the electric tool comprises the following steps: when the striking shaft moves backwards to a second position or a third position between the first position and the second position along the first axial direction relative to the shell and the trigger switch is triggered, the motor is controlled to be started.
Optionally, the electric tool further comprises a detection component, the detection component detects displacement of the striking shaft in the impact process, and when the sudden change of the displacement of the striking shaft exceeds a threshold value, the motor is controlled to stop.
Optionally, the motor is controlled to be turned off when the trigger switch is turned off.
Optionally, the detection assembly includes a hall sensor and a magnetic member disposed opposite to the hall sensor, at least a portion of the striking shaft is disposed as a magnetic material, and the hall sensor detects a displacement state of the striking shaft between the first position, the second position, and the third position.
Has the advantages that: the electric tool is characterized in that the motor is started and starts the striking action of the electric tool only when the striking shaft moves backwards to the second position or to the third position between the first position and the second position along the first axial direction relative to the shell and the trigger switch is triggered, so that the motor is prevented from idling and the service life of the electric tool is prolonged.
Drawings
FIG. 1 is a schematic view of a power tool according to one embodiment;
FIG. 2 is a schematic diagram of an application scenario of the power tool of FIG. 1;
FIG. 3 is a cross-sectional view of the power tool of FIG. 1;
FIG. 4 is an internal structural view of the power tool of FIG. 1;
FIG. 5 is a schematic view of the impact block and energy storage mechanism of the power tool of FIG. 1;
FIG. 6 is an exploded view of the impact mechanism of the power tool of FIG. 1;
FIG. 7 is an exploded view of the internal components of the first housing of the power tool of FIG. 1;
FIG. 8 is a graph of holding force versus striking shaft displacement provided by a holding mechanism that needs to be overcome in the power tool of FIG. 1;
FIG. 9 is a schematic control flow diagram of an exemplary power tool;
fig. 10 is a control flow diagram of the power tool according to an embodiment.
Detailed Description
It will be understood by those skilled in the art that in the present disclosure, the terms "longitudinal," "lateral," "upper," "lower," "front," "rear," "left," "right," "vertical," "horizontal," "top," "bottom," "inner," "outer," and the like are used in an orientation or positional relationship indicated in the drawings for ease of description and simplicity of description, and do not indicate or imply that the referenced devices or components must be in a particular orientation, constructed and operated in a particular orientation, and thus the above terms are not to be construed as limiting the present invention.
The power tool 300 may be a power hammer. Referring to fig. 1 to 3, the electric hammer includes a striking shaft 11, the striking shaft 11 includes a striking end 1111 capable of reciprocating along a first axis 200 and striking a fastener 100 while moving, and the striking end 1111 is formed with a striking surface 1123 contacting the fastener 100. It is to be understood that the electric tool may also be implemented as an electric tool such as a nail gun, an electric hammer, an electric drill, etc., and the fastener 100 is not necessarily a working object, and the electric hammer is taken as an example to illustrate the structure and control principle of the electric tool provided by the present invention, and the present invention is not limited thereto, and when the electric tool 300 is implemented as an electric hammer, the fastener 100 is a nail.
The electric hammer further comprises an impact mechanism 10 and a driving mechanism 20, wherein the driving mechanism 20 is used for driving the impact mechanism 10, the driving mechanism 20 comprises a motor 21, and the motor 21 comprises a motor shaft 24; the impact mechanism 10 is used for impacting the impact shaft 11 to reciprocate; the impact mechanism 10 includes an impact block 12 formed with an impact surface 1122 for contacting the striking shaft 11 to output an impact force to the striking shaft 11, and a support shaft 70 for supporting the impact block 12.
The electric hammer further comprises a transmission mechanism 30 connected with the motor shaft 24 and the impact mechanism 10, and the transmission mechanism 30 transmits the rotating force output by the motor 21 to the support shaft 70 of the impact mechanism 10. The support shaft 70 is coupled to the striking shaft 11 and provides energy to drive the striking shaft 11 in a reciprocating impact motion to provide an impact pulse to drive the fastener 100 into a substrate.
The support shaft 70 connects the transmission mechanism 30 and the striking shaft 11, and converts the rotational motion of the driving mechanism 20 into the reciprocating impact motion of the impact block 12 along the first axis 200 by the support shaft 70. As shown in fig. 2, the electric hammer is used to drive the fastener 100 into a substrate, and the striking shaft 11 directly acts on the fastener 100 to cause the fastener 100 to be driven into the substrate by striking the fastener 100 in the direction of the first axis 200. The electric hammer includes a front end device 14, the front end device 14 has a striking opening, the front end device 14 impacts the fastener 100 by inserting the fastener 100 into the striking opening, and the impact assembly provides multiple pulses to strike the fastener 100 into the substrate.
The electric hammer also includes a power source and housing 50, the power source being coupled to the drive mechanism 20 and providing energy to the drive mechanism 20 to operate the drive mechanism 20. The housing 50 encloses the internal components of the electric hammer and is intended to be held by a user. The housing 50 includes a second accommodating portion 51 and a first accommodating portion 52.
Referring to fig. 1 and 4, the first receiving portion 52 is formed around a first receiving cavity 521 extending substantially in a first linear direction. The striking shaft 11 is supported at least partially in a first linear direction in the first accommodation chamber 521, and the impact mechanism 10 is disposed in the first accommodation chamber 521. The second accommodating part 51 surrounds a second accommodating cavity 511 formed to extend substantially in the second linear direction, the motor 21 is disposed in the second accommodating cavity 511, and the second accommodating part 51 is disposed at a lower side of the first accommodating part 52. The second receiving portion 51 further includes a holding portion 511 for a user to hold. The first line and the second line are perpendicular to each other, the first line being parallel to the first axis 200 and the second line being perpendicular or approximately perpendicular to the first axis 200. The impact block 12 transmits impact force to the striking shaft 11 by making surface contact with the striking shaft 11. Thus, on one hand, the impact block 12 can reliably transmit the impact force to the striking shaft 11 because the contact form between the striking shaft 11 and the impact block 12 is surface contact, thereby improving the impact strength; on the other hand, the contact surface between the impact block 12 and the striking shaft 11 is relatively large, so that under the condition of the same impact force, the pressure intensity applied to the impact block 12 and the striking shaft 11 is relatively small compared with the condition that the contact surface is relatively small, and the situation that the impact block 12 and the striking shaft 11 are broken possibly due to insufficient strength of 1 is avoided; moreover, the contact surface between the impact block 12 and the striking shaft 11 is large, so that the abrasion speed of the impact block 12 and the striking shaft 11 is reduced, and the service life of the electric hammer is prolonged.
In the present embodiment, the electric hammer has a substantially "T" configuration, and the housing 50 includes a first receiving portion and a second receiving portion. It should be noted that in some other embodiments, the relative relationship between the second receiving portion and the first receiving portion may be designed to be of other types, for example, the relative relationship may be of an "L" shape, and the electric hammer may be not only formed by the second receiving portion and the first receiving portion, but also formed by other elements such as a connecting arm, a supporting arm, etc. and formed into an "L" shape, a rectangular shape, etc. by various connecting manners, which will not be described in detail herein.
Optionally, in order to optimize the overall structure of the electric hammer, the transmission shaft 34 and the striking shaft 11 are arranged in parallel, so that the projection of the second accommodating part 51 along the second linear direction is not larger than the projection of the first accommodating part along the second linear direction, preferably, the second accommodating part 51 is relatively connected to the middle of the first accommodating part, the electric hammer forms a T-shaped structure, and the rear edge of the holding part 511 is designed to be recessed forward to match the posture of the holding part 511 held by the user. The projection of the second accommodating part 51 in the second linear direction does not exceed the projection of the first accommodating part in the second linear direction, so that when a user grips the holding part 511, the projection of the hand in the second linear direction does not exceed the projection of the first accommodating part in the second linear direction, the electric hammer can be operated to work in a relatively narrow space, and the applicability of the electric hammer is improved.
