CN111384735A - 基于跟踪功率方式实现频率调节的方法 - Google Patents

基于跟踪功率方式实现频率调节的方法 Download PDF

Info

Publication number
CN111384735A
CN111384735A CN201811639378.0A CN201811639378A CN111384735A CN 111384735 A CN111384735 A CN 111384735A CN 201811639378 A CN201811639378 A CN 201811639378A CN 111384735 A CN111384735 A CN 111384735A
Authority
CN
China
Prior art keywords
frequency
wireless charging
adjustment
power
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811639378.0A
Other languages
English (en)
Other versions
CN111384735B (zh
Inventor
浦梦军
陈远明
陈春满
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi China Resources Semico Co Ltd
Original Assignee
Wuxi China Resources Semico Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi China Resources Semico Co Ltd filed Critical Wuxi China Resources Semico Co Ltd
Priority to CN201811639378.0A priority Critical patent/CN111384735B/zh
Priority to PCT/CN2019/123917 priority patent/WO2020134992A1/zh
Publication of CN111384735A publication Critical patent/CN111384735A/zh
Application granted granted Critical
Publication of CN111384735B publication Critical patent/CN111384735B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明涉及一种基于跟踪功率方式实现频率调节的方法,包括步骤:(1)无线充电发送端按系统预设的初始频率运行;(2)所述的无线充电发送端根据实时获取到的充电功率进行频率的逐次逼近调节,所述的逐次逼近调节为按照逐渐计算的频率误差补偿值和步进频率值循环进行调整和相对前次反方向调整,直至所获取到的充电功率达到所需的功率。采用了该基于跟踪功率方式实现频率调节的方法,不增加硬件成本,采用算法使得发射端完成从变频向定频的转变,避免温度带来的影响,兼容性更强,适应性更强,电容值、电阻值变化不会影响频率输出精度。

