CN111389440A - 一种层状钛铌酸铯@氮掺杂二氧化钛杂化核壳结构光催化剂的制备方法及其应用 - Google Patents

一种层状钛铌酸铯@氮掺杂二氧化钛杂化核壳结构光催化剂的制备方法及其应用 Download PDF

Info

Publication number
CN111389440A
CN111389440A CN202010285500.XA CN202010285500A CN111389440A CN 111389440 A CN111389440 A CN 111389440A CN 202010285500 A CN202010285500 A CN 202010285500A CN 111389440 A CN111389440 A CN 111389440A
Authority
CN
China
Prior art keywords
nbo
csti
tio
layered
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010285500.XA
Other languages
English (en)
Other versions
CN111389440B (zh
Inventor
奚新国
程婷
董鹏玉
高欣
孟承启
王艳
陈小卫
张蓓蓓
李中钦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yancheng Institute of Technology
Original Assignee
Yancheng Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yancheng Institute of Technology filed Critical Yancheng Institute of Technology
Priority to CN202010285500.XA priority Critical patent/CN111389440B/zh
Publication of CN111389440A publication Critical patent/CN111389440A/zh
Application granted granted Critical
Publication of CN111389440B publication Critical patent/CN111389440B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

一种层状钛铌酸铯@氮掺杂二氧化钛杂化核壳结构光催化剂的制备方法及其应用。该方法将利用TiO2和CsTi2NbO7具有相似的TiO6八面体结构,使得N‑TiO2和CsTi2NbO7两种物相之间能够最大限度地实现晶格匹配,这有利于在两种物相之间有效杂化,从而解决现有技术中不同物相晶格不匹配、杂化程度低等缺点,该方法成本低,不使用贵金属,所得层状钛铌酸铯@氮掺杂二氧化钛异质结杂化材料结构独特。本发明所得CsTi2NbO7@N‑TiO2核壳结构杂化材料拓宽了光学吸收范围,还表现出明显增强的可见光催化活性,其反应速率常数约是CsTi2NbO7的2.2倍,并且具有良好的光催化循环稳定性,应用前景广。

Description

一种层状钛铌酸铯@氮掺杂二氧化钛杂化核壳结构光催化剂 的制备方法及其应用
技术领域
本发明涉及光催化技术领域,尤其涉及一种层状钛铌酸铯@氮掺杂二氧化钛杂化核壳结构光催化剂的制备方法及其应用。
背景技术
半导体光催化技术作为一种可以解决能源匮乏和环境污染的新型技术受到了人们广泛的关注。然而量子效率低和太阳能利用率低限制了半导体光催化的应用,因此设计合成具有可见光光响应的新型高效光催化材料是当前光催化领域的研究重点。近年来,越来越多的过渡金属含氧酸盐层状化合物因其具有良好的光催化活性以及优异的结构可塑性、良好的电子传导和光子响应性被应用于半导体光催化领域。
在过渡金属层状化合物中,钛铌酸铯(CsTi2NbO7)是一种典型的阳离子层状钛铌酸盐,TiO6八面体和NbO6八面体共角或共边组成的晶体结构,层间的Cs+用来补偿层板间电荷平衡,根据离子的可交换性、可柱撑、可剥离重组而进行改性。CsTi2NbO7作为光催化剂,其结构既适用于杂化其他光催化材料(如金属氧化物),以提高光激发载流子的分离效率,也有利于将光生载流子转移到表面吸附的反应物。然而,CsTi2NbO7本身具有一个相对较宽的带隙(3.81 eV),因此,只有在紫外光照下是可激发的。由于紫外光只占太阳能光谱的4-5%,而可见光约占太阳光谱的46%,因此,为了有效提高太阳能利用效率,通过构建异质结杂化材料从而设计一种可见光响应的CsTi2NbO7基光催化剂具有重要意义。