Correspondingly, the striking shaft 11 is distributed on both sides of the straight line on which the motor shaft 24 is located. The motor shaft 24, the support shaft 70 and the striking shaft 11 are arranged in a plane, so that the whole electric hammer is compact in arrangement and small in size. Due to the arrangement of the whole machine, the ratio of the maximum size of the casing 50 in the first straight line direction to the maximum size of the casing 50 in the second straight line direction can be greater than or equal to 0.5 and less than or equal to 0.8, so that the state of the electric hammer held by a user is matched, the whole electric hammer is lighter, and the electric hammer is suitable for narrow operation space.
In particular, the present invention includes a sensing assembly 40, the sensing assembly 40 being configured to sense an activation motion by a user and to generate an electrical signal a to activate the reciprocating striking motion of the impact mechanism 10 upon sensing the activation motion. Preferably, the detecting member 40 is disposed on the housing 50 of the first accommodating portion 52, and detects a displacement state of the striking shaft 11 to obtain a user's nail setting motion.
The electric hammer includes a trigger switch 82 for controlling the motor 21 to be turned on and off, and the trigger switch 82 is disposed on the housing 50 for a user to hold and control.
Specifically, the striking shaft 11 can move forward to a first position and can move backward to a second position along the first axis 200 relative to the housing 50; when the striking shaft 11 is moved backward in the direction of the first axis 200 to the second position or to a third position between the first position and the second position with respect to the housing 50 and the trigger switch 82 is triggered, the motor 21 is activated. It is worth mentioning that the second position is not necessarily the farthest distance that the striking shaft 11 moves back on the first axis 200, but refers to the conventional reciprocating motion of the striking shaft 11 on the first axis 200, and the striking shaft 11 contacts the impact block 12 in the second position. Specifically, the impact direction 15 of the electric hammer is defined as the direction from the second position to the first position.
The electric hammer comprises a detection assembly 40 and a control device 60, wherein the control device 60 is connected with the motor 21 to control whether the motor 21 is started or not; the detecting assembly 40 includes a state sensor for detecting the displacement of the striking shaft 11, and sends a signal to the control device 60 to control the motor 21 to be started when the striking shaft 11 moves backward in the direction of the first axis 200 to the second position or to a third position between the first position and the second position and the trigger switch 82 is triggered. In some embodiments of the present invention, the motor 21 is directly triggered to start when the striking shaft 11 contacts the impact block 12. Alternatively, in other embodiments of the present invention, after the detection component detects that the striking shaft 11 contacts the impact block 12, the motor 21 is directly triggered to start; alternatively, the detection component detects that the striking shaft 11 contacts the impact block 12, and then sends a signal to the controller, and the controller controls the motor 21 to start, which is not limited herein.
The state sensor is a hall sensor 41, the detecting assembly 40 further includes a first magnetic member 42 disposed opposite to the hall sensor 41, at least a portion of the striking shaft 11 is disposed as a magnetic member, and the displacement state of the striking shaft 11 among the first position, the second position and the third position is detected by the hall sensor 41. The detecting member 40 is fixed to the housing 50 and disposed opposite to the striking shaft 11, and when the striking shaft 11 moves to the first position, the striking shaft 11 and the detecting member 40 are attached to each other. The detecting component 40 detects the striking state of the fastener 100, such as a nail, when the electric hammer is operated, and generates an electric signal b to stop the reciprocating striking motion of the impact mechanism 10 after detecting that the striking is completed, so as to close the electric hammer. In one embodiment, the detection assembly 40 detects the displacement of the striking shaft 11 during the impact, and controls the motor 21 to stop when the variation of the displacement of the striking shaft 11 exceeds a threshold value or the trigger switch 82 is turned off. That is, the displacement variation value of the striking shaft 11 is obtained, the first derivative of the displacement of the striking shaft 11 is obtained as the detection value, and when the detection value is greater than the threshold value, it is determined that striking is completed, the striking shaft 11 is released, and the electric signal b is sent to control the stop of the rotation of the motor 21. It is understood that the motor 21 may be controlled to stop when striking is determined to be completed by taking the first derivative of the speed of displacement of the striking shaft 11 and when the obtained first derivative abruptly changes over a preset threshold.
It should be noted that the state sensor may also be a pressure sensor, an air pressure sensor, a photoelectric sensor, or the like, which can detect the displacement or the motion of the striking shaft 11, and will not be described in detail herein.
The electric hammer further comprises a control device 60 connected with the driving mechanism 20, and preferably, the control device 60 comprises a circuit board 61 connected with the driving mechanism 20 through the circuit board 61 in a wired or wireless manner, and controls the operation states of the motor 21 of the electric hammer, such as starting and closing, and the like, through controlling the operation of the driving mechanism 20. The detecting component 40 is connected to the circuit board 61, and generates an electrical signal a to the control device 60 after detecting the stapling action, and the control device 60 reads the electrical signal a to control the driving mechanism 20 to operate so as to drive the impact mechanism 10 to reciprocate.
After detecting that the striking shaft 11 is released, the detecting assembly 40 generates and transmits an electric signal b to the control device 60, and further, when the user closes the control trigger switch 82, the detecting assembly also generates and transmits an electric signal b to the control device 60, and the control device 60 controls the driving mechanism 20 to stop to end the striking action of the electric hammer. Through the setting of detection component 40 for motor 21 no longer idles, and the life-span is longer, and the good reliability, and sensitive to user's operation response promotes user operation and experiences, and effectual availability factor that has improved.
It should be noted that the detecting assembly 40 may also be configured as a mechanical clutch device, that is, the user presses the fixing member 100 to push the detecting assembly 40 to move, so that the detecting assembly 40 triggers the motor 21 to operate through the connecting rod or the connecting member, and after the fixing member 100 is driven into the substrate, the detecting assembly 40 is not pushed to move, at this time, the mechanical clutch makes the connecting member or the connecting rod disengaged, the motor 21 stops rotating, and the function of activating the motor 21 to start through the displacement of the striking shaft 11 may also be performed, and the mechanical clutch is a common technology of a person skilled in the art, and will not be described in detail herein.
The striking shaft 11 includes a shaft body 111 and a striking front end 112, the shaft body 111 penetrates the striking front end 112 or extends relatively perpendicularly from both end faces of the striking front end 112 to both sides, and the shaft body 111 fixes the striking front end 112, preferably the striking front end 112 and the shaft body 111 are integrally formed.
As shown in fig. 6 and 7, the shaft body 111 has a striking end 1111 formed at one end thereof, the striking end 1111 is provided to have a flat bottom surface, and the striking end 1111 is provided inside the striking port to be contacted by the striking end 1111 and strike the firmware 100. The striking end 1111 receives a supporting force of the fastening member 100 and cooperates with the impact mechanism 10 so that the striking shaft 11 can strike reciprocally. As the striking shaft 11 reciprocates, the striking end 1111 reciprocates inside the striking port to drive the fastener 100 into the substrate. It is understood that the shaft body 111 may be configured as a corresponding hollow structure or a solid structure depending on the performance requirements of the electric hammer.
Preferably, the sensing assembly 40 is disposed near the striking front end 112 and senses the axial displacement of the striking front end 112 to obtain the start action and the work completion status of the electric hammer, so as to generate a signal to control the operation and stop of the electric hammer.
Referring to fig. 6, the impact mechanism 10 further includes an elastic device 13 and an impact block 12, the elastic device 13 is disposed to be sleeved on the impact block 12, the impact block 12 is sleeved on the supporting shaft 70, the supporting shaft 70 receives the rotational driving force of the driving mechanism 20 and converts the rotational driving force into linear impact motion, and the linear impact motion is transferred to the impact block 12, so as to drive the impact block 12 to perform impact motion, and the impact block 12 impacts the impact shaft 11 to repeatedly hit the fastener 100, so as to drive the fastener 100 into the substrate. Preferably, the elastic device 13 is a spring, and the elastic device 13 is used for assisting the reciprocating impact motion of the impact block 12 and storing and providing part of the energy of the impact motion generated by the impact block 12. In order to increase the impact force of the impact block 12, the stiffness coefficient of the elastic device is in the range of 30-45N/mm, so that the elastic force of the elastic device is increased, and the impact force of the impact block 12 is increased.