Description

基于跟踪功率方式实现频率调节的方法
技术领域
本发明涉及能量传输领域,尤其涉及无线充电领域,具体是指一种基于跟踪功率方式实现频率调节的方法。
背景技术
无线充电是一种利用电磁场或电磁波进行能量传输的一种技术,目前在小功率的范围内应用比较广,主要用于智能手机、微型计算机,小型便携式家用电器等。
根据QI标准协议,在无线充电系统中,发射端的能量传输只需要在87~205K范围内,根据接收端的control error(控制差错)包调节即可,不管是调频,调压,还是调相,只需要达到接收端所需要的功率的即可。但是根据其他公司提出的7.5W无线充快速充电协议。在无线充电系统中,发射端需要达到接收端指定要求的127.7KHz频率,误差范围±6(Hz)才能完成7.5W的能量传输,如果达不到这个频率,就不能以7.5W的能量进行传输。
现行的方案大多数采用外部晶振来控制恒定的输出频率,使用一路PWM波去控制外部DCDC转换器调节电压来达到接收端要求的功率。
在现行的调节频率算法,为了满足某司提出的7.5W快速充电协议,直接固定频率为127.7KHz,调节电压达到接收端的功率。这样的话不仅增加了外部硬件结构,而且兼容性也会降低,若另外一款接收端要求的是另外一种频率就存在无法兼容的问题,外部增加的晶振也无法避免发射端温度变化带来的频率的变化。
芯片内部基准出厂时会进行修调。但是不同方案运用时,硬件、环境温度变化会影响频率输出精度不准确,存在一定的偏差。产品大批量产时固定频率(127.7KHz±)跟PCB版布线,电容、电阻、温度等因素有很大关系。
发明内容
本发明的目的是克服了上述现有技术的缺点,提供了一种避免温度影响、兼容性强、适应性强的基于跟踪功率方式实现频率调节的方法。
为了实现上述目的,本发明的基于跟踪功率方式实现频率调节的方法如下:
该基于跟踪功率方式实现频率调节的方法,其主要特点是,所述的方法包括以下步骤:
(1)无线充电发送端按系统预设的初始频率运行;
(2)所述的无线充电发送端根据实时获取到的接收端的充电功率进行频率的逐次逼近调整,所述的逐次逼近调整为按照逐次计算出的频率误差补偿值和步进频率值循环进行正向调整和反向调整,直至所获取到的接收端的充电功率达到所要求的功率。
较佳地,所述的步骤(2)具体包括以下步骤:
(2.1)所述的无线充电发送端获取接收端当前充电功率;
(2.2)所述的无线充电发送端判断所获取的接收端当前充电功率是否达到所要求的功率,如果是,则维持发送端保持在当前频率状态,直至无线充电发送端结束无线充电过程;否则,计算频率误差补偿值和步进频率值;
(2.3)所述的无线充电发送端根据计算得到的步进频率值对当前频率进行步进调整,并获取接收端当前充电功率;
(2.4)所述的无线充电发送端判断所获取的接收端当前充电功率是否达到所要求的功率,如果是,则维持发送端保持在当前频率状态,直至无线充电发送端结束无线充电过程;否则,计算频率误差补偿值和步进频率值;
(2.5)所述的无线充电发送端判断所获取的接收端当前充电功率相对前次的充电功率是否下降,如果是,则根据计算得到的步进频率值对当前频率进行相对前次调整方向的反向步进调整,且进行反向调整的步进频率值相比反向调整前的前次调整的步进频率值减小,并继续步骤(2.6);否则,根据计算得到的步进频率值对当前频率进行相对前次调整方向的同向步进调整,继续步骤(2.6);
(2.6)所述的无线充电发送端获取接收端当前充电功率,继续步骤(2.4)。
较佳地,所述的计算频率误差补偿值和步进频率值,可以包括以下步骤:
(a)根据以下公式计算频率误差补偿值ΔF:
ΔF=(pi–pi-1)×ei×k;
其中,e为累计误差,k为系数,p为充电功率,i为调整次数;
(b)根据以下公式计算步进频率值:
F=FOP/DIV+ΔF;
其中,FOP为基准频率,DIV为分频系数,ΔF为频率误差补偿。
较佳地,所述的步骤(1)中也可以包括以下步骤:
(1.1)所述的无线充电发送端获取初始温度;
所述的计算频率误差补偿值和步进频率值也可以包括以下步骤:
(a)根据所述的初始温度和该无线充电发送端的当前温度计算温升ΔT;
(b)根据以下公式计算频率误差补偿值ΔF:
ΔF=(pi–pi-1)×ei×k;
其中,e为累计误差,k为系数,p为充电功率,i为调整次数;
(c)根据以下公式计算步进频率值:
F=FOP/DIV+ΔF+ΔT×Kp
其中,FOP为基准频率,DIV为分频系数,ΔF为频率误差补偿,Kp为频率误差。
较佳地,所述的步骤(1)中还可以包括以下步骤:
(1.1a)所述的无线充电发送端获取初始温度;
所述的步骤(2)还可以包括以下步骤:
(2.1a)所述的无线充电发送端获取接收端当前充电功率;
(2.2a)所述的无线充电发送端判断所获取的接收端当前充电功率是否达到所要求的功率,如果是,则继续步骤(2.7a);否则,结合温升计算频率误差补偿值和步进频率值;
(2.3a)所述的无线充电发送端根据计算得到的步进频率值对当前频率进行步进调整,并获取接收端当前充电功率;
(2.4a)所述的无线充电发送端判断所获取的接收端当前充电功率是否达到所要求的功率,如果是,则继续步骤(2.7a);否则,结合温升计算频率误差补偿值和步进频率值;
(2.5a)所述的无线充电发送端判断所获取的接收端当前充电功率相对前次的充电功率是否下降,如果是,则根据计算得到的步进频率值对当前频率进行相对前次调整方向的反向步进调整,且进行反向调整的步进频率值相比反向调整前的前次调整的步进频率值减小,并继续步骤(2.6a);否则,根据计算得到的步进频率值对当前频率进行相对前次调整方向的同向步进调整,继续步骤(2.6a);
(2.6a)所述的无线充电发送端获取接收端当前充电功率,继续步骤(2.4a);
(2.7a)结合温升计算频率误差补偿值和步进频率值,继续步骤(2.2a),直至无线充电发送端结束无线充电过程。
较佳地,所述的步骤(2.7a)中的结合温升计算频率误差补偿值和步进频率值,包括以下步骤:
(a)根据所述的初始温度和该无线充电发送端的当前温度计算温升ΔT;
(b)根据以下公式计算频率误差补偿值ΔF:
ΔF=(pi–pi-1)×ei×k;
其中,e为累计误差,k为系数,p为充电功率,i为调整次数;
(c)根据以下公式计算步进频率值:
F=FOP/DIV+ΔF+ΔT×Kp
其中,FOP为基准频率,DIV为分频系数,ΔF为频率误差补偿,Kp为频率误差。
较佳地,所述的频率误差KP,为通过以下公式计算得到:
KP=10W/Prx;
其中,Prx为从接收端所获取的遵循预设的协议的功率值。
较佳地,所述的相对前次调整方向的反向步进调整的步进频率值,小于所对应的前次步进调整的步进频率值。
较佳地,所述的无线充电发送端对当前频率进行步进调整,与获取接收端当前充电功率之间,延时系统预设的时间。
较佳地,所述的初始频率可以为80KHz~300KHz。
更佳地,所述的初始频率可以为130KHz。
采用了本发明的基于跟踪功率方式实现频率调节的方法,不增加硬件成本,采用算法使得发射端完成从变频向定频的转变,避免温度带来的影响,兼容性更强。适应性更强,电容值、电阻值变化不会影响频率输出精度,避免了外部增加的晶振发射端温度变化带来的频率变化的问题。
附图说明
图1为本发明的基于跟踪功率方式实现频率调节的方法的流程图。
图2为本发明的基于跟踪功率方式实现频率调节的方法的结构示意图。
图3为本发明的基于跟踪功率方式实现频率调节的方法的逐次逼近的流程图。
具体实施方式
为了能够更清楚地描述本发明的技术内容,下面结合具体实施例来进行进一步的描述。
本发明的该基于跟踪功率方式实现频率调节的方法,其中包括以下步骤:
(1)无线充电发送端按系统预设的初始频率运行;
(1.1)所述的无线充电发送端获取初始温度;
(2)所述的无线充电发送端根据实时获取到的接收端的充电功率进行频率的逐次逼近调整,所述的逐次逼近调整为按照逐次计算出的频率误差补偿值和步进频率值循环进行正向调整和反向调整,直至所获取到的接收端的充电功率达到所要求的功率;
(2.1)所述的无线充电发送端获取接收端当前充电功率;
(2.2)所述的无线充电发送端判断所获取的接收端当前充电功率是否达到所要求的功率,如果是,则维持发送端保持在当前频率状态,直至无线充电发送端结束无线充电过程;否则,计算频率误差补偿值和步进频率值;
(2.3)所述的无线充电发送端根据计算得到的步进频率值对当前频率进行步进调整,并获取接收端当前充电功率;
(2.4)所述的无线充电发送端判断所获取的接收端当前充电功率是否达到所要求的功率,如果是,则维持发送端保持在当前频率状态,直至无线充电发送端结束无线充电过程;否则,计算频率误差补偿值和步进频率值;
(2.5)所述的无线充电发送端判断所获取的接收端当前充电功率相对前次的充电功率是否下降,如果是,则根据计算得到的步进频率值对当前频率进行相对前次调整方向的反向步进调整,且进行反向调整的步进频率值相比反向调整前的前次调整的步进频率值减小,并继续步骤(2.6);否则,根据计算得到的步进频率值对当前频率进行相对前次调整方向的同向步进调整,继续步骤(2.6);