层状钛铌酸盐的带隙比较宽,这使得它只能吸收紫外光,太阳能利用率低。目前,对钛铌酸盐在光催化领域的应用主要是通过对其进行一定改性,使其具有可见光光催化活性。Zheng Zhai等人(Nano Research, 2011, 4(7): 635-647)在这方面做了许多工作,2011年报道了将钛铌酸盐剥离后重堆积,再与尿素反应制得N掺杂钛铌酸纳米片,产物具有可见光催化活性,并且在降解RhB表现出良好的活性。南京大学侯文华教授课题组(Physical Chemistry Chemical Physics 16 (2014) 13409-13417.)通过氮掺杂、酸交换、苯胺插层和原位聚合制备出了具有较高可见光响应的聚苯胺(PAIN)/N-HTiNbO5纳米复合材料,其对亚甲基蓝(MB)的光降解显示出更高的光催化性能;他们还采用简便的一步煅烧方法制备了新型N掺杂CsTi2NbO7@g-C3N4(NCT/CN)核壳纳米带(Materials Letters 217(2018) 235-238.),所得的复合材料在降解RhB溶液过程中表现出良好可见光催化活性。授权号为CN201510439032.6的中国发明专利公开了一种纳米材料修饰层状钛铌酸钾及其制备方法和应用,此发明制品具有优异的吸附和紫外光催化效果,光催化效率高,可用于吸附和在紫外光下催化降解有机染料;授权号为CN201410118367.3的中国发明专利公开了一种碳改性磷酸银/钛铌酸盐复合可见光光催化剂及其制备方法,此发明的优点是银和碳直接接触紧密,修饰效果更好、多种异质半导体相互掺杂的材料,大大提高了材料的催化能力;授权号为CN201610027445.8的中国发明专利公开了一种贵金属-二氧化钛复合催化剂的制备方法,该方法得到的贵金属修饰的二氧化钛复合催化剂中,二氧化钛的外貌为八面体形态且晶体形貌整齐、均匀,贵金属颗粒均匀分散在二氧化钛颗粒的表面,具有较高的光催化活性。
针对列出的现有技术,经分析后发现均存在各自的缺点,具体如下:(1)现有技术中采用离子交换法将贵金属离子引入到铌钛酸的层间,从而制备贵金属修饰的铌钛酸纳米片材料,虽然这种方法使其光催化活性得到了一定提高,但存在的最主要问题是采用了贵金属,成本很高,限制了其实际应用;(2)现有技术中构建的聚苯胺PAIN/N-HTiNbO5,N掺杂CsTi2NbO7@g-C3N4等复合材料,由于聚苯胺PAIN为有机聚合物,N-HTiNbO5为无机材料,属于不同物相,CsTi2NbO7与g-C3N4也为不同物相,它们晶格不匹配,导致其形成复合材料后不能构建完整的表界面微结构,使得光生载流子迁移效率较低。
发明内容
针对现有技术的不足,本发明的目的在于提供一种层状钛铌酸铯@氮掺杂二氧化钛杂化核壳结构光催化剂的制备方法及其应用,该方法利用TiO2和CsTi2NbO7具有相似的TiO6八面体结构这一特点,使得N-TiO2和CsTi2NbO7两种物相之间能够最大限度地实现晶格匹配,这有利于在两种物相之间有效杂化,从而解决现有技术中不同物相晶格不匹配、杂化程度低等缺点,该方法成本低,不使用贵金属,所得层状钛铌酸铯@氮掺杂二氧化钛(CsTi2NbO7@N-TiO2)异质结杂化材料结构独特。
为解决现有技术问题,本发明采取的技术方案为:
一种层状钛铌酸铯@氮掺杂二氧化钛杂化核壳结构光催化剂的制备方法,包括以下步骤:
步骤1,将原料Cs2CO3、Nb2O5、TiO2按摩尔比为1.1:1:4进行混合,研磨,然后置于马弗炉煅烧合成前驱体CsTi2NbO7
步骤2,将层状CsTi2NbO7分散在无水乙醇中,超声处理后,密封烧杯,通过磁力搅拌得分布均匀的悬浮液分布,再将3ml钛酸异丙酯Ti(O-i-Pr)4逐滴加入悬浮液中,不断搅拌,所得溶液转移到培养皿中自然挥发干燥,形成粉体CsTi2NbO7@TiO2,所述钛酸异丙酯Ti(O-i-Pr)4中含有的TiO2与层状CsTi2NbO7的质量比为0.4~1.5:1;
步骤3,将粉体CsTi2NbO7@TiO2在空气气氛下煅烧,所得烧结物经洗涤后,在60~70℃的真空环境下干燥处理,得CsTi2NbO7@TiO2的前驱体;
