CN111382478A - Design method of tire with controllable ground pressure distribution - Google Patents

Design method of tire with controllable ground pressure distribution Download PDF

Info

Publication number
CN111382478A
CN111382478A CN202010141636.3A CN202010141636A CN111382478A CN 111382478 A CN111382478 A CN 111382478A CN 202010141636 A CN202010141636 A CN 202010141636A CN 111382478 A CN111382478 A CN 111382478A
Authority
CN
China
Prior art keywords
tire
belt
belt layer
pressure distribution
design
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010141636.3A
Other languages
Chinese (zh)
Other versions
CN111382478B (en
Inventor
徐晓鹏
侯丹丹
张春生
王学瑞
钱浩海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongce Rubber Group Co Ltd
Original Assignee
Zhongce Rubber Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongce Rubber Group Co Ltd filed Critical Zhongce Rubber Group Co Ltd
Priority to CN202010141636.3A priority Critical patent/CN111382478B/en
Publication of CN111382478A publication Critical patent/CN111382478A/en
Application granted granted Critical
Publication of CN111382478B publication Critical patent/CN111382478B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Abstract

The invention relates to the technical field of tire structure design, in particular to a design method of a tire with controllable ground pressure distribution. A design method of a tire with controllable ground contact pressure distribution comprises a 1# belt ply, a 2# belt ply, a 3# belt ply and a 0-degree belt ply which are arranged on a carcass ply; the method is characterized in that after the overall layout design of the tire is finished, the width, the angle and the expansion rate of a 1# belt ply, a 2# belt ply and a 3# belt ply are adjusted in the construction design to control the grounding pressure distribution shape of the final finished tire. The required grounding pressure distribution shape can be designed only by using a normal construction method. If the distribution shape of the grounding pressure needs to be changed, the influence factor of the design of the belted layer in construction can be adjusted, and the method is simple and controllable.