(2.6)所述的无线充电发送端获取接收端当前充电功率,继续步骤(2.4)。
作为本发明的第一种优选实施方式,所述的计算频率误差补偿值和步进频率值,可以包括以下步骤:
(a)根据以下公式计算频率误差补偿值ΔF:
ΔF=(pi–pi-1)×ei×k;
其中,e为累计误差,k为系数,p为充电功率,i为调整次数;
(b)根据以下公式计算步进频率值:
F=FOP/DIV+ΔF;
其中,FOP为基准频率,DIV为分频系数,ΔF为频率误差补偿。
作为本发明的第二种优选实施方式,所述的步骤(1)中可以包括以下步骤:
(1.1)所述的无线充电发送端获取初始温度;
所述的计算频率误差补偿值和步进频率值可以包括以下步骤:
(a)根据所述的初始温度和该无线充电发送端的当前温度计算温升ΔT;
(b)根据以下公式计算频率误差补偿值ΔF:
ΔF=(pi–pi-1)×ei×k;
其中,e为累计误差,k为系数,p为充电功率,i为调整次数;
(c)根据以下公式计算步进频率值:
F=FOP/DIV+ΔF+ΔT×Kp
其中,FOP为基准频率,DIV为分频系数,ΔF为频率误差补偿,Kp为频率误差。
作为本发明的第三种优选实施方式,所述的步骤(1)中还包括以下步骤:
(1.1a)所述的无线充电发送端获取初始温度;
所述的步骤(2)包括以下步骤:
(2.1a)所述的无线充电发送端获取接收端当前充电功率;
(2.2a)所述的无线充电发送端判断所获取的接收端当前充电功率是否达到所要求的功率,如果是,则继续步骤(2.7a);否则,结合温升计算频率误差补偿值和步进频率值;
(2.3a)所述的无线充电发送端根据计算得到的步进频率值对当前频率进行步进调整,并获取接收端当前充电功率;
(2.4a)所述的无线充电发送端判断所获取的接收端当前充电功率是否达到所要求的功率,如果是,则继续步骤(2.7a);否则,结合温升计算频率误差补偿值和步进频率值;
(2.5a)所述的无线充电发送端判断所获取的接收端当前充电功率相对前次的充电功率是否下降,如果是,则根据计算得到的步进频率值对当前频率进行相对前次调整方向的反向步进调整,且进行反向调整的步进频率值相比反向调整前的前次调整的步进频率值减小,并继续步骤(2.6a);否则,根据计算得到的步进频率值对当前频率进行相对前次调整方向的同向步进调整,继续步骤(2.6a);
(2.6a)所述的无线充电发送端获取接收端当前充电功率,继续步骤(2.4a);
(2.7a)结合温升计算频率误差补偿值和步进频率值,继续步骤(2.2a),直至无线充电发送端结束无线充电过程。
在本发明的该优选实施方式中,所述的步骤(2.7a)中的结合温升计算频率误差补偿值和步进频率值,包括以下步骤:
(a)根据所述的初始温度和该无线充电发送端的当前温度计算温升ΔT;
(b)根据以下公式计算频率误差补偿值ΔF:
ΔF=(pi–pi-1)×ei×k;
其中,e为累计误差,k为系数,p为充电功率,i为调整次数;
(c)根据以下公式计算步进频率值:
F=FOP/DIV+ΔF+ΔT×Kp
其中,FOP为基准频率,DIV为分频系数,ΔF为频率误差补偿,Kp为频率误差。
作为本发明的优选实施方式,所述的频率误差KP,为通过以下公式计算得到:
KP=10W/Prx;
其中,Prx为从接收端所获取的遵循预设的协议的功率值。
作为本发明的优选实施方式,所述的相对前次调整方向的反向调整的步进频率值相比反向调整前的前次调整的步进频率值减小。
作为本发明的优选实施方式,所述的无线充电发送端对当前频率进行步进调整,与获取接收端当前充电功率之间,延时系统预设的时间。
作为本发明的优选实施方式,所述的初始频率可以为80KHz~300KHz。
作为本发明的进一步优选的实施方式,所述的初始频率可以为130KHz。。
本发明的具体实施方式中,主要解决在无线充电系统中,发射端为变频调节架构,需根据接收端功率的需求,由变频达到定频的转变,并符合接收端的频率。在频率精度范围±6Hz内,才能达到更高的能量传输,否则就会以较低的传输功率进行能量传输。频率输出算法F=FOP/DIV(FOP基准频率,DIV分频系数),由于温度、硬件PCB板、芯片本身差异,频率输出和理论值存在误差,导致输出频率如127.7KHz存在最大±500Hz误差。
针对现有技术的缺点,在发射端系统不增加晶振的情况下,使用MCU内部PWM模块分频产生的Fi开关MOS管,将LC振荡,与接收端耦合,通过解码模块解得接收端的包,通过对照表判断出接收端所需频率,尝试第一次初步调试频率,之后通过接收端不断返回的功率调整频率,通过预设的功率比例系数,采用逐次逼近的方法,调节频率,最终达到接收端所需的定频。同时兼顾温度带来的影响,通过预设的温度比例系数,采用逐次逼近的方法,调节频率,最终达到接收端所需的定频。