步骤4,将CsTi2NbO7@TiO2的前驱体与尿素按1:2混合,研磨均匀后,转至管式炉中煅烧,煅烧后物体经洗涤和干燥处理后,得CsTi2NbO7@N-TiO2杂化材料光催化剂。
作为优选的是,步骤1中所述煅烧过程中的升温速度为5~10℃/min且依次在750℃、950℃、1050℃上各保温12小时。
作为优选的是,步骤2中CsTi2NbO7、无水乙醇的用量分别为2g,50ml;层状CsTi2NbO7分散在无水乙醇中超声处理30min后,常温下密封处理,利用磁力搅拌反应4~6小时。作为优选的是,步骤3中所述的煅烧的升温速率为0.5~2℃/min,煅烧温度为400~600℃,保温时间为4~8h;所述烧结物依次经过无水乙醇洗涤和去离子水洗涤,直至产物呈中性。
作为优选的是,步骤4中煅烧温度为400~500℃下保温2~4个小时,升温速度为2~5℃/min。
上述层状钛铌酸铯@氮掺杂二氧化钛杂化核壳结构光催化剂在降解含MB污水上的应用。
有益效果:
相比于现有技术,本发明一种层状钛铌酸铯@氮掺杂二氧化钛杂化核壳结构光催化剂的制备方法,具有如下优势:
(1)从结构角度看,在CsTi2NbO7@N-TiO2核壳结构杂化材料中,具有(101)暴露晶面的氮掺杂锐钛矿TiO2纳米颗粒沉积在CsTi2NbO7表面和层间,由于氮掺杂锐钛矿TiO2和CsTi2NbO7具有相似的TiO6八面体结构,因此N-TiO2和CsTi2NbO7两种化合物之间能够最大限度地实现晶格匹配,从而在两种物相之间形成杂化核壳结构;
(2)从光学吸收特性角度看,制备的CsTi2NbO7@N-TiO2核壳结构杂化材料不仅吸收边发生了红移,拓宽了光学吸收范围,还表现出明显增强的可见光吸收强度;
(3)从光生载流子分离效果看,制备的CsTi2NbO7@N-TiO2还表现出良好的光生电荷分离和迁移效果,表明杂化的核壳结构和N掺杂有效地提高了光生电子的转移,减少了光生电子与空穴的复合;
(4)从光催化性能角度看,光催化降解MB溶液结果表明,制备的CsTi2NbO7@N-TiO2核壳结构杂化材料可见光催化活性明显增强,其反应速率常数约是CsTi2NbO7的2.2倍,并且具有良好的光催化循环稳定性,在光催化降解染料废水方面具有一定应用价值;
(5)从制备方法和工艺角度看,该制备方法工艺简单,设备要求低,不使用贵金属,原料价格居中偏低,制备成本低。
附图说明
图1为本发明制备样品的XRD谱图,图中线条分别为对比例1制备的CsTi2NbO7、商用TiO2、对比例3制备的CsTi2NbO7@TiO2前驱体(TNT)和实施例1制备的CsTi2NbO7@N-TiO2(即TNNT);
图2为采用本发明对比例1制备的CsTi2NbO7和实施例1制备的CsTi2NbO7@N-TiO2(即TNNT)的SEM照片,其中(a)放大倍数为4万倍,(b)放大倍数为2万倍。
图3为采用本发明实施例1制备的TNNT的TEM照片,其中(a)为200nm下的TNNT的透射电镜图,(b)为5nm下TNNT的高分辨率透射电镜图(c)为5nm下TNNT的高分辨率透射电镜图,(d)为50nm下的TNNT的透射电镜图;
图4为采用本发明实施例1制备的TNNT核壳结构杂化材料的XPS图谱,其中(a)为全谱,(b)N 1s轨道高分辨谱,(c)Ti 2p轨道高分辨谱,(d)O 1s轨道高分辨谱。
图5为采用本发明对比例1制备的CsTi2NbO7、对比例3制备的TNT和实施例1制备的TNNT样品的光电流响应图;
图6为本发明不同样品可见光催化MB溶液降解图,其中(a)的样品来自商用TiO2、对比例1、对比例2、对比例3、实施例3;(b)的样品为实施例1、实施例2、实施例3、实施例4、实施例5。
具体实施方式
商用TiO2购于天津化学试剂厂,沪试(≥98.0%)型号;
实施例1
一种层状钛铌酸铯@氮掺杂二氧化钛杂化核壳结构光催化剂的制备方法,包括以下步骤:
(1)通过高温固相法合成CsTi2NbO7,即采用原料为分析纯的Cs2CO3、Nb2O5、TiO2按照物质的量之比1.1:1:4混合,置于研钵中充分研磨,将混合研磨后的样品置于马弗炉中,升温速度为10 ℃/min,分别在750、950、1050 ℃各保温12 h,待反应结束后,取出粉末,用去离子水洗涤至中性,在烘箱中80℃干燥12 h后,得到白色粉末CsTi2NbO7