Description

Design method of tire with controllable ground pressure distribution
Technical Field
The invention relates to the technical field of tire structure design, in particular to a design method of a tire with controllable ground pressure distribution.
Background
The tire is the only ground contact part of car, and the matching of tire, road surface and car chassis forms the car various performance, and tire performance is crucial to car research analysis. The influence factors of the tire performance are more, wherein the ground contact pressure distribution of the tire is particularly critical, and the ground contact pressure distribution plays an important role in the structural design of the tire. The distribution of the ground contact pressure of the tire can directly influence the wear resistance, the rolling resistance, the steering stability, the noise and the like of the tire, and is the basis for researching various performances of the tire. However, the distribution of the tire contact pressure is influenced by a plurality of factors, and the inner and outer contours, the belt layer, the tire body, the shape of the semi-finished product, the pattern and the like in the tire structure have great influence on the distribution, so that the tire with controllable contact pressure distribution needs to be manufactured very difficultly.
Chinese patent (CN101187955B) discloses a tire section design method using belt bending, which can reflect not only the ground contact shape and the distribution of ground contact pressure of the entire tire, but also the ground contact shape and the distribution of ground contact pressure of each tread block in advance. Although the method reported in this patent can design the expected tire ground contact pressure distribution, the design is the whole cross section, and the influence factors include the outer contour, the belt layer, the carcass, the semi-finished product, the pattern, etc., if the ground contact pressure distribution shape needs to be changed, the mold, the semi-finished product shape, the pattern, the belt layer bending shape, etc. need to be redesigned, wherein the control factor is the belt layer bending shape. In the case of all-steel radial tires, the tire belts are required to be as flat as possible, the curved belts cause the tire to deteriorate, and how the belts are curved is an uncontrollable factor in the normal manufacturing construction of the tire.
Disclosure of Invention
In view of the problems in the background art, the invention provides a design method of a tire with controllable ground contact pressure distribution, which can design a required ground contact pressure distribution shape only by using a normal construction method. If the distribution shape of the grounding pressure needs to be changed, the influence factor of the design of the belted layer in construction can be adjusted, and the method is simple and controllable.
In order to achieve the purpose, the invention is realized by the following technical scheme:
a design method of a tire with controllable ground contact pressure distribution comprises a 1# belt ply, a 2# belt ply, a 3# belt ply and a 0-degree belt ply which are arranged on a carcass ply; the method is characterized in that after the overall layout design of the tire is finished, the width, the angle and the expansion rate of a 1# belt ply, a 2# belt ply and a 3# belt ply are adjusted in the construction design to control the grounding pressure distribution shape of the final finished tire.
Preferably, the distribution shape of the grounding pressure is judged by using a rectangle degree index L;
Figure BDA0002398529630000011
w1 is the width of a No. 1 belt layer, A1 is the included angle between the No. 1 belt layer and a tire body, E1 is the expansion rate of the No. 1 belt layer, and the vertical distance between the end point and the center of the No. 1 belt layer is not more than 2 mm;
w2 is the width of a No. 2 belt layer, A2 is the included angle between the No. 2 belt layer and a tire body, E2 is the expansion rate of the No. 2 belt layer, and the vertical distance between the end point and the center of the No. 2 belt layer is not more than 3 mm;
w3 is the width of a No. 3 belt layer, A3 is the included angle between the No. 3 belt layer and a tire body, and E3 is the expansion rate of the No. 3 belt layer;
b is the running surface width of the tire where the belt structure is located;
when L is 0, the construction adjustment of the belted layer has no influence on the distribution shape of the tire grounding pressure; when L is larger than or equal to 0, the distribution shape of the tire grounding pressure can be changed to be square by the belt layer construction adjustment, and the effect is more obvious when the numerical value is larger; when L is less than or equal to 0, the tire grounding pressure distribution shape is rounded by the belt layer construction adjustment, and the effect is more obvious when the numerical value is larger.
The invention also provides a tire with controllable ground contact pressure distribution, which is designed by adopting the method.
The invention has the beneficial effects that:
by changing the belt width, angle and expansion ratio, the tendency of the ground contact pressure distribution shape of the tire to change can be predicted, and a tire satisfying a desired ground contact pressure distribution shape can be obtained. The design method can enlarge the influence of the belted layer on the tire grounding pressure distribution shape by adjusting the expansion rate of the belted layer and generate decisive influence on the belted layer, thereby realizing the controllable design of the tire grounding pressure distribution by only changing the construction of the belted layer on the premise of not changing other influencing factors.
Drawings
FIG. 1 is a schematic view of the belt structure of the tire of the present invention.
Fig. 2 shows the original ground pressure distribution.
FIGS. 3-7 show the results of ground contact pressure distributions for tires constructed according to the belt design methods of examples 1-5, respectively.
Detailed Description
The invention will be further described with reference to specific examples, but the scope of the invention is not limited thereto, and the effect of the invention will be illustrated by taking an all-steel radial tire with 12R22.5 specification as an example.
The tire belt layer shown in fig. 1 adopts a 0-degree belt layer structure, the structure comprises a 1# belt layer 1, a 2# belt layer 1, a 3# belt layer 3 and a 0-degree belt layer 4 on a carcass ply, the 1# belt layer 1 is laid above the carcass ply, the 2# belt layer 2 and the 3# belt layer 3 are sequentially laid above the 1# belt layer 1, the 0-degree belt layers 4 are respectively laid above two ends of the 2# belt layer 2 and on two sides of the 3# belt layer 3, and the 0-degree belt layer 4 is of an upper and lower layer structure.
The invention relates to a design method of a tire with controllable ground contact pressure distribution, which is characterized in that after the overall layout design of the tire is completed, the width, the angle and the expansion rate of a 1# belt ply, a 2# belt ply and a 3# belt ply are adjusted in the construction design to control the ground contact pressure distribution shape of a final finished tire.
The distribution shape of the grounding pressure is judged by adopting a rectangle degree index L;
Figure BDA0002398529630000021
w1 is the width of a No. 1 belt layer, A1 is the included angle between the No. 1 belt layer and a tire body, E1 is the expansion rate of the No. 1 belt layer, and the vertical distance between the end point and the center of the No. 1 belt layer is not more than 2 mm;
w2 is the width of a No. 2 belt layer, A2 is the included angle between the No. 2 belt layer and a tire body, E2 is the expansion rate of the No. 2 belt layer, and the vertical distance between the end point and the center of the No. 2 belt layer is not more than 3 mm;
w3 is the width of a No. 3 belt layer, A3 is the included angle between the No. 3 belt layer and a tire body, and E3 is the expansion rate of the No. 3 belt layer;
b is the running surface width of the tire where the belt structure is located;
when L is 0, the construction adjustment of the belted layer has no influence on the distribution shape of the tire grounding pressure; when L is larger than or equal to 0, the distribution shape of the tire grounding pressure can be changed to be square by the belt layer construction adjustment, and the effect is more obvious when the numerical value is larger; when L is less than or equal to 0, the tire grounding pressure distribution shape is rounded by the belt layer construction adjustment, and the effect is more obvious when the numerical value is larger.
Example 1
By the technical method, a belted layer is redesigned, the rectangle index L of the tire ground pressure distribution shape is firstly designed to be 0, and the specific parameters are as follows (the width unit is mm):
W1 W2 W3 W0 b A1 A2 E1 E2 E0 L
180 220 120 40 240 66° 75° 1.8% 1.7% 2% 0
example 2
By the technical method, a belted layer is redesigned, the rectangle index L of the tire ground pressure distribution shape is designed to be 1%, and the specific parameters are as follows (the width unit is mm):
W1 W2 W3 W0 b A1 A2 E1 E2 E0 L
180 220 120 40 240 66° 75° 2% 2% 1.4% 1%
example 3
By the technical method, a belted layer is redesigned, the rectangle index L of the tire ground pressure distribution shape is designed to be 2%, and the specific parameters are as follows (the width unit is mm):
W1 W2 W3 W0 b A1 A2 E1 E2 E0 L
180 220 120 40 240 66° 75° 2.5% 2.5% 1.1% 2%
example 4
By the technical method, a belted layer is redesigned, the rectangle index L of the tire ground pressure distribution shape is firstly designed to be-1%, and the specific parameters are as follows (the width unit is mm):
W1 W2 W3 W0 b A1 A2 E1 E2 E0 L
180 220 120 40 240 66° 75° 1.4% 1.6% 2.6% -1%
example 5
By the technical method, a belted layer is redesigned, the rectangle index L of the tire ground pressure distribution shape is designed to be-2%, and the specific parameters are as follows (the width unit is mm):
W1 W2 W3 W0 b A1 A2 E1 E2 E0 L
180 220 120 40 240 66° 75° 0.9% 0.9% 2.7% -2%
tires were designed according to the belt design methods of examples 1 to 5 (all other factors were kept the same), and trial-manufacture was carried out, and the ground contact pressure distribution results of the manufactured tires are shown in fig. 2. As can be seen from the figure, by using the belt layer design method of the invention, the tire grounding pressure distribution shape can be adjusted by adjusting the tire grounding pressure distribution shape rectangularity index L, and the tire design with controllable grounding pressure distribution is realized.