本发明实施例的关键点在于:
频率输出算法:F=FOP/DIV+(pi-pi-1)×ei×k+ΔT×Kp
其中计算频率误差补偿算法ΔF=(pi–pi-1)×ei×K;ΔT×Kp是本发明实施的关键,e(累计误差),K,KP系数。
该方法中包含接收端返回的功率和预设的功率比例系数逐次逼近调节频率的具体操作步骤,如图3所示,其中,具体包括以下步骤:
1、系统初始化;
2、于RX建立通讯;
3、判断接收端手机类型;
4、设置PWM频率为130K,用F来标示起始频率(虽然程序设置输出130K频率,但是由于芯片个体差异、PCB板、温度等原因,实际输出会偏差范围(2K));
5、接收端输出功率;
6、接收端判断频率127.7范围;
7、接收调整输出功率范围;
8、接收端发送本身功率及误差值;
9、无线充电发送端根据接收到的RX的功率值及误差值,通过调整PWM的相位、占空比、死区时间来调整功率;
10、无线充电发送端计算需要调整的频率误差值;
11、无线充电发送端调整输出PWM的频率等。
兼顾温度的情况下逐次逼近调节频率的具体操作步骤如下:
在上述一中第四步骤,增加温度控制:
1、读取当前温度值;
2、每隔1S计算测温度,并计算累计温差;
3、计算调整的PWM分频系数:温差/1度×PWM基准×分频系数;
4、PWM的频率:208M/(原来的分频系数+需要调整的系数)。
本发明的技术本质和精髓思想在于无线充电发送端的频率调节,无线充电发送端首先按初始频率运行,相应的接收端也就按此频率运行,无线充电发送端获得接收端的功率信息,通过对功率的判断进行频率的调整,最终使得接收端运行在系统所要求的充电功率下。
快充模式还与频率有关,但接收端实际的频率因为器件、线路、温度等因素与无线充电发送端的理论值并不相等,故本专利解决的是理论与实际的差异问题,通过无线充电发送端获得接收端的功率进行判断,然后逐步调整频率,循环往复,直到功率处于高位。
比如无线充电发送端先上调频率,功率也随之上调。当到某一频率时,功率下降,此时无线充电发送端下降频率,且调节的步进变小。当调节到某频率,功率再次变小,于是无线充电发送端再次上调频率,调节的步进再次变小,以此类推,直至功率为所需的快充功率。
接收端处跟随发送端的初始频率运行,接收端在无线充电时有两种模式,分别为普通模式和快充模式。普通模式下功率较低,例如功率为5W;快充模式下功率较高,例如功率为10W。接收端计算当前频率下的充电功率,并根据所需的目标功率编码,例如将充电功率除以128,无线充电发送端获取接收端编码后的信息再解码,获取接收端当前充电功率值和误差值进行后续的频率调整。
在本发明的上述第一种实施例的实现方式中,无线充电发送端按系统预设的初始频率运行。无线充电发送端根据实时获取到的接收端的充电功率进行频率的逐次逼近调整,逐次逼近调整即为按照逐次计算出的频率误差补偿值和步进频率值循环进行正向调整和反向调整,直至所获取到的接收端的充电功率达到所要求的功率。
无线充电发送端先判断是否为所需的功率,如果是,继续维持充电功率,否则,进行后续调整频率。
无线充电发送端根据目标功率和接收端当前功率计算频率误差补偿值和步进频率值,并根据计算结果调整步进频率,延时系统预设的时间后,获取接收端当前充电功率,再次判断是否为所需的功率,如果是,继续维持充电功率,直至发送端结束无线充电过程;否则,进行后续调整频率。
无线充电发送端再次计算频率误差补偿值和步进频率值,判断获取的接收端当前充电功率相对前次的充电功率是否下降,如果是,则相对前次调整反方向调整步进频率,且调整的步进频率值比反向调整前的前次调整的步进频率值减小;否则,依然相对前次调整同方向调整步进频率。延时系统预设的时间后,获取接收端当前充电功率,循环根据计算结构正向调整或反向调整,直至维持发送端保持在所需功率状态。
根据以下公式计算频率误差补偿值ΔF:
ΔF=(pi–pi-1)×ei×k;
其中,e为累计误差,k为系数,p为充电功率,i为调整次数。
根据以下公式计算步进频率值:
F=FOP/DIV+ΔF;
其中,FOP为基准频率,DIV为分频系数,ΔF为频率误差补偿。
在本发明所包含的第二种实施例的实现方式中,在无线充电过程中需考虑因为温度导致理论值与实际值产生误差的情况,发送端首次获取接收端的充电功率时需同时获取初始温度,在逐次逼近的计算过程中,计算时需考虑温升的影响,直至维持发送端保持在所需功率状态。