(2)称取2.0 g制备好的CsTi2NbO7,将其分散于50 ml乙醇中,超声处理30 min,在密封烧杯中磁搅拌4 h。所得悬浮液分布均匀后,将3ml的异丙醇钛(Ti(O-i-Pr)4)逐滴加入到上述悬浮液中不断搅拌5 h。所得悬浮液转移到表面皿中,在常温下通过乙醇自然挥发干燥,再把样品研磨至细粉放入坩埚中用镊子压平以防有空隙生成气泡,然后置于管式炉中煅烧到500℃保温5 h,升温速度为2 ℃/min。反应结束后洗涤样品,干燥并研磨至细粉,所得样品即为前驱体(CsTi2NbO7@TiO2),缩写为TNT,制备出杂化材料样品(对应的TiO2与CsTi2NbO7质量比为0.4:1。
(3)将1.0 g的CsTi2NbO7@TiO2前驱体与2.0 g尿素放入坩埚中充分研磨均匀,然后在450℃下保温2个小时,升温速度为5℃/min,反应结束后用蒸馏水洗涤样品3次。合成的CsTi2NbO7@N-TiO2,缩写为TNNT。
实施例2
除步骤2中异丙醇钛(Ti(O-i-Pr)4)的体积为5ml的,其中TiO2与CsTi2NbO7质量比为0.7:1外,其他步骤同实施例1。
实施例3
除步骤2中异丙醇钛(Ti(O-i-Pr)4)的体积为7ml,其中TiO2与CsTi2NbO7质量比为1:1外,其余同实施例1。
实施例4
除步骤2中异丙醇钛(Ti(O-i-Pr)4)的体积为9ml,其中TiO2与CsTi2NbO7质量比为1.25:1外,其余同实施例1。
实施例5
除步骤2中异丙醇钛(Ti(O-i-Pr)4)的体积为11ml,其中TiO2与CsTi2NbO7质量比为1.5:1外,其余同实施例1。
对比例1
除不实施步骤2和步骤3的情况下,其余同实施例1,制备得CsTi2NbO7,作为参比样品。
对比例2
除步骤2中不添加CsTi2NbO7外,其余同实施例1的步骤,制备了N-TiO2,作为参比样品。
对比例3
除不实施步骤3外,其余同实施例1的相同步骤,制备了CsTi2NbO7@TiO2前驱体(TNT),作为参比样品。
性能检测
材料表征结果见说明书附图。
一、XRD谱图结果:
图1为采用本发明对比例1制备的CsTi2NbO7、商用TiO2、对比例3制备的CsTi2NbO7@TiO2前驱体(TNT)和实施例1制备的CsTi2NbO7@N-TiO2(即TNNT)。可以看出,CsTi2NbO7样品的XRD谱图与标准卡片(PDF No.73-0680)衍射峰位置一致。所制备的CsTi2NbO7在2θ = 9.6 °的特征衍射峰处具有主晶面(020)面,显示其层状结构特征,并且通过布拉格方程(2d sin θ=λ,d为晶面间距,θ为X射线与晶面夹角,λ为X射线波长)计算可得层间距为0.91 nm。通过对CsTi2NbO7@TiO2(简称TNT)进行N掺杂后,得到的TNNT样品的所有衍射峰依然存在,表明氮掺杂后主体层状结构仍然存在,即N掺杂不会影响TNNT的晶型结构。TiO2在2θ为25.1°、37.6°、47.9°、53.9°、54.9°和62.6这几处均出现了明显的衍射峰,与PDF No.21-1272卡片的衍射峰一致,这表明TiO2为锐钛矿相,在杂化过程中锐钛矿相TiO2的晶型并没有发生改变。
二、SEM分析:
图2为采用本发明对比例1制备的CsTi2NbO7和实施例1制备的CsTi2NbO7@N-TiO2(即TNNT)的SEM照片。从图2(a)可以看出,CsTi2NbO7主体材料是层状结构,且表面较光滑。图2(b)表明TiO2颗粒主要覆在CsTi2NbO7表面和层间位置,有序的生成CsTi2NbO7@TiO2核壳结构;CsTi2NbO7的厚度约为1-3 µm;并且发现,N掺杂后,使得CsTi2NbO7表面更粗糙,同时可以清晰地看到蠕虫状孔结构,片状结构已不明显,有序度降低,这是由于在N的掺入过程中尿素分子分解所致。
三、TEM分析
根据实施例1制备的TNNT的TEM图像,如图3(a),图3(d)所示,尺寸为15-20 nm的锐钛矿TiO2纳米颗粒紧密地沉积在CsTi2NbO7的表面,形成CsTi2NbO7@TiO2核壳结构。另外,由于CsTi2NbO7是一种典型的阳离子层状钛铌酸盐,层间的Cs+用来补偿层板间电荷平衡,Cs+可通过离子交换性实现插层;当CsTi2NbO7浸在异丙醇钛溶液中时,异丙醇钛分子极易进入层间通过实现插层,从而在煅烧后得到的TiO2处于CsTi2NbO7的层间位置。此外,通过放大TNNT的HRTEM图像3(b),可以很好地分辨出内核的晶面间距为0.913 nm,对应于CsTi2NbO7晶相的(020)晶面;通过放大TNNT的HRTEM图像3(c),可以很好地分辨出外壳体的晶面间距为0.355nm,根据锐钛矿型TiO2的晶体结构可知,(101)晶面的晶面间距为0.352 nm,因此,可以判定外壳体上TiO2对应的暴露晶面为锐钛矿(101)晶面;这说明暴露(101)晶面的锐钛矿型TiO2纳米颗粒沉积在CsTi2NbO7表面。