The impact block 12 has a first catching member provided at the end of the impact body 122 and protruded to the periphery with respect to the impact body 122, and the impact body 122 constituting a body portion of the impact block 12 and serving to impact the impact block 12. The first interception member is used for intercepting and fixing the elastic device 13 and preventing the elastic device 13 from being separated from the impact block 12. In the case where the elastic means 13 are embodied as springs, the first interception member has an interception end into which an end of the spring is placed, the interception end assisting in compressing the spring.
The electric hammer further comprises a buffer assembly 80 arranged between the impact mechanism 10 and the machine shell 50, wherein the buffer assembly 80 at least comprises a buffer gasket 81 and a rubber ring 83, and the buffer gasket 81 is arranged between the rubber ring 83 and the impact mechanism 10. More specifically, the damping member 80 is provided at the impact block 12 and the inner impact block 12, which may partially impact the housing 50 when the impact block 12 strikes the impact shaft 11, and the damping member 80 is provided to reinforce the strength of the housing 50 and improve the life span thereof, and has a damping effect on the entire machine. Buffer pad 81 sets up between rubber circle 83 and impact piece 12, and impact piece 12 strikes buffer pad 81, and buffer pad 81 has promoted the lifting surface area of buffer unit 80, the effectual cushioning effect that increases buffer unit 80. Preferably, the rubber ring 83 and the cushion pad 81 are circumferentially disposed on the housing 50. Optionally, the cushion assembly 80 further comprises a fixing member, and the cushion pad 81 and the rubber ring 83 are fixedly connected by the fixing member.
As shown in fig. 5 and 6, the electric hammer further includes a clamping slider 72, and one end of the support shaft 70 is clamped to the transmission mechanism 30 and is immovably fixed to the transmission mechanism 30 so as to be driven by the transmission mechanism 30 to rotate together. The support shaft 70 and the impact block 12 are clamped by the clamping slide piece 72, and the clamping slide piece 72 slides between the impact block 12 and the support shaft 70 in a certain track manner, so that the relative movement between the support shaft 70 and the impact block 12 is carried out, and the rotary motion of the support shaft 70 is converted into the impact reciprocating motion of the impact block 12.
Further, the striking shaft 11 and the impact mechanism 10 are rotatably connected, and the impact mechanism 10 applies only an impact force to the striking shaft 11 without applying a rotational force.
The card slide 72 is provided as a ball so as to be stably slidable between the impact block 12 and the support shaft 70. Correspondingly, the striking block 12 has a receiving groove 121 formed on its inner wall surface, which is formed in a hemispherical shape and matches with the spherical shape of the snap-in slider 72, so that the snap-in slider 72 can be half or partially inserted into the receiving groove 121 and can slide therein.
The support shaft 70 includes a support shaft body having a guide groove 711 provided on a surface thereof, and is hollow to surround a portion of the striking shaft 11, thereby saving space. The striking shaft 11 is linearly reciprocable relative to the support shaft body toward the striking direction. The guide groove 711 surrounds the support shaft body. Preferably, the guide groove 711 is recessed inward from the outer surface of the support shaft body, and has at least one guide edge, a first transition region and a second transition region, the guide edge being formed at the edge of the guide groove 711, the guide edge being disposed in a curved undulating pattern with the guide groove 711. The guide grooves 711 convert the elevation of their tracks at the first and second transition areas, respectively. The impact direction 15 is defined as downward and corresponds to the relative position low of the guide groove 711.
The guide grooves 711 at the first transition zone are oppositely arranged at the lowest point of the support shaft body, the guide grooves 711 at the second transition zone are oppositely arranged at the highest point of the support shaft body, the guide grooves 711 extend from the first transition zone to the second transition zone and from the second transition zone to the first transition zone, so that the guide grooves 711 surround the support shaft body, and the latch slider 72 slides cyclically back and forth on the guide grooves 711 from the first transition zone to the second transition zone and back to the second transition zone.
The depth of the guide slot 711 is matched to the spherical radius of the card slider 72 so that the depth of the guide slot 711 is slightly larger than or equal to the spherical radius of the card slider 72, and in the clockwise direction for example, the guide slot 711 smoothly moves up the track from the first transition zone to the second transition zone and rapidly falls down the track from the second transition zone to the first transition zone in the clockwise direction. The card-sliding member 72 slides in the guide groove 711 around the support shaft 70 and is restricted by the guide groove 711 having a different height in the support shaft 70 according to the rotation, thereby changing the relative up-down position.
By fitting the card slide 72 into the receiving groove 121 and the guiding groove 711, since the striking block 12 is sleeved on the outer ring of the supporting shaft 70 and the card slide 72 limits the relative movement of the striking block 12 and the supporting shaft 70, the receiving groove 121 and the guiding groove 711 are not disengaged by the relative displacement, so that the striking block 12 is moved by the sliding track of the card slide 72 in the guiding groove 711, and is moved up and down to strike toward the striking direction 15 along with the up and down movement of the card slide 72 in the guiding groove 711. Therefore, in actual operation, the click slider is restricted by the guide groove 711 to the reciprocating displacement in the impact direction 15.
Because the groove walls of the accommodating groove 121 and the guide groove 711 are smooth and matched with the shape of the card sliding piece 72, the sliding of the card sliding piece 72 between the accommodating groove 121 and the guide groove 711 is smooth, the card sliding piece 72 and the impact block 12 transmit impact force through surface contact, and the support shaft 70 transmits energy through line contact, so that the abrasion to the card sliding piece 72 is greatly reduced, and the service life of the electric hammer is prolonged.
Correspondingly, the support shaft 70 has a second interception member 716, the second interception member 716 is arranged at one end of the support shaft body, the second interception member 716 is arranged opposite to the first interception member, and the displacement space of the elastic means 13 is relatively limited by the cooperation of the first interception member and the second interception member 716, so that the elastic means 13 is limited in the impact block 12.
When the striking front end 112 is pressed to trigger the detection assembly 40, the detection assembly 40 sends an electric signal a to the driving mechanism 20, the driving mechanism 20 drives the supporting shaft 70 to rotate at a high speed through the transmission mechanism 30, the rotating supporting shaft 70 drives the clamping sliding block to rotate relatively around the clamping shaft in the accommodating groove 121, and the clamping sliding block is limited to perform reciprocating displacement in the corresponding axial impact direction 15 due to track transformation of the accommodating groove 121, so that the clamped impact block 12 is driven to perform corresponding impact displacement.
When the card-engaging slider 72 slides from the first switching area to the second switching area, the impact block 12 is driven to displace towards the direction opposite to the striking direction, the first blocking piece of the impact block 12 compresses the elastic device 13, at this time, the elastic device 13 is compressed to store the impact energy of the impact block 12, after the card-engaging slider 72 slides in the accommodating groove 121 to the second switching area, the impact block 12 is driven to impact and displace towards the striking direction, the compressed elastic device 13 decompresses and releases the impact energy to impact with the impact block 12 towards the striking direction together, and the stored energy is transmitted to the impact block 12 through the first blocking piece. After the card sliding element 72 slides to the first switching area again, the reciprocating impact action is repeated until the detection assembly 40 senses that the striking action is completed, and the control driving mechanism 20 is closed, so that the reciprocating impact action of the impact block 12 is finished.
The striking shaft 11 is formed with a force-bearing surface 1121 for contacting with the impact surface 1122 to receive the impact force output from the impact block 12; when the impact surface 1122 and the force-receiving surface 1121 are brought into contact with each other to perform an impact, the ratio of the area of the surface of the force-receiving surface 1121 which is in contact with the impact surface 1122 to the area of the striking surface 1123 is 0.5 or more and 20 or less. Preferably, the force-bearing surface 1121 is a flat surface. Thereby improving the impact strength of the impact block 12 on the striking shaft 11, improving the impact stability and effectively prolonging the service life of the striking shaft 11.
Impact surface 1122 is distant from striking end 1111 with respect to force-receiving surface 1121, and impact block 12 moving in impact direction 15 acts on striking tip 112 and impacts force-receiving surface 1121 to provide impact force to striking shaft 11, and striking end 1111 of striking shaft 11 contacts fastener 100 and strikes fastener 100 into the substrate by impact. The striking surface 1122 is attached to or attracted to the housing 50 of the front end device 14 and attached to or spaced closest from the surface of the sensing assembly 40 when the electric hammer is not operated or the striking shaft 11 impacts the extreme striking direction. Therefore, the striking shaft 11 should be made of a magnetic material at least at the position corresponding to the detecting element 40 on the striking surface 1122.
When a user presses the electric hammer, the striking shaft 11 is subjected to the reaction force of the fixing piece 100, after a single striking action is completed, the impact block 12 is driven by the support shaft 70 to compress the elastic device 13, the striking shaft 11 is stressed to move in the reverse direction of the impact direction 15, the elastic device is compressed until the impact block 12 impacts again, the striking shaft 11 is stressed again to strike the fixing piece 100, and the operation is repeated until the striking is completed.
When the detecting assembly 40 is configured to sense the nailing motion of the user based on the hall principle and the nailing completion status, further, the striking shaft 11 can move to the first position and the second position along the first axis 200 relative to the casing 50; when the striking shaft 11 moves to the first position, the impact block 12 is disengaged from the striking shaft 11; when the striking shaft 11 moves to the second position, the impact block 12 can contact the striking shaft 11 to output an impact force. According to the above characteristics, the electric hammer is designed to further include a holding device 90 capable of generating a holding force for driving the striking shaft 11 to be held at the first position; when the striking shaft 11 is subjected to an external force capable of overcoming the holding force, the striking shaft 11 moves from the first position to the second position; the holding device 90 generates a first holding force when the striking shaft 11 is at the first position, and the holding device 90 generates a second holding force when the striking shaft 11 is at the second position, wherein the first holding force is greater than the second holding force.
The holding device 90 includes a second type magnetic member 142, and the second type magnetic member 142 is fixed to the housing 50 and disposed opposite to the striking shaft 11, and when the striking shaft 11 moves to the first position, the striking shaft 11 and the second type magnetic member 92 abut against each other. It is understood that the second type magnetic member 92 may be disposed in the same plane as the first type magnetic member 42 of the detection assembly 40. Preferably, in order to ensure the stability and balance of the first and second holding forces, the first and second magnetic members 42 and 92 are provided in plurality and arranged opposite to each other two by two, respectively. Preferably, the first magnetic members 42 are disposed in two opposite directions, the second magnetic members 92 are also disposed in two opposite directions, and are symmetrically distributed in the housing 50 or a fixing device connected to the housing 50, and due to the arrangement of the magnetic members of the striking shaft 11, the second magnetic members 92 generate a magnetic attraction force to the striking shaft 11, i.e., generate a part of the first holding force and the second holding force, because the first magnetic members 42 and the second magnetic members 92 are designed to be opposite to each other, so that the magnetic attraction force to the striking shaft 11 is uniform. The first type of magnetic member 42 and the second type of magnetic member 92 are preferably magnets.
Note that, here, the striking shaft 11 and the first magnet piece 42 are fitted, and in some embodiments, it means that one surface of the striking shaft 11 and the opposite surface of the first magnet piece 42 are fitted adjacent to each other, that is, a gap, for example, a gap of 0.02mm, exists between them.
Preferably, the first magnetic member 42 and the second magnetic member 92 sink to form a gap with respect to the housing 50, and the height of the gap is set to be within 0.4mm, so that the striking shaft 11 does not directly strike the first magnetic member 42 and the second magnetic member 92 during the striking process, the service life of the first magnetic member 42 and the second magnetic member 92 can be effectively prolonged, and the first magnetic member 42 and the second magnetic member 92 are prevented from being damaged by excessive striking.
Fig. 8 is a graph of the holding force provided by the holding mechanism to be overcome of the electric hammer of fig. 1 versus the displacement of the striking shaft 11; referring to fig. 8, the user puts the fixing member 100 into the nail head supporting shell, the fixing member 100 supports the striking shaft 11, so that the striking shaft 11 moves from the first position to the second position, when the fixing member leaves the first position, the magnetic attraction between the first magnetic member 42 and the magnetic material needs to be broken through, as shown in fig. 8, a force mutation is generated, that is, the first holding force needs to be overcome, so that when the user uses the electric hammer, an obvious force feedback is generated when striking the fixing member 100, the user can sense the pre-striking state, and the force feedback is generated and the motor 21 is started approximately simultaneously, thereby facilitating the user to control and use the electric hammer.
The holding device 90 further comprises a return elastic member 91, the return elastic member 91 is connected to the striking shaft 11, and the return elastic member 91 provides a part of the second holding force when the striking shaft is at the second position. Optionally, the elastic element is disposed at the end of the shaft body 111 connected to the non-striking end 1111 of the striking shaft 11 and connected to the inner wall of the cavity where the striking shaft 11 is located, and when the electric hammer is not in operation, the reset elastic element 91 fixes the striking shaft 11 in the impact direction 15 by elastic force, and at this time, the striking front end 112 is attached to the detection assembly 40.
The housing 50 includes an outer housing 53 and an inner housing 54, the outer housing 53 is formed on the outermost portion of the power hammer and surrounds the internal components thereof, the outer housing 53 is preferably a plastic housing 50 for the user to hold, and is configured to have a curvature and a texture that facilitate the user to hold. The outer casing 53 has a certain heat insulation effect, and prevents a user from being scalded by heat generated by a tool in the process of using the electric hammer. The inner case 54 is formed in the first receiving portion 52 and is located inside the outer case 53. When the detecting assembly 40 is configured to sense the user's motion based on the hall principle, the material of the inner housing 54 cannot be selected from magnetic materials, so as to prevent the inner housing 54 from interfering with the detection result of the hall sensor 41. Preferably, the inner housing 54 is made of aluminum, which has a certain heat-conducting and heat-dissipating effect.
The sensing assembly 40 is mounted within the inner housing 54 such that the hall sensor 41 is disposed toward the inner housing 54 relative to the first type magnetic member 42. Detection assembly 40 is disposed near striking head 112 and causes striking head 112 to come into surface contact or closest proximity with first type magnetic element 42 when striking head 112 is impacted down to its limit, which is defined herein as a snug condition. In the process of changing the distance between the striking tip 112 and the first magnetic member 42, since the striking tip 112 is made of ferromagnetic material, it affects the magnetic induction lines generated by the first magnetic member 42, so that the hall sensor captures the distribution transformation state of the magnetic induction lines, converts the distribution transformation state into an electrical signal, and sends the electrical signal to the control device 60, and the control device 60 analyzes the corresponding operation state and controls the driving mechanism 20 to execute the operation.
When the electric hammer is not placed in the fastener 100, the striking head 112 is fixed downward, the striking end 1111 abuts against the tool bushing, and the striking head 112 moves downward to abut against or be closest to the detecting member 40. Specifically, in a natural state where the electric hammer is not placed in the fastener 100, the striking front end 112 is at the striking direction limit position of the movable range thereof, and the striking face 1123 of the striking front end 112 is attached to the first type magnetic member 42, because the striking front end 112 is made of at least a part of ferromagnetic material, the striking front end 112 and the first type magnetic member 42 of the detecting assembly 40 are attracted to each other.
When a user needs to nail the firmware 100 into a base material, the firmware 100 is placed into the striking opening, the striking end 1111 inside the striking opening is jacked up towards the inside of the electric hammer by the firmware 100 with a certain height, at the moment, the striking shaft 11 is driven to move integrally upwards, namely, the firmware moves in a direction away from the striking opening relatively, because the striking shaft 11 is made of a ferromagnetic material, at the moment, the attraction state of the striking front end 112, the first type magnetic member 42 and the second type magnetic member 92 needs to be changed by overcoming the attraction force of the striking front end 112 and the first type magnetic member 42, the attraction state of the striking front end is changed by the user, the attraction state of the striking front end 112 and the attraction state of the second type magnetic member 92 can be changed by the user only needing to provide a slight pressure to the electric hammer, the detection assembly 40 can be activated, the detection assembly 40 senses a starting action and sends an electric signal a to the control device 60 to control the driving mechanism 20 to operate and execute the striking action.