无线充电发送端按系统预设的初始频率运行。无线充电发送端根据实时获取到的接收端的充电功率进行频率的逐次逼近调整,逐次逼近调整即为按照逐次计算出的频率误差补偿值和步进频率值循环进行正向调整和反向调整,直至所获取到的接收端的充电功率达到所要求的功率。
无线充电发送端先判断是否为所需的功率,如果是,继续维持充电功率,否则,进行后续调整频率。
无线充电发送端根据目标功率和接收端当前功率计算频率误差补偿值和步进频率值,并根据计算结果调整步进频率,延时系统预设的时间后,获取接收端当前充电功率,再次判断是否为所需的功率,如果是,继续维持充电功率,直至发送端结束无线充电过程;否则,进行后续调整频率。
无线充电发送端再次计算频率误差补偿值和步进频率值,判断获取的接收端当前充电功率相对前次的充电功率是否下降,如果是,则相对前次调整反方向调整步进频率,且调整的步进频率值比反向调整前的前次调整的步进频率值减小;否则,依然相对前次调整同方向调整步进频率。延时系统预设的时间后,获取接收端当前充电功率,循环根据计算结构正向调整或反向调整,直至维持发送端保持在所需功率状态。
每次计算频率误差补偿值和步进频率值时需先根据初始温度和该无线充电发送端的当前温度计算温升ΔT。
根据以下公式计算频率误差补偿值ΔF:
ΔF=(pi–pi-1)×ei×k;
其中,e为累计误差,k为系数,p为充电功率,i为调整次数。
根据以下公式计算步进频率值:
F=FOP/DIV+ΔF+ΔT×Kp
其中,FOP为基准频率,DIV为分频系数,ΔF为频率误差补偿,Kp为频率误差。
在本发明所包含的第三种实施例的实现方式中,在无线充电过程中需考虑因为温度导致理论值与实际值产生误差的情况,发送端首次获取接收端的充电功率时需同时获取初始温度,在逐次逼近的计算过程中,计算时需考虑温升的影响,直至维持发送端保持在所需功率状态。而且,发送端维持保持在所需功率状态的过程中,需考虑后续温度影响的情况,对温度进行控制,故本实施例中,在维持过程中添加了计算温升并计算温度控制时的步进频率值的步骤,并再次进行逐次逼近循环,直至发送端维持保持在所需功率状态且温度保持在初始温度状态,直到结束无线充电过程。
每次计算频率误差补偿值和步进频率值时需先根据初始温度和该无线充电发送端的当前温度计算温升ΔT。
无线充电发送端按系统预设的初始频率运行。无线充电发送端根据实时获取到的接收端的充电功率进行频率的逐次逼近调整,逐次逼近调整即为按照逐次计算出的频率误差补偿值和步进频率值循环进行正向调整和反向调整,直至所获取到的接收端的充电功率达到所要求的功率。
无线充电发送端先判断是否为所需的功率,如果是,继续维持充电功率,否则,进行后续调整频率。
无线充电发送端根据目标功率和接收端当前功率计算频率误差补偿值和步进频率值,并根据计算结果调整步进频率,延时系统预设的时间后,获取接收端当前充电功率,再次判断是否为所需的功率,如果是,继续维持充电功率,直至发送端结束无线充电过程;否则,进行后续调整频率。
无线充电发送端再次计算频率误差补偿值和步进频率值,判断获取的接收端当前充电功率相对前次的充电功率是否下降,如果是,则相对前次调整反方向调整步进频率,且调整的步进频率值比反向调整前的前次调整的步进频率值减小;否则,依然相对前次调整同方向调整步进频率。延时系统预设的时间后,获取接收端当前充电功率,循环根据计算结构正向调整或反向调整,直至维持发送端保持在所需功率状态。
发送端维持保持在所需功率状态后,计算温升,并根据计算出的温升计算步进频率值,再次判断获取的接收端当前充电功率是否为所需的功率,进行根据功率逐次逼近调整频率的循环,且每次发送端到达所需功率后均需判断是否温度上升并调整,进而实现包括发送端维持到所需功率的和维持保持温度的大循环过程。
根据以下公式计算频率误差补偿值ΔF:
ΔF=(pi–pi-1)×ei×k;
其中,e为累计误差,k为系数,p为充电功率,i为调整次数。
根据以下公式计算步进频率值:
F=FOP/DIV+ΔF+ΔT×Kp
其中,FOP为基准频率,DIV为分频系数,ΔF为频率误差补偿,Kp为频率误差。
采用了本发明的基于跟踪功率方式实现频率调节的方法,不增加硬件成本,采用算法使得发射端完成从变频向定频的转变,避免温度带来的影响,兼容性更强。适应性更强,电容值、电阻值变化不会影响频率输出精度,避免了外部增加的晶振发射端温度变化带来的频率变化的问题。
在此说明书中,本发明已参照其特定的实施例作了描述。但是,很显然仍可以作出各种修改和变换而不背离本发明的精神和范围。因此,说明书和附图应被认为是说明性的而非限制性的。