四、XPS谱图结果:
图4为采用本发明实施例1制备的CsTi2NbO7@N-TiO2杂化核壳结构的XPS图谱。从图4(a)可以看出TNNT样品中含有N,O,Ti和Nb元素,证明N成功掺入了样品晶格中,另外C峰主要是由于XPS仪器测试过程中外来碳氢化合物引起的。图4(b)为样品TNNT中的N1s峰,在396~401eV范围内有一明显的结合能峰。从拟合后的曲线可以看出分别位于399.5和397.3 eV两个N1s峰。结合TEM照片分析结果,我们可以推断出N原子主要掺杂进入TiO2晶格内而很难进入钛酸盐晶格中,这主要是由于钛酸盐的表面被TiO2所包覆并且N掺杂的过程是由外向内进行的。图4(c)所示,在TNNT中,位于458.3和464.4 eV的结合能峰归属于Ti2p 3/2和Ti2p 1/2,这与CsTi2NbO7和TiO2中的Ti的位置相同,因此推断Ti位于钛氧八面体中,并与氧原子相连。如图4(d)所示,对于纯CsTi2NbO7样品,529.8和530.4 eV的两个拟合峰分别归属于CsTi2NbO7样品和氮氧化物(或吸附的水)中的晶格氧;此外,与纯CsTi2NbO7样品相比,TNNT样品中O1s的三个拟合峰也发生了轻微的偏移,进一步表明TiO2与CsTi2NbO7之间存在着较强的界面杂化相互作用。
五、光电化学结果分析
为了进一步研究光电子-空穴对的分离和迁移,测量了对比例1制备的CsTi2NbO7、对比例3制备的TNT和实施例1制备的TNNT在可见光(λ>420 nm)照射下的光电流对时间响应。当电子-空穴对的产生和传递达到平衡时形成恒定电流。如图5所示,CsTi2NbO7是一种宽带隙材料,在可见光照射下的可见光响应最弱,这说明它不具有可见光下的光电流响应。由图5计算可知,CsTi2NbO7、TNT和TNNT的平均光电流密度分别为0.7×10-2、2.6×10-2和6.2 ×10-2 µA/cm2;可以看出,与CsTi2NbO7相比,TNT样品在可见光照射下随着光照的进行,光电流密度明显增强,这可能是由于在杂化核壳结构界面处引起光生载流子的分离和快速转移导致光生电子寿命延长引起的。此外,样品TNNT受到可见光照射后,光电流密度迅速增加,随着光照的进行,光电流密度趋于稳定;而且相比于CsTi2NbO7和TNT,N掺杂的杂化样品材料表现出更高的光电流密度,说明N的掺杂使杂化材料提高了光生载流子的分离效率,这可能是因为N掺杂样品可见光响应范围扩大并且可见光吸收增强,导致在可见光(λ>420 nm)照射下进行光电流测试时,获得了较高的光电流密度。
对实施例和对比例所得样品进行测试,测试方法:在可见光照射下(此处的可见光是300 W氙灯透过420 nm滤光片得到的),以浓度为5 mg/L的亚甲基蓝溶液为目标污染物,考察100 min后样品对于亚甲基蓝溶液的光催化降解率。本方法参考(J. Mater. Chem. A,2013,1, 4651-4656)。
取商用TiO2、对比例1、对比例2、对比例3、实施例3所得样品,按上述方法进行检测,结果见图6(a)。由图6(a)结果可知,同TNT相比,N掺杂后的样品TNNT光催化活性得到进一步增强,这说明N掺杂从本质上调节了TNNT中的TiO2的电子能带结构,通过增强可见光吸收,从而进一步提高了光催化活性。
图6(b)为采用本发明实施例1、实施例2、实施例3、实施例4、实施例5制备的不同样品可见光催化MB溶液降解图,通过在可见光下降解MB溶液,评价所制备的样品的光催化活性。从图6(b)可以看出TNNT-3、TNNT-5、TNNT-7、TNNT-9、TNNT-11在100 min内可以分别降解84%、80%、95%、88%、88%的MB溶液。
以上所述,仅为本发明较佳的具体实施方式,本发明的保护范围不限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可显而易见地得到的技术方案的简单变化或等效替换均落入本发明的保护范围内。

Claims (6)

1.一种层状钛铌酸铯@氮掺杂二氧化钛杂化核壳结构光催化剂的制备方法,其特征在于,包括以下步骤:
步骤1,将原料Cs2CO3、Nb2O5、TiO2按摩尔比为1.1:1:4进行混合,研磨,然后置于马弗炉煅烧合成前驱体CsTi2NbO7
步骤2,将层状CsTi2NbO7分散在无水乙醇中,超声处理后,密封烧杯,通过磁力搅拌得分布均匀的悬浮液分布,再将3ml钛酸异丙酯Ti(O-i-Pr)4逐滴加入悬浮液中,不断搅拌,所得溶液转移到培养皿中自然挥发干燥,形成粉体CsTi2NbO7@TiO2,所述钛酸异丙酯Ti(O-i-Pr)4中含有的TiO2与层状CsTi2NbO7的质量比为0.4~1.5:1;
步骤3,将粉体CsTi2NbO7@TiO2在空气气氛下煅烧,所得烧结物经洗涤后,在60~70℃的真空环境下干燥处理,得CsTi2NbO7@TiO2的前驱体;
步骤4,将CsTi2NbO7@TiO2的前驱体与尿素按1:2混合,研磨均匀后,转至管式炉中煅烧,煅烧后物体经洗涤和干燥处理后,得CsTi2NbO7@N-TiO2杂化材料光催化剂。
2.根据权利要求1所述的一种层状钛铌酸铯@氮掺杂二氧化钛杂化核壳结构光催化剂的制备方法,其特征在于,步骤1中所述煅烧过程中的升温速度为5~10℃/min且依次在750℃、950℃、1050℃上各保温12小时。
3.根据权利要求1所述的一种层状钛铌酸铯@氮掺杂二氧化钛杂化核壳结构光催化剂的制备方法,其特征在于,步骤2中CsTi2NbO7、无水乙醇的用量分别为2g,50ml;层状CsTi2NbO7分散在无水乙醇中超声处理30min后,常温下密封处理,利用磁力搅拌反应4~6小时。
4.根据权利要求1所述的一种层状钛铌酸铯@氮掺杂二氧化钛杂化核壳结构光催化剂的制备方法,其特征在于,步骤3中所述的煅烧的升温速率为0.5~2℃/min,煅烧温度为400~600℃,保温时间为4~8h;所述烧结物依次经过无水乙醇洗涤和去离子水洗涤,直至产物呈中性。
5.根据权利要求1所述的一种层状钛铌酸铯@氮掺杂二氧化钛杂化核壳结构光催化剂的制备方法,其特征在于,步骤4中煅烧温度为400~500℃下保温2~4个小时,升温速度为2~5℃/min。
6.基于权利要求1-5任一种方法制备的层状钛铌酸铯@氮掺杂二氧化钛杂化核壳结构光催化剂在降解含MB污水上的应用。
CN202010285500.XA 2020-04-13 2020-04-13 一种层状钛铌酸铯@氮掺杂二氧化钛杂化核壳结构光催化剂的制备方法及其应用 Active CN111389440B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010285500.XA CN111389440B (zh) 2020-04-13 2020-04-13 一种层状钛铌酸铯@氮掺杂二氧化钛杂化核壳结构光催化剂的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010285500.XA CN111389440B (zh) 2020-04-13 2020-04-13 一种层状钛铌酸铯@氮掺杂二氧化钛杂化核壳结构光催化剂的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN111389440A true CN111389440A (zh) 2020-07-10
CN111389440B CN111389440B (zh) 2023-07-25

Family

ID=71417538

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010285500.XA Active CN111389440B (zh) 2020-04-13 2020-04-13 一种层状钛铌酸铯@氮掺杂二氧化钛杂化核壳结构光催化剂的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN111389440B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103878005A (zh) * 2014-03-27 2014-06-25 常州大学 一种碳改性磷酸银/钛铌酸盐复合可见光光催化剂及其制备方法
CN109622007A (zh) * 2018-12-04 2019-04-16 盐城工学院 一种氮掺杂复合光催化剂及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103878005A (zh) * 2014-03-27 2014-06-25 常州大学 一种碳改性磷酸银/钛铌酸盐复合可见光光催化剂及其制备方法