During the reciprocating motion, the relative position of striking front end 112 and detecting component 40 changes along with the reciprocating motion, and detecting component 40 detects the operating state of the hand-held electric device according to the obtained position relation of the two.
After the reciprocating striking action strikes the firmware 100 and gets into the substrate in the operation of the electric hammer, strike end 1111 no longer receives the reaction force of firmware 100, thereby can stop reciprocating motion in striking the mouth, thereby strike the time interval increase of front end 112 and the laminating of detection component 40, the monitoring value that sets up activation interval time is m, when striking the laminating state interval of front end 112 and detection component 40 and being greater than m, detection component 40 sends electric signal b to controlling means 60, judge that it is the impact completion state at present, control actuating mechanism 20 stall is in order to end the impact operation of electric hammer.
The activation interval time m corresponds to the structural specification of the electric hammer, and preferably, the activation interval time m is selected to be 0.5s, that is, when the attachment time interval between the striking front end 112 and the detection assembly 40 is greater than 0.5s, an electric signal b is sent to the control device 60 to stop the impact operation of the electric hammer.
In one embodiment of the present invention, the end state detection of the electric hammer is implemented to detect the attachment time of the striking tip 112 and the detection assembly 40. After the reciprocating striking action of the electric hammer runs to strike the firmware 100 and enter the base material, the striking end 1111 is not blocked by the firmware 100 any more, so that the striking can be stopped from impacting at the striking opening, the striking front end 112 is attached to the detection assembly 40, the monitoring value of the activation interval time is set to be n, when the attaching time of the striking front end 112 and the detection assembly 40 is longer than n, the detection assembly 40 sends an electric signal b to the control device 60, the current impact completion state is judged, and the driving mechanism 20 is controlled to stop running to finish the impact operation of the electric hammer. Preferably, n is chosen to be 1s.
Preferably, to enhance the impact force of the electric hammer, a striking block is connected to the striking head 112, the striking block is located adjacent to the front end 14 opposite to the striking head 112, and the striking block and the striking head 112 are integrally formed. The striking block is configured to have a cross-sectional radius smaller than that of the striking head 112 so as to be reciprocatingly movable in the striking port without being intercepted by the casing 50 near the front-end device 14. The striking block has a thickness to secure the strength of the impact mechanism 10 and to provide a stable impact force.
The front end device 14 is disposed at the end of the first accommodating portion 52 and includes a nail head housing 142 and a positioning member 141, and the positioning member 141 is sleeved on the striking shaft 11 to limit the linear impact motion of the striking shaft 11, so as to ensure the stability of the striking fastener 100 of the electric hammer. The staple head housing 142 surrounds to form a striking opening and is used to relatively secure the fastener 100.
Preferably, the impact mechanism 10 includes a staple holding mechanism 144 provided at the nose assembly 14, the staple holding mechanism including a third type of magnetic member 143 for attracting the fastener 100. Holding up nail head shell 142 and setting up fixed nail mechanism 144 of holding up, when firmware 100 has magnetism nature like the nail, holding up nail head shell 142 and can directly adsorbing firmware 100 at the striking mouth through third type magnetic part 143 to do not need user's manual support firmware 100, convenience of customers one-hand operation uses electronic hammer, and reduces the injury to the user. It is understood that the first type magnetic member 141, the second type magnetic member 142 and the third type magnetic member 143 may be made of the same material, and are distinguished by different arrangement purposes and positions.
The nail head supporting shell can move relative to the machine shell 50 in the first linear direction, preferably, the nail head supporting shell is connected with the machine shell 50 through the front end elastic piece 145, when a user uses the electric hammer to strike the firmware 100, the base material is compressed along with the driving of the firmware 100 into the base material, and therefore the firmware 100 can be completely driven into the base material.
Preferably, the driving mechanism 20, the power source, and the control device 60 are disposed in the second accommodating portion 51, and the impact mechanism 10 and the support shaft 70 are disposed in the first accommodating portion 52, so as to make the structure of the electric hammer uniform. And transmits the driving force of the driving mechanism 20 into the first receiving portion 52 through an adapter structure provided between the second receiving portion 51 and the first receiving portion 52. It is to be understood that one or any combination of the driving mechanism 20, the power source, the control device 60 may be provided in the first receiving portion 52, and thus the second receiving portion 51 is not essential in the present invention, and it may be provided that all internal components are installed in the first receiving portion 52.
The motor 21 comprises a stator and a rotor, the stator and the rotor are matched to generate an alternating magnetic field and drive the motor shaft 24 to rotate, a first type magnetic part 42 is arranged in the rotor, at least one Hall sensor 41 is arranged near the rotor, and detection information of the Hall sensor is transmitted to the control device 60, so that the running state of the motor 21 is obtained to analyze the running of the electric hammer.
The transmission mechanism 30 includes a first gear 31, a second gear 32 and a pair of bevel gears 33 which are engaged, and the first gear 31 and the second gear 32 form a one-stage speed reduction relationship to reduce the rotation speed output by the driving mechanism 20. The first gear 31 engages the transmission shaft 34, the second gear 32 is connected to the support shaft 70, and the bevel gear 33 engages the motor shaft 24 and the transmission shaft 34 to transmit the power of the driving mechanism 20 from the second receiving portion 51 to the first receiving portion 52 relatively perpendicular thereto through the bevel gear 33. It should be noted that the relative up-down relationship of the bevel gears 33 can be reversed to achieve the purpose of saving space.
The transmission mechanism 30 further includes a connecting member engaged with the second gear 32, one end of which is engaged with the second gear 32 and the other end of which is connected to a supporting shaft 70 that is not relatively rotatable therewith, so as to connect the supporting shaft 70 and the driving mechanism 20 to be driven thereby, and to drive the supporting shaft 70 to rotate, and to drive the impact block 12 to perform impact motion through energy conversion of the supporting shaft 70.
The electric hammer further comprises a switch for controlling the on-off of the motor 21, preferably, the trigger switch 82 controls the on-off of the motor 21, in one mode, the power supply can be controlled, before the trigger switch 82 is turned on, the electric hammer cannot run when the power supply is turned off, after the trigger switch 82 is turned on, a user presses the handheld electric firmware 100 through the firmware 100 by exciting the on-off action, and the detection assembly 40 runs, detects and controls the impact action of the electric hammer.
When the starting action is executed, the magnetic attraction between the striking front end 112 and the second magnetic part 92 is restrained, and the state process of separating the striking front end 112 and the second magnetic part is easy to obtain, namely the feedback of the magnetic element for separating the adsorption is different from the feedback of the non-magnetic contact element for separating, so that a user can easily sense the separation state of the striking front end 112 and the second magnetic part 92 and can stop pressing, thereby obtaining the starting state of the electric hand tool, and the user can conveniently use the overall handle of the process of using the electric hand tool, thereby improving the working efficiency and being convenient to operate. Because the detection component detects sensitively, the user only needs to provide less dynamics, can trigger the displacement of hitting the axle to under the condition of pressing trigger switch 82 simultaneously, the control motor starts, thereby convenience of customers uses, saves physical power, is applicable to more work occasions.
It is understood that in some embodiments of the present invention, striking shaft 11 may not be made of ferromagnetic material completely, and a ferromagnetic material may be disposed at a position opposite to first magnetic member 42, or at a portion of striking front end 112, so as to correspond to the triggering condition of detecting element 40. Meanwhile, the detecting component 40 may be disposed on the striking face 1123 of the striking front end 112, and the first type magnetic member 42 may be disposed at a corresponding position of the casing 50, which is not limited herein. It can be understood that, in addition to the signal for turning on the motor 21 generated by detecting the displacement change of the striking shaft 11, other elements linked with the striking shaft 11 may also be detected, and a state sensor is disposed on the other elements linked with the striking shaft 11, so as to obtain the pressing start action of the user by driving the displacement of the other elements through the displacement of the striking shaft 11.