Claims (11)

1.一种基于跟踪功率方式实现频率调节的方法,其特征在于,所述的方法包括以下步骤:
(1)无线充电发送端按系统预设的初始频率运行;
(2)所述的无线充电发送端根据实时获取到的接收端的充电功率进行频率的逐次逼近调整,所述的逐次逼近调整为按照逐次计算出的频率误差补偿值和步进频率值循环进行正向调整和反向调整,直至所获取到的接收端的充电功率达到所要求的功率。
2.根据权利要求1所述的基于跟踪功率方式实现频率调节的方法,其特征在于,所述的步骤(2)具体包括以下步骤:
(2.1)所述的无线充电发送端获取接收端当前充电功率;
(2.2)所述的无线充电发送端判断所获取的接收端当前充电功率是否达到所要求的功率,如果是,则维持发送端保持在当前频率状态,直至无线充电发送端结束无线充电过程;否则,计算频率误差补偿值和步进频率值;
(2.3)所述的无线充电发送端根据计算得到的步进频率值对当前频率进行步进调整,并获取接收端当前充电功率;
(2.4)所述的无线充电发送端判断所获取的接收端当前充电功率是否达到所要求的功率,如果是,则维持发送端保持在当前频率状态,直至无线充电发送端结束无线充电过程;否则,计算频率误差补偿值和步进频率值;
(2.5)所述的无线充电发送端判断所获取的接收端当前充电功率相对前次的充电功率是否下降,如果是,则根据计算得到的步进频率值对当前频率进行相对前次调整方向的反向步进调整,并继续步骤(2.6);否则,根据计算得到的步进频率值对当前频率进行相对前次调整方向的同向步进调整,继续步骤(2.6);
(2.6)所述的无线充电发送端获取接收端当前充电功率,继续步骤(2.4)。
3.根据权利要求2所述的基于跟踪功率方式实现频率调节的方法,其特征在于,所述的计算频率误差补偿值和步进频率值,包括以下步骤:
(a)根据以下公式计算频率误差补偿值ΔF:
ΔF=(pi–pi-1)×ei×k;
其中,e为累计误差,k为系数,p为充电功率,i为调整次数;
(b)根据以下公式计算步进频率值:
F=FOP/DIV+ΔF;
其中,FOP为基准频率,DIV为分频系数,ΔF为频率误差补偿。
4.根据权利要求2所述的基于跟踪功率方式实现频率调节的方法,其特征在于,所述的步骤(1)中还包括以下步骤:
(1.1)所述的无线充电发送端获取初始温度;
所述的计算频率误差补偿值和步进频率值包括以下步骤:
(a)根据所述的初始温度和该无线充电发送端的当前温度计算温升ΔT;
(b)根据以下公式计算频率误差补偿值ΔF:
ΔF=(pi–pi-1)×ei×k;
其中,e为累计误差,k为系数,p为充电功率,i为调整次数;
(c)根据以下公式计算步进频率值:
F=FOP/DIV+ΔF+ΔT×Kp
其中,FOP为基准频率,DIV为分频系数,ΔF为频率误差补偿,Kp为频率误差。
5.根据权利要求1所述的基于跟踪功率方式实现频率调节的方法,其特征在于,所述的步骤(1)中还包括以下步骤:
(1.1a)所述的无线充电发送端获取初始温度;
所述的步骤(2)包括以下步骤:
(2.1a)所述的无线充电发送端获取接收端当前充电功率;
(2.2a)所述的无线充电发送端判断所获取的接收端当前充电功率是否达到所要求的功率,如果是,则继续步骤(2.7a);否则,结合温升计算频率误差补偿值和步进频率值;
(2.3a)所述的无线充电发送端根据计算得到的步进频率值对当前频率进行步进调整,并获取接收端当前充电功率;
(2.4a)所述的无线充电发送端判断所获取的接收端当前充电功率是否达到所要求的功率,如果是,则继续步骤(2.7a);否则,结合温升计算频率误差补偿值和步进频率值;
(2.5a)所述的无线充电发送端判断所获取的接收端当前充电功率相对前次的充电功率是否下降,如果是,则根据计算得到的步进频率值对当前频率进行相对前次调整方向的反向步进调整,并继续步骤(2.6a);否则,根据计算得到的步进频率值对当前频率进行相对前次调整方向的同向步进调整,继续步骤(2.6a);
(2.6a)所述的无线充电发送端获取接收端当前充电功率,继续步骤(2.4a);
(2.7a)结合温升计算频率误差补偿值和步进频率值,继续步骤(2.2a),直至无线充电发送端结束无线充电过程。
6.根据权利要求5所述的基于跟踪功率方式实现频率调节的方法,其特征在于,所述的步骤(2.7a)中的结合温升计算频率误差补偿值和步进频率值,包括以下步骤:
(a)根据所述的初始温度和该无线充电发送端的当前温度计算温升ΔT;
(b)根据以下公式计算频率误差补偿值ΔF:
ΔF=(pi–pi-1)×ei×k;
其中,e为累计误差,k为系数,p为充电功率,i为调整次数;
(c)根据以下公式计算步进频率值:
F=FOP/DIV+ΔF+ΔT×Kp
其中,FOP为基准频率,DIV为分频系数,ΔF为频率误差补偿,Kp为频率误差。
7.根据权利要求4或6所述的基于跟踪功率方式实现频率调节的方法,其特征在于,所述的频率误差KP,为通过以下公式计算得到:
KP=10W/Prx;
其中,Prx为从接收端所获取的遵循预设的协议的功率值。
8.根据权利要求2至6中任一项所述的基于跟踪功率方式实现频率调节的方法,其特征在于,所述的相对前次调整方向的反向步进调整的步进频率值,小于所对应的前次步进调整的步进频率值。
9.根据权利要求2至6中任一项所述的基于跟踪功率方式实现频率调节的方法,其特征在于,所述的无线充电发送端对当前频率进行步进调整,与获取接收端当前充电功率之间,延时系统预设的时间。
10.根据权利要求1、2至6中任一项所述的基于跟踪功率方式实现频率调节的方法,其特征在于,所述的初始频率为80KHz~300KHz。
11.根据权利要求10所述的基于跟踪功率方式实现频率调节的方法,其特征在于,所述的初始频率为130KHz。
CN201811639378.0A 2018-12-29 2018-12-29 基于跟踪功率方式实现频率调节的方法 Active CN111384735B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201811639378.0A CN111384735B (zh) 2018-12-29 2018-12-29 基于跟踪功率方式实现频率调节的方法
PCT/CN2019/123917 WO2020134992A1 (zh) 2018-12-29 2019-12-09 基于跟踪功率方式实现频率调节的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811639378.0A CN111384735B (zh) 2018-12-29 2018-12-29 基于跟踪功率方式实现频率调节的方法

Publications (2)

Publication Number Publication Date
CN111384735A true CN111384735A (zh) 2020-07-07
CN111384735B CN111384735B (zh) 2021-07-30

Family

ID=71129123

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811639378.0A Active CN111384735B (zh) 2018-12-29 2018-12-29 基于跟踪功率方式实现频率调节的方法

Country Status (2)

Country Link
CN (1) CN111384735B (zh)
WO (1) WO2020134992A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130020862A1 (en) * 2011-07-21 2013-01-24 Ut-Battelle, Llc Regulation control and energy management scheme for wireless power transfer
CN103840528A (zh) * 2014-03-19 2014-06-04 国家电网公司 一种基于电源电压与频率协调控制的无线充电控制方法
CN104135085A (zh) * 2014-07-23 2014-11-05 西南交通大学 一种无线电能传输设备发送端频率跟踪调谐方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103337917A (zh) * 2013-06-25 2013-10-02 奇瑞汽车股份有限公司 一种可调电感及应用该可调电感的无线充电系统及其控制方法
CN106059108B (zh) * 2016-07-21 2018-07-27 宁波力芯科信息科技有限公司 一种充电效率高的自适应无线充电系统
JP2018078731A (ja) * 2016-11-10 2018-05-17 キヤノン株式会社 受電装置
KR102602386B1 (ko) * 2016-11-29 2023-11-16 삼성전자주식회사 무선 충전 방법 및 이를 지원하는 전자 장치
US10411525B2 (en) * 2017-03-07 2019-09-10 Witricity Corporation System and method for frequency prediction
CN108233545B (zh) * 2018-01-26 2020-03-31 维沃移动通信有限公司 一种无线充电接收电路、电子设备及无线充电方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130020862A1 (en) * 2011-07-21 2013-01-24 Ut-Battelle, Llc Regulation control and energy management scheme for wireless power transfer
CN103840528A (zh) * 2014-03-19 2014-06-04 国家电网公司 一种基于电源电压与频率协调控制的无线充电控制方法
CN104135085A (zh) * 2014-07-23 2014-11-05 西南交通大学 一种无线电能传输设备发送端频率跟踪调谐方法

Also Published As

Publication number Publication date
WO2020134992A1 (zh) 2020-07-02
CN111384735B (zh) 2021-07-30

Similar Documents

Publication Publication Date Title
JP6842566B2 (ja) 被充電機器、無線充電装置及び無線充電方法
US10298133B2 (en) Synchronous rectifier design for wireless power receiver
US11735956B2 (en) Wireless charging method, device, and system settable to operate at a load-independent point
RU2635381C1 (ru) Бесконтактное устройство передачи электрической энергии и система передачи электрической энергии
US20150326143A1 (en) Synchronous Rectifier Design for Wireless Power Receiver
EP2642628A1 (en) Wireless power transmitting apparatus and method thereof
US20150318900A1 (en) Wireless power transfer system, power receiver, and wireless power transfer method
US20220216738A1 (en) Wireless charging device, to-be-charged device, and charging
US20190067997A1 (en) Wireless power transmitting apparatus and method thereof
CN102214997B (zh) 谐振变换装置与谐振变换器的控制模块及其方法
CN114365371A (zh) 电子设备、无线充电装置、系统及方法
US20180006496A1 (en) Resonant wireless power transmitter circuit and control method thereof
CN116742835A (zh) 无线功率发射器的传输功率的方法
US10644540B2 (en) Contactless power transmission device and power transfer system
Baros et al. Transmitter side control of a wireless EV charger employing IoT
CN111817448A (zh) 一种无线充电的接收端、方法及电子设备
CN111384735B (zh) 基于跟踪功率方式实现频率调节的方法
CN101378233A (zh) 可宽范围动态调节电源架构
CN104124765B (zh) 无线电能传输系统的功率调节方法及系统
CN108879869B (zh) 基于负载特性的无线充电系统原边控制方法及其实现系统
CN109314406B (zh) 无线电力传输系统
US20200083719A1 (en) Power transmission device and power reception device
CN113858966B (zh) 车辆、能量转换装置及其控制方法
CN112994261A (zh) 一种利用最优电流比例实现三线圈wpt系统效率优化的方法
CN212114902U (zh) 无线传输装置及无线接收装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 214135 -6, Linghu Avenue, Wuxi Taihu international science and Technology Park, Wuxi, Jiangsu, China, 180

Applicant after: China Resources micro integrated circuit (Wuxi) Co., Ltd

Address before: No.180-22, Linghu Avenue, Taihu International Science and Technology Park, Wuxi, Jiangsu 214135

Applicant before: WUXI CHINA RESOURCES SEMICO Co.,Ltd.

GR01 Patent grant
GR01 Patent grant