CN111384525A - Dielectric filter, preparation method thereof and communication equipment - Google Patents
Dielectric filter, preparation method thereof and communication equipment Download PDFInfo
- Publication number
- CN111384525A CN111384525A CN201910217898.0A CN201910217898A CN111384525A CN 111384525 A CN111384525 A CN 111384525A CN 201910217898 A CN201910217898 A CN 201910217898A CN 111384525 A CN111384525 A CN 111384525A
- Authority
- CN
- China
- Prior art keywords
- dielectric
- dielectric filter
- blocks
- block
- adjacent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004891 communication Methods 0.000 title claims abstract description 14
- 238000002360 preparation method Methods 0.000 title abstract description 3
- 238000000034 method Methods 0.000 claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 claims abstract description 11
- 238000005245 sintering Methods 0.000 claims abstract description 8
- 239000000919 ceramic Substances 0.000 claims description 35
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 25
- 239000000463 material Substances 0.000 claims description 25
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 24
- 238000000498 ball milling Methods 0.000 claims description 23
- 239000002994 raw material Substances 0.000 claims description 18
- 238000000227 grinding Methods 0.000 claims description 16
- 239000000654 additive Substances 0.000 claims description 13
- 239000000395 magnesium oxide Substances 0.000 claims description 12
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 12
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 12
- 239000000377 silicon dioxide Substances 0.000 claims description 12
- 239000002002 slurry Substances 0.000 claims description 12
- 239000011787 zinc oxide Substances 0.000 claims description 12
- 239000011230 binding agent Substances 0.000 claims description 11
- 235000012239 silicon dioxide Nutrition 0.000 claims description 10
- 230000000996 additive effect Effects 0.000 claims description 9
- 238000000576 coating method Methods 0.000 claims description 9
- 230000008878 coupling Effects 0.000 claims description 9
- 238000010168 coupling process Methods 0.000 claims description 9
- 238000005859 coupling reaction Methods 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 9
- 239000003960 organic solvent Substances 0.000 claims description 8
- 239000000843 powder Substances 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000001035 drying Methods 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 238000001354 calcination Methods 0.000 claims description 4
- 238000003825 pressing Methods 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 3
- 238000000465 moulding Methods 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 10
- 238000005452 bending Methods 0.000 abstract description 4
- 229910052751 metal Inorganic materials 0.000 description 20
- 239000002184 metal Substances 0.000 description 16
- 229910010293 ceramic material Inorganic materials 0.000 description 15
- 238000010586 diagram Methods 0.000 description 14
- 238000012360 testing method Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 6
- 239000008367 deionised water Substances 0.000 description 5
- 229910021641 deionized water Inorganic materials 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 230000001788 irregular Effects 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 208000000649 small cell carcinoma Diseases 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- OMOVVBIIQSXZSZ-UHFFFAOYSA-N [6-(4-acetyloxy-5,9a-dimethyl-2,7-dioxo-4,5a,6,9-tetrahydro-3h-pyrano[3,4-b]oxepin-5-yl)-5-formyloxy-3-(furan-3-yl)-3a-methyl-7-methylidene-1a,2,3,4,5,6-hexahydroindeno[1,7a-b]oxiren-4-yl] 2-hydroxy-3-methylpentanoate Chemical compound CC12C(OC(=O)C(O)C(C)CC)C(OC=O)C(C3(C)C(CC(=O)OC4(C)COC(=O)CC43)OC(C)=O)C(=C)C32OC3CC1C=1C=COC=1 OMOVVBIIQSXZSZ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000011135 tin Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011268 mixed slurry Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 239000012856 weighed raw material Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/2002—Dielectric waveguide filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P11/00—Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
- H01P11/007—Manufacturing frequency-selective devices
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
本申请提供了一种介质滤波器及其制备方法、通信设备。该介质滤波器通过至少两个介质块并排设置以形成介质滤波器的方式,减少了仅通过一个介质块形成介质滤波器时,介质块所需的长度,提高了介质滤波器的应用范围,降低甚至消除了介质块在烧结过程中出现弯曲变形的风险,提高良品率,且结构简单,易于成型,适合大批量生产。
The present application provides a dielectric filter, a preparation method thereof, and a communication device. The dielectric filter is formed by arranging at least two dielectric blocks side by side, which reduces the required length of the dielectric block when only one dielectric block is used to form the dielectric block, improves the application range of the dielectric filter, and reduces the Even the risk of bending and deformation of the dielectric block during the sintering process is eliminated, the yield is improved, and the structure is simple, easy to form, and suitable for mass production.
Description
技术领域technical field
本申请涉及通信技术领域,特别是涉及一种介质滤波器及其制备方法、通信设备。The present application relates to the field of communication technologies, and in particular, to a dielectric filter, a preparation method thereof, and a communication device.
背景技术Background technique
随着通信技术的突飞猛进,5G通信技术的应用越来越广泛,滤波器作为5G通信系统中的重要部件,高度集成化、低成本的滤波器是5G通信技术必然需求。With the rapid development of communication technology, the application of 5G communication technology is becoming more and more extensive. As an important component in the 5G communication system, a highly integrated and low-cost filter is an inevitable requirement of 5G communication technology.
现有技术中,一般采用高介电常数的陶瓷材料制备形成长方体结构的介质块,以形成满足上述需求的滤波器,但是这种结构的介质块长度较长,应用范围较窄,且在烧结过程中容易出现弯曲变形的情况。In the prior art, a high dielectric constant ceramic material is generally used to prepare a dielectric block forming a cuboid structure to form a filter that meets the above requirements. It is easy to bend and deform during the process.
发明内容SUMMARY OF THE INVENTION
本申请主要是提供一种介质滤波器及其制备方法、通信设备,旨在解决介质块过长导致容易弯曲变形的问题。The present application mainly provides a dielectric filter, a method for manufacturing the same, and a communication device, aiming at solving the problem of easy bending and deformation caused by excessively long dielectric blocks.
为解决上述技术问题,本申请采用的一个技术方案是:提供一种介质滤波器,所述介质滤波器包括至少两个介质块,每个所述介质块包括沿长度方向间隔设置的第一端面和第二端面、沿宽度方向间隔设置的第一侧面和第二侧面以及沿厚度方向间隔设置的第三侧面和第四侧面,所述介质块沿长度方向的尺寸大于沿宽度方向和厚度方向的尺寸;每个所述介质块沿所述长度方向划分成至少两个彼此级联的介质谐振单元;所述至少两个介质块沿所述宽度方向或厚度方向并排且彼此间隔设置,所述至少两个介质块的相邻侧面之间设置有介质板,所述介质板分别与所述至少两个介质块一体设置,进而实现所述至少两个介质块之间的相对固定;其中,所述介质滤波器的材料至少包括氧化锌、二氧化硅和氧化镁。In order to solve the above technical problem, a technical solution adopted in the present application is: to provide a dielectric filter, the dielectric filter includes at least two dielectric blocks, each of the dielectric blocks includes first end faces arranged at intervals along the length direction and the second end face, the first side and the second side spaced along the width direction, and the third side face and the fourth side face spaced along the thickness direction, the size of the dielectric block along the length direction is larger than the size along the width direction and the thickness direction. size; each of the dielectric blocks is divided into at least two dielectric resonance units cascaded with each other along the length direction; the at least two dielectric blocks are arranged side by side and spaced apart from each other along the width direction or the thickness direction, the at least two dielectric blocks are A medium plate is disposed between the adjacent side surfaces of the two medium blocks, and the medium plate is integrally disposed with the at least two medium blocks, so as to realize the relative fixation between the at least two medium blocks; wherein, the Materials of the dielectric filter include at least zinc oxide, silicon dioxide and magnesium oxide.