CN109622007A (zh) * 2018-12-04 2019-04-16 盐城工学院 一种氮掺杂复合光催化剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHAO LIU ET AL.: ""N-doped CsTi2NbO7@g-C3N4 core-shell nanobelts with enhanced visible light photocatalytic activity"", 《MATERIALS LETTERS》 *
XIN GAO ET AL.: ""N-Doped K3Ti5NbO14@TiO2 Core-Shell Structure for Enhanced Visible-Light-Driven Photocatalytic Activity in Environmental Remediation"", 《CATALYSTS》 *

Also Published As

Publication number Publication date
CN111389440B (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
Najafian et al. Fabrication of nanocomposite photocatalyst CuBi2O4/Bi3ClO4 for removal of acid brown 14 as water pollutant under visible light irradiation
Yuan et al. Metal-free broad-spectrum PTCDA/g-C3N4 Z-scheme photocatalysts for enhanced photocatalytic water oxidation
Li et al. Facile fabrication of g-C3N4 QDs/BiVO4 Z-scheme heterojunction towards enhancing photodegradation activity under visible light
Kong et al. Ti3+ defect mediated g-C3N4/TiO2 Z-scheme system for enhanced photocatalytic redox performance
Cai et al. Silver phosphate-based Z-Scheme photocatalytic system with superior sunlight photocatalytic activities and anti-photocorrosion performance
Yu et al. In situ self-transformation synthesis of g-C3N4-modified CdS heterostructure with enhanced photocatalytic activity
Chang et al. Construction of novel TiO2/Bi4Ti3O12/MoS2 core/shell nanofibers for enhanced visible light photocatalysis
Li et al. Enhanced photocatalytic activity of gC 3 N 4–ZnO/HNT composite heterostructure photocatalysts for degradation of tetracycline under visible light irradiation
Gong et al. The synthesis of graphene-TiO 2/gC 3 N 4 super-thin heterojunctions with enhanced visible-light photocatalytic activities
Ye et al. Fabrication of BiVO4/BiOBr composite with enhanced photocatalytic activity by a CTAB-assisted polyol method