In some embodiments of the present invention, the detecting assembly 40 is disposed near the top end of the shaft body 111, and the top end of the shaft body 111 is made of a ferromagnetic material. When the user performs the opening action, the striking end 1111 of the shaft body 111 is lifted, the detecting component 40 senses the displacement change of the operation state of the shaft body 111, obtains the opening action, and generates an electric signal a to the control device 60 to control the operation of the driving mechanism 20.
The detecting element 40 may also be disposed near the shaft 111, in which the shaft 111 at the corresponding position is made of ferromagnetic material, when a user performs an opening operation, the striking end 1111 of the shaft 111 is jacked up, the detecting element 40 senses a displacement change of an operation state of the shaft 111 to obtain the opening operation, and generates an electrical signal a to the control device 60 to control the operation of the driving mechanism 20.
It will be appreciated that the detection assembly 40 may be disposed at any other location that can sense a user-initiated action, and that automatic acquisition of the user-initiated action is accomplished by disposing a magnetic material at the corresponding location in cooperation therewith.
In an embodiment of the present invention, the detection component may also select any number of gyroscopes, accelerometers, inertial measurement units, without limitation, and through detecting the status and position of the impact mechanism, obtain the opening motion of the user and activate the driving mechanism to operate to start the striking motion.
In one embodiment of the invention, the transfer shaft is provided with a receiving groove, the corresponding impact block is provided with a guiding groove on the inner wall, and the transfer shaft and the impact block are connected through the clamping sliding piece and convert the driving mechanism to impact energy.
In one embodiment of the invention, the power tool further comprises a tool bushing arranged at its distal end, preferably in releasable engagement with the front device, via which the tool is detachably connected, the tool bushing being provided with a receiving element, the tool being optionally embodied as a hammer, chisel, spade etc. and being detachably connected with the tool bushing to form a hammer, chisel, spade etc. tool. The tool bushing may removably secure the tool via jaws, threads, etc.
In one embodiment of the invention, the impact block is used for replacing the striking shaft, the impact block comprises the impact shaft, at least part of the impact block is provided with a magnetic element, the magnetic element extends from the impact block to the striking opening in the impact direction, and the impact shaft directly strikes the fixing element. The impact shaft is driven by the support shaft to do reciprocating impact motion.
The electric tool provided by the invention can also be implemented as an electric drill, an electric hammer, a nail gun and the like, and the detection assembly is correspondingly arranged on the output shaft and is used for detecting the opening action of a user, so that the control principle is consistent with that of the electric hammer, and the detailed description is omitted.
Fig. 9 is a control flow diagram of the power tool according to an embodiment of the present invention. As shown in fig. 9, the operation flow of the tool is as follows, taking the hall sensor 41 as an example of the detection assembly 40, the trigger switch 82 is pressed in step S1, the electric hammer is in a standby state, and the user will perform step S2 to place the fastener 100 into the striking hole and press the electric hammer toward the impact direction 15, so as to perform step S3 to press the electric hammer.
Step S4 is executed, the detecting component detects whether the displacement of the striking shaft leaves the first position, specifically, the electric hammer is pressed by the fixing component 100, the fixing component 100 acts on the striking end 1111 of the striking shaft 11, the striking shaft 11 moves in the direction opposite to the impact direction 15 against the elastic force of the elastic device 13, that is, the striking shaft 11 leaves the first position because of the arrangement of the magnetic material or a part of the magnetic material of the striking shaft 11, the first type magnetic member 42 changes the attaching state with the striking front end 112 due to the displacement of the striking shaft 11, and the first type magnetic member 42 and the striking front end are separated, so that the distribution of the magnetic induction lines generated by the first type magnetic member 42 is changed, the hall sensing device detects the change of the magnetic induction lines, step S5 is executed, the hall sensing device is activated to send an electric signal a to the control device 60, and step S6 is executed, and the control device 60 controls the driving mechanism 20 to operate.
In the operation process of the driving mechanism 20, step S7 is executed, the control device 60 detects whether the driving mechanism 20 normally operates, if abnormal operation is detected, step S6 is repeated, if normal operation is detected, step S8 is executed, the detection component 40 detects whether the displacement change of the striking shaft 11 exceeds a threshold value, specifically, after striking is completed, the striking shaft 11 idles due to inertia, the displacement change is sudden compared with the striking process, sudden change data is measured in advance for multiple times and stored in the control device 60, if the displacement sudden change of the striking shaft 11 exceeds the threshold value stored in the control device 60, striking stop is determined, step S10 is executed, an electric signal b is sent to the control device 60, and the control device 60 controls the driving mechanism 20 to stop operating. At any time, step S9 is executed, the trigger switch 82 is turned off, and the driving mechanism 20 is stopped.
Fig. 10 is a schematic control flow diagram of a power tool according to another embodiment of the present invention. As shown in fig. 10, the operation flow of the tool is as follows, taking the hall sensor 41 as an example of the detection component 40, the step S11 is executed to press the trigger switch 82, the electric tool belongs to the standby state, and the user will execute the step S12 to put the firmware 100 into the striking hole and press the electric tool toward the impact direction 15 to execute the step S13 to press the electric tool.
Step S14 is executed, the detecting component 40 detects a pressing action, that is, the detecting component detects whether the displacement of the striking shaft is away from the first position, specifically, the electric tool is pressed by the fixing component 100, the fixing component 100 acts on the striking end 1111 of the striking shaft 11, the striking shaft 11 moves towards the direction opposite to the impact direction 15 against the elastic force of the elastic device 13, because the ferromagnetic material or a part of the ferromagnetic material of the striking shaft 11 is arranged, the first type magnetic member 42 changes the attaching state with the striking tip 112 due to the displacement of the striking shaft 11, and the first type magnetic member 42 is separated from the striking tip 112, so as to change the distribution of the magnetic induction lines generated by the first type magnetic member 42, and thus the hall sensing device detects the change of the magnetic induction lines, step S15 is executed, the hall sensing device is activated to send an electric signal a to the control device 60, and step S16 is executed, and the control device 60 controls the driving mechanism 20 to operate.
During the operation of the driving mechanism 20, step S17 is executed, the control device 60 detects whether the driving mechanism 20 normally operates, if it detects that the driving mechanism 20 does not normally operate, the driving mechanism is controlled to stop operating, if it detects that the driving mechanism normally operates, step S18 is executed, the detecting component 40 detects whether the activation interval time is greater than m, if it is greater than m, step S20 is executed, the control device 60 sends the electric signal b to the control device 60, and the control device 60 controls the driving mechanism 20 to stop operating. At any time, step S9 is executed, the trigger switch 82 is turned off, and the driving mechanism 20 is stopped.
In the description herein, references to the description of the term "one embodiment," "some embodiments," "an example," "a specific example," or "some examples," etc., mean that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the invention. In this specification, the schematic representations of the terms used above are not necessarily intended to refer to the same embodiment or example. Furthermore, the particular features, structures, materials, or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, various embodiments or examples and features of different embodiments or examples described in this specification can be combined and combined by one skilled in the art without contradiction.
It will be appreciated by persons skilled in the art that the embodiments of the invention described above and shown in the drawings are given by way of example only and are not limiting of the invention. The objects of the invention have been fully and effectively accomplished. The functional and structural principles of the present invention have been shown and described in the embodiments, and any variations or modifications may be made to the embodiments of the present invention without departing from the principles.

Claims (10)

1. A power tool, comprising:
the striking shaft comprises a striking end for striking a fastener, the striking shaft at least partially extends along the first axial direction, and the striking end is arranged at the front end of the striking shaft;
an impact mechanism for outputting an impact force to the striking shaft to drive the striking shaft to strike the fastener;
a motor for driving the impact mechanism;
a housing for supporting the striking shaft, impact mechanism and motor;
a trigger switch mounted to the housing for user activation;
the striking shaft can move forwards to a first position and backwards to a second position along a first axis relative to the machine shell;
the start-up condition of the motor is configured to: the striking shaft moves backward relative to the housing along the first axial direction to the second position or to a third position between the first position and the second position, and the trigger switch is triggered.
2. The power tool of claim 1, wherein: the electric tool comprises a detection assembly and a control device, wherein the control device is connected with the motor to control whether the motor is started or not; the detection assembly comprises a state sensor for detecting the displacement of the striking shaft, and when the striking shaft moves backwards to the second position or moves to a third position between the first position and the second position along the first axial direction and the trigger switch is triggered, a signal is sent to the control device to control the motor to start.
3. The power tool of claim 2, wherein: the detection assembly detects the displacement of the striking shaft in the impact process and controls the motor to stop rotating when the trigger switch is turned off.
4. The power tool of claim 2, wherein: the state sensor is a Hall sensor, the detection assembly further comprises a magnetic part arranged opposite to the Hall sensor, at least part of the striking shaft is arranged to be the magnetic part, and the Hall sensor is used for detecting the displacement state of the striking shaft among a first position, a second position and a third position.
5. The power tool of claim 4, wherein: the detection assembly is fixed by the casing, is arranged opposite to the striking shaft, and is attached to or adsorbed by the detection assembly when the striking shaft moves to the first position.
6. The power tool of claim 1, wherein: the impact mechanism includes: an impact block formed with an impact surface for impacting the striking shaft to output the impact force; the supporting shaft is used for supporting the impact block; the electric tool also comprises an elastic device sleeved on the impact block, wherein the elastic device is used for assisting the reciprocating impact motion of the impact block and storing and providing part of energy for the impact block to generate the impact motion.
7. A control method of a power tool, the power tool comprising:
the striking shaft comprises a striking end for striking a fastener, the striking shaft at least partially extends along the first axial direction, and the striking end is arranged at the front end of the striking shaft;
a motor for driving the striking shaft;
a housing for supporting the striking shaft and the motor;
a trigger switch mounted to the housing for user activation;
the striking shaft can move forwards to a first position and backwards to a second position along a first axis relative to the machine shell; the control method of the electric tool comprises the following steps:
the trigger switch is triggered to control the electric tool to enter a standby state;
when the striking shaft moves backwards to the second position or backwards to a third position between the first position and the second position along the first axial direction relative to the shell and the trigger switch is triggered, the motor is controlled to be started.
8. The control method of the electric power tool according to claim 7, characterized in that: the electric tool further comprises a detection component, the detection component detects the displacement of the striking shaft in the impact process, and when the sudden change of the striking shaft displacement exceeds a threshold value, the motor is controlled to stop rotating.
9. The control method of the electric power tool according to claim 8, characterized in that: and when the trigger switch is turned off, the motor is controlled to be turned off.
10. The control method of the electric power tool according to claim 8, characterized in that: the detection assembly comprises a Hall sensor and a magnetic part oppositely arranged with the Hall sensor, at least part of the striking shaft is arranged to be a magnetic material, and the Hall sensor detects the displacement state of the striking shaft among the first position, the second position and the third position.
CN201910782339.4A 2018-12-28 2019-08-23 Electric tool and control method thereof Active CN111390843B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2018116164758 2018-12-28
CN201811616475 2018-12-28

Publications (2)

Publication Number Publication Date
CN111390843A CN111390843A (en) 2020-07-10
CN111390843B true CN111390843B (en) 2023-03-28

Family

ID=70751684

Family Applications (5)

Application Number Title Priority Date Filing Date
CN201910782293.6A Pending CN111376213A (en) 2018-12-28 2019-08-23 Electric hammer
CN201921385872.9U Active CN210616409U (en) 2018-12-28 2019-08-23 Electric hammer
CN201921385506.3U Active CN211681905U (en) 2018-12-28 2019-08-23 Electric hammer
CN201910782339.4A Active CN111390843B (en) 2018-12-28 2019-08-23 Electric tool and control method thereof
CN201910782577.5A Active CN111376214B (en) 2018-12-28 2019-08-23 Electric tool

Family Applications Before (3)

Application Number Title Priority Date Filing Date
CN201910782293.6A Pending CN111376213A (en) 2018-12-28 2019-08-23 Electric hammer
CN201921385872.9U Active CN210616409U (en) 2018-12-28 2019-08-23 Electric hammer
CN201921385506.3U Active CN211681905U (en) 2018-12-28 2019-08-23 Electric hammer

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201910782577.5A Active CN111376214B (en) 2018-12-28 2019-08-23 Electric tool

Country Status (1)

Country Link
CN (5) CN111376213A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111962684B (en) * 2020-08-03 2021-09-07 中建二局第三建筑工程有限公司 Electric back-reaming bottom mechanical anchor bolt knocking device and using method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3503172A1 (en) * 1985-01-31 1986-08-07 Willy 7457 Bisingen Kress DRILLING HAMMER
DE10019071A1 (en) * 2000-04-18 2001-10-25 Hilti Ag Electric hand tool device with blank stop
GB2423044A (en) * 2005-02-10 2006-08-16 Black & Decker Inc Hammer with cam-actuated driven member
JP5376216B2 (en) * 2009-01-30 2013-12-25 日立工機株式会社 Reciprocating tool
CN201848826U (en) * 2010-07-02 2011-06-01 张强 Continuous hammering type nail gun
CN102069479A (en) * 2010-12-15 2011-05-25 乐舟中 Impact hammer for knocking in nail
CN102689288A (en) * 2011-03-23 2012-09-26 苏州宝时得电动工具有限公司 Automatic nailing gun
RU2014152475A (en) * 2012-05-25 2016-07-20 Роберт Бош Гмбх SHOCK DEVICE
WO2014115508A1 (en) * 2013-01-24 2014-07-31 Hitachi Koki Co., Ltd. Power tool

Also Published As

Publication number Publication date
CN111376214A (en) 2020-07-07
CN111376213A (en) 2020-07-07
CN111390843A (en) 2020-07-10
CN211681905U (en) 2020-10-16
CN210616409U (en) 2020-05-26
CN111376214B (en) 2023-03-31

Similar Documents

Publication Publication Date Title
AU2002319711B2 (en) Portable electrical motor driven nail gun
AU2010101466A4 (en) Nailer Device
US8127974B2 (en) Electrical motor driven nail gun
US8424734B2 (en) Clamping mechanism for an auto hammer
US10131047B2 (en) Driving tool
WO2002051592A1 (en) Speed controller for flywheel operated hand tool
JP2011025362A (en) Driving tool
US20180043518A1 (en) Power tool
CN216608882U (en) Nail-shooting control device and nail-shooting gun
EP2230050A1 (en) Electrical motor driven nail gun
US8596512B2 (en) Clamping mechanism for an electric hammer
CN111390843B (en) Electric tool and control method thereof
US8469250B2 (en) Auto hammer
WO2020135184A1 (en) Electric tool
CN219649807U (en) Nail gun and electric tool
GB2475616A (en) Auto hammer with clamping mechanism having biasing devices
CN116175490A (en) Nail emission control device and nail emission gun
GB2475618A (en) Auto hammer with clamping mechanism having ferrule
CA2721619A1 (en) Auto hammer
AU2002232744A1 (en) Speed controller for flywheel operated hand tool
JP2015074075A (en) Impact tool

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 211106 No. 529, 159, Jiangjun Avenue, Jiangning District, Nanjing, Jiangsu Province

Applicant after: Nanjing Quanfeng Technology Co.,Ltd.

Address before: No. 529, Jiangjun Avenue, Jiangning Economic and Technological Development Zone, Nanjing, Jiangsu Province

Applicant before: NANJING CHERVON INDUSTRY Co.,Ltd.

GR01 Patent grant
GR01 Patent grant