Claims (3)

1. A design method of a tire with controllable ground contact pressure distribution comprises a 1# belt ply, a 2# belt ply, a 3# belt ply and a 0-degree belt ply which are arranged on a carcass ply; the method is characterized in that after the overall layout design of the tire is finished, the width, the angle and the expansion rate of a 1# belt ply, a 2# belt ply and a 3# belt ply are adjusted in the construction design to control the grounding pressure distribution shape of the final finished tire.
2. The design method of a tire with controllable ground contact pressure distribution according to claim 1, wherein the shape of ground contact pressure distribution is judged by using a squareness index L;
Figure FDA0002398529620000011
w1 is the width of a No. 1 belt layer, A1 is the included angle between the No. 1 belt layer and a tire body, E1 is the expansion rate of the No. 1 belt layer, and the vertical distance between the end point and the center of the No. 1 belt layer is not more than 2 mm;
w2 is the width of a No. 2 belt layer, A2 is the included angle between the No. 2 belt layer and a tire body, E2 is the expansion rate of the No. 2 belt layer, and the vertical distance between the end point and the center of the No. 2 belt layer is not more than 3 mm;
w3 is the width of a No. 3 belt layer, A3 is the included angle between the No. 3 belt layer and a tire body, and E3 is the expansion rate of the No. 3 belt layer;
b is the running surface width of the tire where the belt structure is located;
when L is 0, the construction adjustment of the belted layer has no influence on the distribution shape of the tire grounding pressure; when L is larger than or equal to 0, the distribution shape of the tire grounding pressure can be changed to be square by the belt layer construction adjustment, and the effect is more obvious when the numerical value is larger; when L is less than or equal to 0, the tire grounding pressure distribution shape is rounded by the belt layer construction adjustment, and the effect is more obvious when the numerical value is larger.
3. A tire having a controlled ground contact pressure distribution, the tire being designed by the method of claim 1 or 2.
CN202010141636.3A 2020-03-03 2020-03-03 Design method of tire with controllable ground pressure distribution Active CN111382478B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010141636.3A CN111382478B (en) 2020-03-03 2020-03-03 Design method of tire with controllable ground pressure distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010141636.3A CN111382478B (en) 2020-03-03 2020-03-03 Design method of tire with controllable ground pressure distribution

Publications (2)

Publication Number Publication Date
CN111382478A true CN111382478A (en) 2020-07-07
CN111382478B CN111382478B (en) 2023-03-28

Family

ID=71215208

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010141636.3A Active CN111382478B (en) 2020-03-03 2020-03-03 Design method of tire with controllable ground pressure distribution

Country Status (1)

Country Link
CN (1) CN111382478B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101187955A (en) * 2006-11-13 2008-05-28 韩国轮胎株式会社 Tire section design method using belt ply part bending
CN102582368A (en) * 2012-01-17 2012-07-18 安徽佳通轮胎有限公司 Inflatable Load radial tire with sectional type belted layer structure
CN104442210A (en) * 2014-11-15 2015-03-25 杭州朝阳橡胶有限公司 High-rectangular-degree ground-contact shaped all-steel low-load radial tire with three-belt-ply structure
US20180257443A1 (en) * 2015-09-14 2018-09-13 Jiangsu University Method for improving production process for wide-base truck radial tire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101187955A (en) * 2006-11-13 2008-05-28 韩国轮胎株式会社 Tire section design method using belt ply part bending
CN102582368A (en) * 2012-01-17 2012-07-18 安徽佳通轮胎有限公司 Inflatable Load radial tire with sectional type belted layer structure
CN104442210A (en) * 2014-11-15 2015-03-25 杭州朝阳橡胶有限公司 High-rectangular-degree ground-contact shaped all-steel low-load radial tire with three-belt-ply structure
US20180257443A1 (en) * 2015-09-14 2018-09-13 Jiangsu University Method for improving production process for wide-base truck radial tire

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
崔志博: "子午线轮胎接地特性可控设计理论及实验研究", 《中国优秀博硕士学位论文全文数据库(电子期刊) 工程科技Ⅰ辑》 *
崔鲁欣等: "12R22.5规格载重子午线轮胎接地印痕和压力分布优化改进", 《橡塑技术与装备》 *
李福香等: "445/45R19.5超低断面宽基无内胎全钢载重子午线轮胎的设计", 《橡胶工业》 *
田芳等: "高性能子午线轮胎结构设计", 《橡塑资源利用》 *
赵亚元等: "带束层帘线对载重子午线轮胎胎面耐磨性能的影响", 《橡胶工业》 *

Also Published As

Publication number Publication date
CN111382478B (en) 2023-03-28

Similar Documents

Publication Publication Date Title
CN105377588B (en) Pneumatic tire
EP1667853B1 (en) Pneumatic tire and process for its manufacture
CN104903121B (en) Pneumatic tire
CN104057782A (en) Pneumatic tire
EP3603946A2 (en) Tyre mold, method for manufacturing tyre, and tyre
CN105008146B (en) Pneumatic tire
CN107635795A (en) Pneumatic tire
CN111382478A (en) Design method of tire with controllable ground pressure distribution
US20040118494A1 (en) Vehicle pneumatic tire
DE60200758D1 (en) DIRECTIONAL TIRE PROFILE FOR A WINTER TIRE
EP0370699A2 (en) Vehicle tyre
CN214324814U (en) Tire with uniformly distributed ground pressure
CN112248720B (en) High-control low-noise pneumatic tire
CN107297993B (en) Special-shaped profile structure of TBR (tunnel boring machine) tire and tire with profile
JP3898268B2 (en) Manufacturing method of tire vulcanization mold
CN103596776B (en) Pneumatic tire
CN103085607B (en) Low-lateral-direction noise radiation tyre tread pattern structure
CN108116167A (en) Pneumatic tire
JPH0516617A (en) Pneumatic tire for passenger car
JP2000309205A (en) Pneumatic tire and its manufacturing method
CN112996671B (en) Pneumatic tire
JPH08295105A (en) Pneumatic radial tire with v-shaped directional slant grooves
CN217048148U (en) Asymmetric tire pattern with positive PRAT value
KR100626560B1 (en) Pneumatic tire and process for fabricating the same
CN220720750U (en) Comfortable tire pattern and tire

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 310018 No. 1, No. 1 Street, Qiantang District, Hangzhou, Zhejiang

Applicant after: Zhongce Rubber Group Co.,Ltd.

Address before: 310018 No.2, 10th Street, economic and Technological Development Zone, Jianggan District, Hangzhou City, Zhejiang Province

Applicant before: ZHONGCE RUBBER GROUP Co.,Ltd.

GR01 Patent grant
GR01 Patent grant