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种制备介质滤波器的方法,其中,所述方法用于制备如上述的介质滤波器,所述方法包括:提供对应氧化锌、二氧化硅和氧化镁的原材料;添加有机溶剂和磨球并进行一次球磨;将所述一次球磨得到的料浆烘干,并通过煅烧得到陶瓷体;粉碎所述陶瓷体,添加有机溶剂和磨球并进行二次球磨;将所述二次球磨得到的料浆烘干;将得到的粉体与粘结剂混合成浆料进行造粒;在与所述介质滤波器的形状匹配的模具中干压成型;以及去除粘结剂并再次烧结,以得到一体成型的至少两个介质块及相邻的两个所述介质块之间的介质板;在所述至少两个介质块及所述介质板的外表面涂覆电磁屏蔽层,以得到所述介质滤波器。In order to solve the above technical problem, another technical solution adopted in the present application is to provide a method for preparing a dielectric filter, wherein the method is used for preparing the above-mentioned dielectric filter, and the method includes: providing a corresponding zinc oxide , raw materials of silicon dioxide and magnesium oxide; add organic solvent and grinding balls and perform a ball milling; dry the slurry obtained by the first ball milling, and obtain a ceramic body by calcining; pulverize the ceramic body, add an organic solvent and Grinding balls and performing secondary ball milling; drying the slurry obtained by the secondary ball milling; mixing the obtained powder with a binder into a slurry for granulation; in a mold matching the shape of the dielectric filter medium dry pressing; and removing the binder and sintering again to obtain at least two integrally formed dielectric blocks and a dielectric plate between two adjacent said dielectric blocks; The outer surface of the dielectric plate is coated with an electromagnetic shielding layer to obtain the dielectric filter.
为解决上述技术问题,本申请采用的又一个技术方案是:提供一种通信设备,所述通信设备包括上述的介质滤波器。In order to solve the above technical problem, another technical solution adopted in the present application is to provide a communication device, where the communication device includes the above-mentioned dielectric filter.
本申请的有益效果是:区别于现有技术的情况,本申请通过至少两个介质块并排设置以形成介质滤波器的方式,减少了仅通过一个介质块形成介质滤波器时,介质块所需的长度,提高了介质滤波器的应用范围,降低甚至消除了介质块在烧结过程中出现弯曲变形的风险,提高良品率,且结构简单,易于成型,适合大批量生产,此外,介质滤波器的材料至少包括氧化锌、二氧化硅和氧化镁,该介质滤波器的材料具有低介电常数、低损耗和近零的温度系数,能够改善的介质滤波器的介电性能。The beneficial effects of the present application are: different from the situation in the prior art, the present application forms a dielectric filter by arranging at least two dielectric blocks side by side, which reduces the need for a dielectric block when a dielectric filter is formed by only one dielectric block. The length of the dielectric filter increases the application range of the dielectric filter, reduces or even eliminates the risk of bending deformation of the dielectric block during the sintering process, improves the yield, and has a simple structure, easy to form, and is suitable for mass production. The material includes at least zinc oxide, silicon dioxide and magnesium oxide, and the material of the dielectric filter has low dielectric constant, low loss and near-zero temperature coefficient, which can improve the dielectric properties of the dielectric filter.
附图说明Description of drawings
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,其中:In order to illustrate the technical solutions in the embodiments of the present application more clearly, the following briefly introduces the drawings that are used in the description of the embodiments. Obviously, the drawings in the following description are only some embodiments of the present application. For those of ordinary skill in the art, under the premise of no creative work, other drawings can also be obtained from these drawings, wherein:
图1是本申请提供的介质滤波器第一实施例的分解结构示意图;1 is a schematic diagram of an exploded structure of a first embodiment of a dielectric filter provided by the present application;
图2是图1中相邻的两个介质谐振单元的连接示意图;Fig. 2 is the connection schematic diagram of two adjacent dielectric resonance units in Fig. 1;
图3是图1中介质滤波器的装配结构示意图;Fig. 3 is the assembly structure schematic diagram of the dielectric filter in Fig. 1;
图4是本申请提供的介质滤波器第二实施例的结构示意图;4 is a schematic structural diagram of a second embodiment of a dielectric filter provided by the present application;
图5是图4中两个介质块的分解结构示意图;Fig. 5 is the exploded structure schematic diagram of two medium blocks in Fig. 4;
图6是本申请提供的介质滤波器第三实施例的结构示意图;6 is a schematic structural diagram of a third embodiment of a dielectric filter provided by the present application;
图7是图6中两个介质块的分解结构示意图;Fig. 7 is the exploded structure schematic diagram of two medium blocks in Fig. 6;
图8是本申请提供的制备介质滤波器的方法实施例的流程示意图;8 is a schematic flowchart of an embodiment of a method for preparing a dielectric filter provided by the present application;
图9示例性地示出了本申请提供的陶瓷的微波介电性能的测试结果。FIG. 9 exemplarily shows the test results of the microwave dielectric properties of the ceramics provided in the present application.
具体实施方式Detailed ways
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The technical solutions in the embodiments of the present application will be clearly and completely described below with reference to the drawings in the embodiments of the present application. Obviously, the described embodiments are only a part of the embodiments of the present application, but not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present application.
参阅图1,图1是本申请提供的介质滤波器10第一实施例的分解结构示意图,本实施例中的介质滤波器10包括介质块11。Referring to FIG. 1 , FIG. 1 is a schematic diagram of an exploded structure of a first embodiment of a
其中,介质块11包括沿长度方向,也即如图1中所示的X向间隔设置的第一端面111及第二端面112、沿宽度方向,也即如图1中所示的Y向上间隔设置的第一侧面113及第二侧面114、沿厚度方向,也即如图1中所述的Z向上间隔设置的第三侧面115及第四侧面116。The
可选的,在本实施例中,介质块11呈长方体设置,上述的第一端面111、第二端面112、第一侧面113、第二侧面114、第三侧面115及第四侧面116分别该长方体在如上述方向上设置的六个面,当然,在其他实施例中,介质块11也可以呈其他规则或不规则的形状设置,在此不做限制。Optionally, in this embodiment, the
进一步的,介质块11沿长度方向上的尺寸大于宽度方向及厚度方向上的尺寸。Further, the size of the
可选的,介质块11沿宽度方向上的尺寸大于沿厚度方向上的尺寸。Optionally, the size of the
可选的,介质块11相对于沿长度方向且垂直于宽度方向设置的中轴面呈对称设置,可以理解的,该中轴面是为了便于说明而设置的虚拟面。Optionally, the
可选的,介质块11的材质为陶瓷材料,由于陶瓷材料的介电常数较高,因此,通过高介电常数的陶瓷材料对微波波长的压缩效应,可以大幅度压缩介质谐振单元的有效尺寸,使介质滤波器的整体外形尺寸小型化,同时因陶瓷材料易于模具成型,可以实现较低成本的批量化生产,故小型化、集成化应用具备优势的陶瓷滤波器与5G微基站(SmallCells)、MIMO系统的技术需求高度匹配,当然,在其他实施例中,介质块11的材质也可以为其他介电常数与陶瓷相近的材料。Optionally, the material of the
进一步的,介质块11如图1中虚线所示的,沿长度方向划分成至少两个彼此级联的介质谐振单元,该至少两个介质谐振单元可以是如图1中所示的至少两个介质谐振单元11a,也可以是至少两个介质谐振单元11b,在本实施例中,位于介质块11两端的两个介质谐振单元为介质谐振单元11a,位于两个介质谐振单元11a之间的为介质谐振单元11b。Further, as shown by the dotted line in FIG. 1 , the
共同参阅图1及图2,图2是图1中相邻的两个介质谐振单元的连接示意图,其中,在相邻的两个介质谐振单元的连接区域设置有镂空槽101,且在垂直于长度方向将相邻的两个介质谐振单元分别等分成两个部分后,相邻的两个介质谐振单元彼此相邻的部分的几何中心位于镂空槽101内,比如如图2所示的,两个相邻的介质谐振单元分别为介质谐振单元11a和介质谐振单元11b,在垂直于长度方向将介质谐振单元11a和介质谐振单元11b分别等分成两个部分1111、1112和1113、1114,介质谐振单元11a和介质谐振单元11b相邻的部分1112和1113的几何中心A和B位于镂空槽101内,以提高相邻的两个介质谐振单元的二次谐振频率与基模谐振频率的比值,进而提高介质滤波器10的带外谐波特性,且多个介质谐振器通过一体成型的方式,不需要拼接、二次烧结,结构及工艺简单,提高结构尺寸的稳定性及一致性,提高产品良率,实现大批量生产。Referring to FIG. 1 and FIG. 2 together, FIG. 2 is a schematic diagram of the connection of two adjacent dielectric resonance units in FIG. 1 , wherein a
可以理解的,在本实施中,由于介质谐振单元11b的两端均需要级联其他介质谐振单元,因此,在垂直于长度方向将介质谐振单元11b等分成两个部分1113和1114后,介质谐振单元11b的另一部分1114的几何中心C也位于另一镂空槽101内。It can be understood that in this implementation, since both ends of the
可选的,镂空槽101设置成使得相邻的两个介质谐振单元的二次谐振频率与基模谐振频率的比值不小于1.5。Optionally, the
可选的,镂空槽101连通第一侧面113和第二侧面114,或者连通第三侧面115和第四侧面116,在本实施例中,镂空槽101连通第三侧面115和第四侧面116。Optionally, the
可选的,镂空槽101外露于空气。Optionally, the
可选的,镂空槽101相对于长度方向且垂直于宽度方向设置的中轴面呈对称设置。Optionally, the
可选的,镂空槽101呈长方体设置,可以理解的,在其他实施例中,镂空槽101也可以呈其他形状。Optionally, the
共同参阅图1及图3,图3是图1中介质滤波器10的装配结构示意图,本实施例中的介质滤波器10还包括输出端子12和输入端子13,输出端子12和输入端子11分别与第一端面111和第二端面112相邻设置,也即输出端子12和输入端子13可以设置于第一侧面113、第二侧面114、第三侧面115及第四侧面116中的任一个。Referring to FIG. 1 and FIG. 3 together, FIG. 3 is a schematic diagram of the assembly structure of the
可选的,该输出端子12和输入端子13采用探针形式,在其他实施例中,也可以采用印刷电路板、微带线等形式。Optionally, the
进一步的,本实施例中的介质滤波器10还包括电磁屏蔽层14,该电磁屏蔽层14覆盖介质块11的外表面,以实现屏蔽功能。Further, the
可选的,电磁屏蔽层14包括至少覆盖于镂空槽101上的屏蔽盖板141,在本实施例中,通过两个屏蔽盖板141在介质块11的第三侧面115及第四侧面116上覆盖镂空槽101,而介质块11上没有设置屏蔽盖板141的其他外表面可通过涂覆包括但不限于铜、银、锡或铝等金属以形成金属涂层,该金属涂层与屏蔽盖板141共同形成本实施例中的电磁屏蔽层14。Optionally, the
其中,屏蔽盖板141上设有延伸至镂空槽101内的调谐螺杆15,以通过调谐螺杆15调节介质滤波器10的谐振频率,通过这种设置调谐螺杆15的方式,不需要在介质块11上预留调谐孔,避免在介质块11上设置调谐孔带来的工艺难度。The shielding
可选的,调谐螺杆15的数量为至少两个,至少两个调谐螺杆15沿长度方向间隔设置。Optionally, the number of tuning screws 15 is at least two, and the at least two tuning
参阅图4,图4是本申请提供的介质滤波器20第二实施例的结构示意图,本实施例中的介质滤波器20包括至少两个介质块21,本实施例图示中以两个为例。Referring to FIG. 4 , FIG. 4 is a schematic structural diagram of a second embodiment of a
参阅图5,图5是图4中两个介质块21的分解结构示意图,其中,每个介质块21包括沿长度方向,也即如图5中所示的X向间隔设置的第一端面211及第二端面212、沿宽度方向,也即如图5中所示的Y向上间隔设置的第一侧面213及第二侧面214、沿厚度方向,也即如图5中所述的Z向上间隔设置的第三侧面215及第四侧面216。Referring to FIG. 5 , FIG. 5 is a schematic diagram of the exploded structure of the two
可选的,在本实施例中,每个介质块21呈长方体设置,上述的第一端面211、第二端面212、第一侧面213、第二侧面214、第三侧面215及第四侧面216分别该长方体在如上述方向上设置的六个面,当然,在其他实施例中,介质块21也可以呈其他规则或不规则的形状设置,在此不做限制。Optionally, in this embodiment, each
进一步的,介质块21沿长度方向上的尺寸大于宽度方向及厚度方向上的尺寸。Further, the size of the
可选的,介质块21沿宽度方向上的尺寸大于沿厚度方向上的尺寸。Optionally, the size of the
可选的,介质块21相对于沿长度方向且垂直于宽度方向设置的中轴面呈对称设置,可以理解的,该中轴面是为了便于说明而设置的虚拟面。Optionally, the
可选的,介质块21的材质为陶瓷材料,由于陶瓷材料的介电常数较高,因此,通过高介电常数的陶瓷材料对微波波长的压缩效应,可以大幅度压缩介质谐振单元的有效尺寸,使介质滤波器的整体外形尺寸小型化,同时因陶瓷材料易于模具成型,可以实现较低成本的批量化生产,故小型化、集成化应用具备优势的陶瓷滤波器与5G微基站(SmallCells)、MIMO系统的技术需求高度匹配,当然,在其他实施例中,介质块21的材质也可以为其他介电常数与陶瓷相近的材料。Optionally, the material of the
进一步的,每个介质块21如图5中虚线所示的,沿长度方向划分成至少两个级联的介质谐振单元,该至少两个介质谐振单元可以是如图5中所示的至少两个介质谐振单元21a,也可以是至少两个介质谐振单元21b,在本实施例中,位于介质块21两端的两个介质谐振单元为介质谐振单元21a,位于两个介质谐振单元21a之间的为介质谐振单元21b。Further, as shown by the dotted line in FIG. 5 , each
其中,在同一介质块21的相邻的两个介质谐振单元的连接区域设有镂空槽201,且在垂直于长度方向将相邻的两个介质谐振单元分别等分成两个部分后,相邻的两个介质谐振单元彼此相邻的部分的几何中心位于镂空槽201内,以提高相邻的两个介质谐振单元的二次谐振频率与基模谐振频率的比值,进而提高介质滤波器20的带外谐波特性,本实施例中的介质谐振单元21a及介质谐振单元21b与上述第一实施例中的介质谐振单元11a及介质谐振单元11b,相同,在此不再赘述。Wherein, a
可选的,镂空槽201设置成使得相邻的两个介质谐振单元的二次谐振频率与基模谐振频率的比值不小于1.5。Optionally, the
可选的,镂空槽201连通第一侧面213和第二侧面214,或者连通第三侧面215和第四侧面216,在本实施例中,镂空槽201连通第三侧面215和第四侧面216。Optionally, the
可选的,镂空槽201外露于空气。Optionally, the
可选的,镂空槽201相对于长度方向且垂直于宽度方向设置的中轴面呈对称设置。Optionally, the
可选的,镂空槽201呈长方体设置,可以理解的,在其他实施例中,镂空槽201也可以呈其他形状设置。Optionally, the
进一步的,至少两个介质块21沿宽度方向或厚度方向并排设置,且至少两个介质块21的相邻侧面设有金属屏蔽层22,在本实施例中,也即如图5中所示的其中一个介质块21的第一侧面213与另一介质块21的第二侧面212设有金属屏蔽层22。Further, at least two
其中,至少两个介质块21的相邻侧面的金属屏蔽层22彼此键合,以使得至少两个介质块21相对固定。Wherein, the metal shielding layers 22 on the adjacent sides of the at least two
具体的,在至少两个介质块21的相邻侧面涂覆金属涂层后,可先进行预烘烤,然后使用夹具固定拼接,最后通过高温烧结的方式使得金属涂层键合。Specifically, after the adjacent sides of the at least two
进一步的,至少两个介质块21的金属屏蔽层22上分别设有在相邻侧面金属屏蔽层22彼此键合至少部分重叠的耦合窗口221,以实现至少两个介质块21上的介质谐振单元之间的耦合,在如上述的涂覆金属涂层的过程中,可先在耦合窗口221的位置进行遮蔽,以防止金属涂层渗入耦合窗口221,导致不同介质块21上的介质谐振单元耦合失效。Further, the metal shielding layers 22 of the at least two
其中,当至少两个介质块21并排设置后,介质块21上的至少两个级联的介质谐振单元可直接耦合,也可以交叉耦合,比如同一个介质块21上的至少两个级联的介质谐振单元可直接耦合,不同介质块21上至少两个级联的介质谐振单元可交叉耦合,也可以是不同介质块21上至少两个级联的介质谐振单元直接耦合,同一介质块21上的至少两个级联的介质谐振单元交叉耦合,提高了介质滤波器20的选频特性。Wherein, when at least two
进一步的,本实施例中的介质滤波器20还包括分别设置于至少两个介质块21上的输出端子23及输入端子24。Further, the
可选的,该输出端子23和输入端子24采用探针形式,在其他实施例中,也可以采用印刷电路板、微带线等形式。Optionally, the
进一步的,本实施例中的介质滤波器20还包括屏蔽盖板25,该屏蔽盖板25至少覆盖于镂空槽201,在本实施例中,每一介质块21均设有两个覆盖于镂空槽201的屏蔽盖板25。Further, the
其中,屏蔽盖板25上设有延伸至镂空槽201的调谐螺杆26,以通过调谐螺杆26调节介质滤波器20的谐振频率,通过这种设置调谐螺杆26的方式,不需要在介质块21上预留调谐孔,避免在介质块21上设置调谐孔带来的工艺难度。Wherein, the shielding
可选的,调谐螺杆26的数量为至少两个,至少两个调谐螺杆26沿长度方向间隔设置。Optionally, the number of tuning screws 26 is at least two, and the at least two tuning
参阅图6,图6是本申请提供的介质滤波器30第三实施例的结构示意图,本实施例中的介质滤波器30至少两个介质块31,本实施例中以两个介质块31为例。Referring to FIG. 6, FIG. 6 is a schematic structural diagram of a third embodiment of a
参阅图7,图7是图6中两个介质块31的分解结构示意图,其中,每个介质块31包括沿长度方向,也即如图7中所示的X向间隔设置的第一端面311及第二端面312、沿宽度方向,也即如图7中所示的Y向上间隔设置的第一侧面313及第二侧面314、沿厚度方向,也即如图7中所述的Z向上间隔设置的第三侧面315及第四侧面316。Referring to FIG. 7 , FIG. 7 is a schematic diagram of the exploded structure of the two
可选的,在本实施例中,每个介质块31呈长方体设置,上述的第一端面311、第二端面312、第一侧面313、第二侧面314、第三侧面315及第四侧面316分别该长方体在如上述方向上设置的六个面,当然,在其他实施例中,介质块31也可以呈其他规则或不规则的形状设置,在此不做限制。Optionally, in this embodiment, each
进一步的,介质块31沿长度方向上的尺寸大于宽度方向及厚度方向上的尺寸。Further, the size of the
可选的,介质块31沿宽度方向上的尺寸大于沿厚度方向上的尺寸。Optionally, the size of the
可选的,介质块31相对于沿长度方向且垂直于宽度方向设置的中轴面呈对称设置,可以理解的,该中轴面是为了便于说明而设置的虚拟面。Optionally, the
可选的,介质块31的材质为陶瓷材料,由于陶瓷材料的介电常数较高,因此,通过高介电常数的陶瓷材料对微波波长的压缩效应,可以大幅度压缩介质谐振单元的有效尺寸,使介质滤波器的整体外形尺寸小型化,同时因陶瓷材料易于模具成型,可以实现较低成本的批量化生产,故小型化、集成化应用具备优势的陶瓷滤波器与3G微基站(SmallCells)、MIMO系统的技术需求高度匹配,当然,在其他实施例中,介质块31的材质也可以为其他介电常数与陶瓷相近的材料。Optionally, the material of the
进一步的,每个介质块31如图7中虚线所示的,沿长度方向划分成至少两个级联的介质谐振单元,该至少两个介质谐振单元可以是如图7中所示的至少两个介质谐振单元31a,也可以是至少两个介质谐振单元31b,在本实施例中,位于介质块31两端的两个介质谐振单元为介质谐振单元31a,位于两个介质谐振单元31a之间的为介质谐振单元31b。Further, as shown by the dotted line in FIG. 7 , each
其中,在同一介质块31的相邻的两个介质谐振单元的连接区域设有镂空槽301,且在垂直于长度方向将相邻的两个介质谐振单元分别等分成两个部分后,相邻的两个介质谐振单元彼此相邻的部分的几何中心位于镂空槽301内,以提高相邻的两个介质谐振单元的二次谐振频率与基模谐振频率的比值,进而提高介质滤波器30的带外谐波特性,本实施例中的介质谐振单元31a及介质谐振单元31b与上述第一实施例中的介质谐振单元11a及介质谐振单元11b,相同,在此不再赘述。Wherein, a
可选的,镂空槽301设置成使得相邻的两个介质谐振单元的二次谐振频率与基模谐振频率的比值不小于1.5。Optionally, the
可选的,镂空槽301连通第一侧面313和第二侧面314,或者连通第三侧面315和第四侧面316,在本实施例中,镂空槽301连通第三侧面315和第四侧面316。Optionally, the
可选的,镂空槽301外露于空气。Optionally, the
可选的,镂空槽301相对于长度方向且垂直于宽度方向设置的中轴面呈对称设置。Optionally, the
可选的,镂空槽301呈长方体设置,可以理解的,在其他实施例中,镂空槽301也可以呈其他形状设置。Optionally, the
进一步的,至少两个介质块31沿宽度方向或厚度方向并排且彼此间隔设置,且至少两个介质块31的相邻侧面之间设有介质板32,介质板32分别与两个介质块31一体设置,以实现至少两个介质块31之间的相对固定,降低怕至少两个介质块31拼接时所需夹具的精度,提高了拼接成功率。Further, at least two
进一步的,介质板32还作为至少两个介质块31上的介质谐振单元之间的相互耦合的耦合窗口,相比于通过涂覆金属再键合的方式,降低甚至消除了烧结过程中,金属渗入耦合窗口的风险。Further, the
其中,当至少两个介质块31并排设置后,介质块31上的至少两个级联的介质谐振单元可直接耦合,也可以交叉耦合,以提高介质滤波器30的选频特性,具体可参阅上述介质滤波器20第二实施例中的相应描述。Wherein, when at least two
进一步的,本实施例中的介质滤波器30还包括分别设置于至少两个介质块31上的输出端子33及输入端子34。Further, the
可选的,该输出端子33和输入端子34采用探针形式,在其他实施例中,也可以采用印刷电路板、微带线等形式。Optionally, the
进一步的,本实施例中的介质滤波器30还包括屏蔽盖板35,该屏蔽盖板35至少覆盖于镂空槽301。Further, the
其中,屏蔽盖板35上设有延伸至镂空槽301的调谐螺杆36,以通过调谐螺杆36调节介质滤波器30的谐振频率,通过这种设置调谐螺杆36的方式,不需要在介质块31上预留调谐孔,避免在介质块31上设置调谐孔带来的工艺难度。The shielding
可选的,调谐螺杆36的数量为至少两个,至少两个调谐螺杆36沿长度方向间隔设置。Optionally, the number of tuning screws 36 is at least two, and the at least two tuning
上述实施例所揭示的介质滤波器的材料可以为陶瓷,该陶瓷材料包括氧化锌、二氧化硅和氧化镁。即该陶瓷材料主要由上述组分组成,可以理解,该陶瓷还可以含有少量或微量的其他物质。The material of the dielectric filter disclosed in the above embodiments may be ceramic, and the ceramic material includes zinc oxide, silicon dioxide and magnesium oxide. That is, the ceramic material is mainly composed of the above-mentioned components, and it can be understood that the ceramic may also contain a small or trace amount of other substances.
在一些实施例中,氧化锌在其中所占的摩尔百分比为20%~70%。In some embodiments, the mole percentage of zinc oxide therein ranges from 20% to 70%.
在一些实施例中,二氧化硅在其中所占的摩尔百分比为20%~60%。In some embodiments, the molar percentage of silica therein ranges from 20% to 60%.
在一些实施例中,氧化镁在其中所占的摩尔百分比为10%~20%。In some embodiments, the molar percentage of magnesium oxide therein ranges from 10% to 20%.
其中,摩尔百分比指的是物质的量的百分比。例如将1mol的物质A与4mol的物质B混合后,物质A的摩尔百分比等于1/(1+4)=20%,而物质B的摩尔百分比等于4/(1+4)=80%。Wherein, mole percent refers to the percentage of the amount of substance. For example, after mixing 1 mol of substance A with 4 mol of substance B, the mole percentage of substance A is equal to 1/(1+4)=20%, and the mole percentage of substance B is equal to 4/(1+4)=80%.
在一些实施例中,该陶瓷还可包括改性添加剂,即能够改善该陶瓷性能的添加剂。应当理解,该改性添加剂不一定为液态,也可以为固态等形式。具体地,该改性添加剂可以为CoO、NiO或MnO2中的一个或多个的组合,也就是说,该改性添加剂可只包括CoO、NiO或MnO2中的一种,也可以包括其中的两种或三种。可选地,该改性添加剂的占比可以为0~2mol%。也就是说,该改性添加剂占整个材料的摩尔百分比不超过2%。In some embodiments, the ceramic may also include modifying additives, ie, additives capable of improving the properties of the ceramic. It should be understood that the modification additive is not necessarily in a liquid state, but may also be in a solid state or the like. Specifically, the modifying additive may be a combination of one or more of CoO, NiO or MnO 2 , that is, the modifying additive may only include one of CoO, NiO or MnO 2 , or may include one of them of two or three. Optionally, the proportion of the modification additive may be 0-2 mol%. That is to say, the molar percentage of the modification additive in the whole material is not more than 2%.
该陶瓷的化学组成可以表示为xZnO-ySiO-zMgO2-dMO,其中x、y、z和d的比例为0.2~0.7:0.2~0.6:0.1~0.2:0~0.02,MO表示前述改性添加剂。例如,若将x、y、z和d的值分别取为0.5、0.3、0.18和0.02,而选用CoO当做改性添加剂,则该陶瓷的化学组成可表示为0.5ZnO-0.3SiO-0.18MgO2-0.02CoO。当然,x、y、z和d的取值还可以取该范围内的其他值。通过改变该陶瓷的各化学组分之间的比例,可以对该陶瓷的微波介电性能进一步进行调整。The chemical composition of the ceramic can be expressed as xZnO-ySiO-zMgO 2 -dMO, wherein the ratio of x, y, z and d is 0.2~0.7:0.2~0.6:0.1~0.2:0~0.02, and MO represents the aforementioned modification additive . For example, if the values of x, y, z and d are taken as 0.5, 0.3, 0.18 and 0.02 respectively, and CoO is selected as the modification additive, the chemical composition of the ceramic can be expressed as 0.5ZnO-0.3SiO-0.18MgO 2 -0.02CoO. Of course, the values of x, y, z and d can also take other values within this range. By changing the ratio between the chemical components of the ceramic, the microwave dielectric properties of the ceramic can be further adjusted.
根据测试结果,该陶瓷的介电常数为7~8,Q*f值为9000~105000GHz。例如,采用网络分析仪(Agilent5071C)在12GHz的测试频率下测试该陶瓷的微波介电性能,得到如图9中的表格所示的测试结果。According to the test results, the dielectric constant of the ceramic is 7~8, and the Q*f value is 9000~105000GHz. For example, using a network analyzer (Agilent5071C) to test the microwave dielectric properties of the ceramic at a test frequency of 12GHz, the test results shown in the table in FIG. 9 are obtained.
本申请提供的陶瓷主要由氧化锌、二氧化硅和氧化镁组成,其具有低介电常数、低损耗和近零的温度系数。因此,通过实施本申请提供的陶瓷具有改善的微波介电性能。The ceramics provided by the present application are mainly composed of zinc oxide, silicon dioxide and magnesium oxide, which have low dielectric constant, low loss and near-zero temperature coefficient. Accordingly, the ceramics provided by the practice of the present application have improved microwave dielectric properties.
本申请进一步提供一实施例的制备介质滤波器的方法,上述实施例所揭示介质滤波器均采用该制备介质滤波器的方法制成,如图8所示,该方法包括以下步骤:The present application further provides a method for manufacturing a dielectric filter according to an embodiment. The dielectric filters disclosed in the above embodiments are all manufactured by the method for manufacturing a dielectric filter. As shown in FIG. 8 , the method includes the following steps:
S110:提供对应氧化锌、二氧化硅和氧化镁的原材料。S110: Provide raw materials corresponding to zinc oxide, silicon dioxide and magnesium oxide.
在一些实施例中,对应氧化锌、二氧化硅和氧化镁的原材料可以是对应金属元素的氧化物或碳酸盐。其中,金属元素的氧化物直接与待制备的介质滤波器的组分对应,而一些金属元素的碳酸盐可在受热等情况下转变为该金属元素的氧化物,因此同样可以作为原料。在另一些实施例中,该原材料还可以是对应金属元素的醇化物,在这种情况下可使用适当的化学处理方法将该金属的醇化物转化为所需要的氧化物。其具体方法为本领域内的习知技术,在此不再赘述。In some embodiments, the raw materials corresponding to zinc oxide, silica and magnesium oxide may be oxides or carbonates of corresponding metal elements. Among them, the oxides of metal elements directly correspond to the components of the dielectric filter to be prepared, and the carbonates of some metal elements can be converted into oxides of the metal elements under conditions such as heating, so they can also be used as raw materials. In other embodiments, the starting material can also be an alcoholate of the corresponding metal element, in which case the metal alcoholate can be converted to the desired oxide using appropriate chemical treatment methods. The specific method is a known technology in the field, and details are not repeated here.
本实施例中,对应氧化锌的原材料的摩尔百分比为20~70%,对应二氧化硅的原材料的摩尔百分比为20%~60%,对应氧化镁的原材料的摩尔百分比为10%~20%。应当理解,上述摩尔百分比是指除去原材料中的杂质后的摩尔百分比。In this embodiment, the molar percentage of the raw material corresponding to zinc oxide is 20-70%, the molar percentage of the raw material corresponding to silicon dioxide is 20%-60%, and the molar percentage of the raw material corresponding to magnesium oxide is 10%-20%. It should be understood that the above molar percentage refers to the molar percentage after removing impurities in the raw materials.
本实施例中,可按照该介质滤波器的各组分的占比准备原材料。在已知各组分的摩尔百分比的情况下,可根据各组分的分子量、原材料的纯度等参数计算得到所需要的原材料的质量。根据各组分所需的摩尔数和分子量计算各组分所需的质量,再根据各组分所需的质量和上述原材料的纯度计算得到所需的原材料的质量。这样就可以根据计算得到的结果准备相应重量的原材料。In this embodiment, the raw materials can be prepared according to the proportion of each component of the dielectric filter. When the mole percentage of each component is known, the required mass of the raw material can be calculated according to the molecular weight of each component, the purity of the raw material and other parameters. Calculate the required mass of each component according to the required number of moles and molecular weight of each component, and then calculate the required mass of raw material according to the required mass of each component and the purity of the above-mentioned raw materials. In this way, the corresponding weight of raw materials can be prepared according to the calculated results.
在一些实施例中,还可向原材料中添加改性添加剂。该改性添加剂可以为CoO、NiO或MnO2中的一个或多个。改性添加剂占所有原材料的总摩尔数的比例通常应不超过2%。In some embodiments, modifying additives may also be added to the raw materials. The modifying additive may be one or more of CoO, NiO or MnO 2 . The proportion of modifying additives to the total moles of all raw materials should generally not exceed 2%.
S120:添加有机溶剂和磨球并进行一次球磨。S120: Add organic solvent and grinding ball and perform ball milling once.
在步骤S120中,可选用去离子水、酒精、丙酮等作为有机溶剂,选用锆球、玛瑙球等作为磨球,选用陶瓷、聚氨酯或尼龙等材质的磨罐,并采用行星磨、搅拌磨、滚磨、振动磨等方式进行一次球磨。其中,为了提高球磨的效果还可添加适当的分散剂或者调节料浆的PH值。In step S120, deionized water, alcohol, acetone, etc. may be selected as organic solvents, zirconium balls, agate balls, etc. may be selected as grinding balls, and grinding jars made of ceramic, polyurethane or nylon materials are selected, and planetary grinding, stirring grinding, Ball milling is carried out by means of roller grinding, vibration grinding, etc. Among them, in order to improve the effect of ball milling, an appropriate dispersant can also be added or the pH value of the slurry can be adjusted.
在一些实施例中,可以使用去离子水作为有机溶剂,并使用ZrO2材料制成的磨球。在步骤S120中,将准确称量的各原料倒入球磨罐内,加入去离子水和ZrO2磨球,使原材料、去离子水和磨球的重量比为1:1.5:4,并球磨4小时。In some embodiments, deionized water can be used as the organic solvent, and grinding balls made of ZrO 2 material can be used. In step S120, each accurately weighed raw material is poured into the ball mill jar, deionized water and ZrO grinding balls are added, the weight ratio of raw materials, deionized water and grinding balls is 1:1.5: 4 , and the ball is milled for 4 Hour.
S130:将一次球磨得到的料浆烘干,并通过煅烧得到陶瓷体。S130: drying the slurry obtained by one ball milling, and calcining to obtain a ceramic body.
将球磨后的材料混合均匀后出料并烘干,例如,可在100~120℃条件下将材料烘干。The ball-milled materials are mixed uniformly, then discharged and dried. For example, the materials can be dried at 100-120°C.
球磨结束并烘干后得到的混合物需要在一定温度下煅烧以合成陶瓷体,其煅烧温度及保温时间取决于所对应的配方。例如,在本实施例中,可将球磨后烘干的料浆在900~1050℃下煅烧2~8小时以合成陶瓷体。The mixture obtained after ball milling and drying needs to be calcined at a certain temperature to synthesize a ceramic body, and the calcination temperature and holding time depend on the corresponding formula. For example, in this embodiment, the ball-milled and dried slurry can be calcined at 900-1050° C. for 2-8 hours to synthesize a ceramic body.
S140:粉碎陶瓷体,添加有机溶剂和磨球并进行二次球磨。S140: Pulverize the ceramic body, add an organic solvent and grinding balls, and perform secondary ball milling.
将合成好的上述陶瓷体用粉碎。本申请对粉碎的方法不作限制,例如,可以使用研体将其研碎。在一些实施例中,还可将粉碎后的陶瓷体过筛(例如,过40目筛)。The synthesized ceramic body is pulverized. The present application does not limit the method of pulverization, for example, it can be pulverized using a grinder. In some embodiments, the comminuted ceramic body can also be screened (eg, passed through a 40 mesh screen).
将粉碎后的陶瓷体再次倒入球磨罐中进行二次球磨,二次球磨的过程可与一次球磨的过程类似。例如,可保持料、磨球和去离子水的比例不变,并对粉碎后的陶瓷体二次球磨24小时。应当理解,二次球磨的过程也可与一次球磨不同,例如,二次球磨的时间可小于(或大于)一次球磨的时间,在此不作限定。The pulverized ceramic body is poured into the ball-milling tank again for secondary ball-milling, and the process of secondary ball-milling can be similar to that of primary ball-milling. For example, the ratio of material, grinding balls and deionized water can be kept unchanged, and the pulverized ceramic body can be ball-milled for a second time for 24 hours. It should be understood that the process of the secondary ball milling may also be different from that of the primary ball milling, for example, the time of the secondary ball milling may be shorter (or greater than) the time of the primary ball milling, which is not limited herein.
S150:将二次球磨得到的料浆烘干。S150: Dry the slurry obtained by the secondary ball milling.
类似得,可将球磨后的材料混合均匀后出料并烘干。在一些实施例中,还可将烘干后的料浆过筛(例如,过40目筛)。Similarly, the ball-milled materials can be mixed uniformly and then discharged and dried. In some embodiments, the dried slurry can also be screened (eg, passed through a 40 mesh screen).
S160:将得到的粉体与粘结剂混合成浆料进行造粒。S160: Mix the obtained powder with a binder to form a slurry for granulation.
在一些实施例中,粘结剂可选用5wt%的聚乙烯醇溶液(即该粘结剂中聚乙烯醇的质量百分比为5%)。粘结剂可占混合后的浆料的总质量的15%。In some embodiments, a 5wt% polyvinyl alcohol solution can be selected as the binder (ie, the mass percentage of polyvinyl alcohol in the binder is 5%). The binder may constitute 15% of the total mass of the mixed slurry.
在一些实施例中,还可将造粒好的粉料过筛(例如,过40目筛)。In some embodiments, the granulated powder may also be screened (eg, passed through a 40 mesh screen).
S170:在与介质滤波器的形状匹配的模具中干压成型。S170: Dry pressing in a mold matching the shape of the dielectric filter.
具体地,将造粒后的粉料放入与介质滤波器的形状匹配的模具中,并在适当的压力下干压成型,例如,可在100~150MPa的压力下将粉料干压成型。Specifically, the granulated powder is put into a mold matching the shape of the dielectric filter, and dry-pressed under appropriate pressure, for example, the powder can be dry-pressed under a pressure of 100-150 MPa.
在此步骤中,模具的形状可根据需要选取,例如,如需要进行测试,则可选用测试专用的模具,将粉料干压成型为的圆片,以方便测试。如需要使用该陶瓷粉料来制备介质陶瓷块,则可以使用与该介质陶瓷块的形状匹配的模具来进行干压成型。应当理解,该模具的形状和尺寸可根据需要任意选取,在此不做限定。In this step, the shape of the mold can be selected as required. For example, if testing is required, a special mold for testing can be selected to dry-press the powder into wafers to facilitate testing. If the ceramic powder needs to be used to prepare a dielectric ceramic block, a mold matching the shape of the dielectric ceramic block can be used for dry pressing. It should be understood that the shape and size of the mold can be arbitrarily selected as required, which is not limited herein.
S180:去除粘结剂并再次烧结,以得到一体成型的至少两个介质块及相邻的两个介质块之间的介质板。S180: Remove the binder and sinter again to obtain at least two integrated dielectric blocks and a dielectric plate between two adjacent dielectric blocks.
可选用适当的温度进行保温处理,从而将步骤S160中引入的粘结剂去除,而后再次烧结从而最终得到所需的介质块及介质板。具体地,本实施例中,可将成型后的材料在400~700℃(例如500~600℃)下保温2~10小时,然后在1100~1250℃下烧结2~10小时(例如在1150℃烧结2小时)。这样,就可以去除步骤S160中添加到材料中的粘结剂,并得到所需要的形状的介质块及介质板。S190:在至少两个介质块及介质板的外表面涂覆电磁屏蔽层。Appropriate temperature can be selected for heat preservation treatment, so as to remove the binder introduced in step S160, and then sintered again to finally obtain the desired dielectric block and dielectric plate. Specifically, in this embodiment, the formed material may be kept at 400-700°C (eg, 500-600°C) for 2-10 hours, and then sintered at 1100-1250°C for 2-10 hours (eg, 1150°C) sintered for 2 hours). In this way, the binder added to the material in step S160 can be removed, and the required shape of the dielectric block and the dielectric plate can be obtained. S190: Coat an electromagnetic shielding layer on the outer surfaces of the at least two dielectric blocks and the dielectric plate.
在至少两个介质块及介质板的表面上覆盖电磁屏蔽层,将电磁场限制在介质块内,防止电磁信号泄露。该电磁屏蔽层的材料可以是银、铜、铝、钛、锡或金等金属材料,并且可以采用电镀、喷浆或焊接等方式在介质块的表面上覆盖电磁屏蔽层。An electromagnetic shielding layer is covered on the surfaces of the at least two dielectric blocks and the dielectric plate to confine the electromagnetic field in the dielectric block and prevent the leakage of electromagnetic signals. The material of the electromagnetic shielding layer can be metal materials such as silver, copper, aluminum, titanium, tin or gold, and the electromagnetic shielding layer can be covered on the surface of the dielectric block by means of electroplating, spraying or welding.
本申请还提供了一种通信设备,该通信设备包括上述任一实施例中的介质滤波器。The present application also provides a communication device, where the communication device includes the dielectric filter in any of the foregoing embodiments.
区别于现有技术的情况,本申请通过至少两个介质块并排设置以形成介质滤波器的方式,减少了仅通过一个介质块形成介质滤波器时,介质块所需的长度,提高了介质滤波器的应用范围,降低甚至消除了介质块在烧结过程中出现弯曲变形的风险,提高良品率,且结构简单,易于成型,适合大批量生产。Different from the situation in the prior art, in the present application, by arranging at least two dielectric blocks side by side to form a dielectric filter, the required length of the dielectric block is reduced when only one dielectric block is used to form a dielectric filter, and the dielectric filter is improved. The application range of the device reduces or even eliminates the risk of bending deformation of the dielectric block during the sintering process, improves the yield, and has a simple structure, easy to form, and is suitable for mass production.
以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。The above are only the embodiments of the present application, and are not intended to limit the scope of the patent of the present application. Any equivalent structure or equivalent process transformation made by using the contents of the description and drawings of the present application, or directly or indirectly applied to other related technologies Fields are similarly included within the scope of patent protection of this application.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2018126039 | 2018-12-31 | ||
CNPCT/CN2018/126039 | 2018-12-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111384525A true CN111384525A (en) | 2020-07-07 |
Family
ID=71218459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910217898.0A Withdrawn CN111384525A (en) | 2018-12-31 | 2019-03-21 | Dielectric filter, preparation method thereof and communication equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111384525A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102683771A (en) * | 2011-03-11 | 2012-09-19 | 东光株式会社 | Dielectric waveguide filter |
CN103351160A (en) * | 2013-07-11 | 2013-10-16 | 合肥师范学院 | Microwave dielectric ceramic and preparation method thereof |
WO2015016449A1 (en) * | 2013-08-01 | 2015-02-05 | (주)에프티이앤이 | Multi-layered nanofiber filter having improved heat resistance, and method for manufacturing same |
CN104733816A (en) * | 2015-03-30 | 2015-06-24 | 西安电子科技大学 | Band-pass filter based on gap waveguide technology |
CN105742766A (en) * | 2016-03-04 | 2016-07-06 | 嘉兴佳利电子有限公司 | Combined filter employing ceramic resonator grooving and coupling mode |
-
2019
- 2019-03-21 CN CN201910217898.0A patent/CN111384525A/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102683771A (en) * | 2011-03-11 | 2012-09-19 | 东光株式会社 | Dielectric waveguide filter |
CN103351160A (en) * | 2013-07-11 | 2013-10-16 | 合肥师范学院 | Microwave dielectric ceramic and preparation method thereof |
WO2015016449A1 (en) * | 2013-08-01 | 2015-02-05 | (주)에프티이앤이 | Multi-layered nanofiber filter having improved heat resistance, and method for manufacturing same |
CN104733816A (en) * | 2015-03-30 | 2015-06-24 | 西安电子科技大学 | Band-pass filter based on gap waveguide technology |
CN105742766A (en) * | 2016-03-04 | 2016-07-06 | 嘉兴佳利电子有限公司 | Combined filter employing ceramic resonator grooving and coupling mode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104926297B (en) | The adjustable microwave-medium ceramics of a kind of temperature stabilization, dielectric constant and preparation method | |
CN111138193B (en) | Microwave dielectric ceramic material with medium dielectric constant and preparation method and application thereof | |
CN105601271B (en) | A kind of microwave-medium ceramics of medium dielectric constant microwave medium and preparation method thereof | |
CN111377710A (en) | Microwave dielectric ceramic material and preparation method of dielectric ceramic block | |
CN111384505A (en) | Dielectric filter, method for preparing dielectric filter and communication equipment | |
CN111384530A (en) | Dielectric filter, communication equipment, method for preparing dielectric block and dielectric filter | |
CN108424134B (en) | Garnet type solid solution magneto-dielectric functional dielectric ceramic material and preparation method thereof | |
CN111384525A (en) | Dielectric filter, preparation method thereof and communication equipment | |
CN111384562A (en) | Dielectric resonator, dielectric filter, communication equipment and method for preparing dielectric block | |
CN111384519A (en) | Dielectric filter, communication equipment, method for preparing dielectric block and dielectric filter | |
CN111384507A (en) | Dielectric filter, communication equipment, dielectric resonator and preparation method | |
CN111384532A (en) | Dielectric filter and preparation method thereof, and communication equipment | |
CN111384561A (en) | Dielectric filter, preparation method thereof and communication equipment | |
CN111384510A (en) | Dielectric filter, preparation method thereof and communication equipment | |
CN111384528A (en) | Dielectric filter, communication equipment, method for producing dielectric block and dielectric filter | |
CN111384526A (en) | Dielectric filter, communication equipment, method for producing dielectric block and dielectric filter | |
CN111384571A (en) | Dielectric resonator, dielectric filter, communication device, and method of making dielectric block | |
CN111377711A (en) | Microwave dielectric ceramic material, dielectric ceramic block and microwave communication equipment | |
CN102898136B (en) | Microwave dielectric ceramic and preparation method thereof | |
CN111825445B (en) | High-dielectric-constant microwave dielectric ceramic material, preparation and application thereof | |
CN111384577A (en) | Dielectric resonator, dielectric filter, communication device, and method of making dielectric block | |
CN106699164A (en) | Microwave ceramic SrO‑ZnO(MgO)‑TiO2 and its preparation method | |
CN111384520A (en) | Dielectric resonator, dielectric filter, communication device, and method of making dielectric block | |
CN105294103A (en) | Vanadium based temperature stable microwave dielectric ceramic and preparation method thereof | |
CN111384576A (en) | Dielectric resonator, dielectric filter, communication equipment and method for preparing dielectric block |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20200707 |