Li et al. In situ reorganization of Bi3O4Br nanosheet on the Bi24O31Br10 ribbon structure for superior visible-light photocatalytic capability
Wang et al. Design and fabrication of NiS/LaFeO3 heterostructures for high efficient photodegradation of organic dyes
Ren et al. Electrospinning preparation of Sn4+-doped BiFeO3 nanofibers as efficient visible-light-driven photocatalyst for O2 evolution
Yang et al. Two-step hydrothermal synthesis of novel hierarchical Co3O4/Bi2O2CO3 pn heterojunction composite photocatalyst with enhanced visible light photocatalytic activity
Hu et al. Simple synthesis of 3D flower-like g-C3N4/TiO2 composite microspheres for enhanced visible-light photocatalytic activity
CN106607063B (zh) 漂浮型可见光光催化剂及制备方法和应用
Zhao et al. Efficient visible light photocatalytic activity of p–n junction CuO/TiO 2 loaded on natural zeolite
CN106925304B (zh) Bi24O31Br10/ZnO复合可见光催化剂及其制备方法
Wang et al. 3D network-like rGO-MoSe2 modified g-C3N4 nanosheets with Z-scheme heterojunction: Morphology control, heterojunction construct, and boosted photocatalytic performances
Liu et al. In-situ fabrication SnO2/SnS2 heterostructure for boosting the photocatalytic degradation of pollutants
Ding et al. Construction of amorphous SiO2 modified β-Bi2O3 porous hierarchical microspheres for photocatalytic antibiotics degradation
Luo et al. Effect of different Bi/Ti molar ratios on visible-light photocatalytic activity of BiOI/TiO2 heterostructured nanofibers
WO2019085532A1 (zh) 一种三价钛自掺杂二氧化钛纳米颗粒-部分还原氧化石墨烯纳米片复合材料及其制备方法
Chen et al. Up-conversion fluorescent carbon quantum dots decorated covalent triazine frameworks as efficient metal-free photocatalyst for hydrogen evolution
Zhang et al. Enhanced photocatalytic activities of CdS-BiOCl/PAN composites towards photocatalytic hydrogen evolution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant