CN111378108B - 一种分散剂及合成方法、润滑剂及其制备方法 - Google Patents

一种分散剂及合成方法、润滑剂及其制备方法 Download PDF

Info

Publication number
CN111378108B
CN111378108B CN201811631851.0A CN201811631851A CN111378108B CN 111378108 B CN111378108 B CN 111378108B CN 201811631851 A CN201811631851 A CN 201811631851A CN 111378108 B CN111378108 B CN 111378108B
Authority
CN
China
Prior art keywords
lubricant
polyether amine
lubricating oil
dispersing agent
carbon nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811631851.0A
Other languages
English (en)
Other versions
CN111378108A (zh
Inventor
蔡韦政
蔡宗岩
杨智伟
张美杰
毛鸥
郑涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Cnano Technology Ltd
Original Assignee
Jiangsu Cnano Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Cnano Technology Ltd filed Critical Jiangsu Cnano Technology Ltd
Priority to CN201811631851.0A priority Critical patent/CN111378108B/zh
Publication of CN111378108A publication Critical patent/CN111378108A/zh
Application granted granted Critical
Publication of CN111378108B publication Critical patent/CN111378108B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2618Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing nitrogen
    • C08G65/2621Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing nitrogen containing amine groups
    • C08G65/2624Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing nitrogen containing amine groups containing aliphatic amine groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5006Amines aliphatic
    • C08G59/5013Amines aliphatic containing more than seven carbon atoms, e.g. fatty amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M149/00Lubricating compositions characterised by the additive being a macromolecular compound containing nitrogen
    • C10M149/12Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M149/14Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds a condensation reaction being involved
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M161/00Lubricating compositions characterised by the additive being a mixture of a macromolecular compound and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/041Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds involving a condensation reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Lubricants (AREA)

Abstract

本发明公开了一种分散剂及分散剂的合成方法,添加有该分散剂的润滑剂及润滑剂的制备方法,分散剂由聚醚胺与环氧树脂合成,添加到润滑油中,可直接添加碳材料到润滑油中,通过机械混合即可得到一种润滑剂,能够完整保留原碳材料的高润滑性和高导热性,达到优异的润滑效果,降低摩擦损耗。

Description

一种分散剂及合成方法、润滑剂及其制备方法
技术领域
本发明涉及润滑剂技术领域,特别涉及一种分散剂及合成方法、润滑剂及其制备方法。
背景技术
润滑剂和润滑脂用于设备和制造过程中以减少摩擦和磨损,并且在许多情况下,可以去除废热。虽然一些润滑剂是水基的,但大多数润滑剂是油基的,含有例如矿物油、聚(α-烯烃)油、酯合成油、环氧乙烷/环氧丙烷合成油、聚亚烷基二醇合成油和硅油等。
润滑剂的主要技术要求是它们必须能够:(a)在所在负重、温度和速度下保持工作部件表面分离,从而最大限度地减少摩擦和磨损;(b)作为冷却液,除去摩擦或外部源产生的热量;(c)保持足够稳定,以保证在预测的使用年限内保持不变的性能;(d)保护表面免受操作过程中形成的侵蚀性产品的侵袭;(e)履行清洁和分散功能,以清除操作过程中可能形成的残留物和碎屑。然而,越来越多的机械操作环境需要更强的散热性能,通常需要使用具有高导热率的润滑剂。现有常用润滑油的导热率值在室温下通常在0.05至0.15W/mK的范围内,导热性能不够。
为了满足各种要求,将一种或多种类型的添加剂或性质改性剂添加到润滑剂或油脂组合物中的基础油中。添加石墨或碳纳米管可承受施加在工作流体上的一些负荷,从而有助于减少对工作部件表面的损坏。尽管石墨与碳纳米管的导热率远高于所有基础油和水的导热率,但是目前对含有石墨与碳纳米管的润滑剂依然无法达到良好的导热性能。因为所用的石墨与碳纳米管的粒度通常非常大,约为1至几微米。结果,掺入汽车发动机油中的石墨一般都会沉到润滑剂的底部,不能直接起到润滑效果。
针对上述技术问题,人们开始研究纳米粒子应用到润滑剂中。目前世界上研究了几种类型的纳米颗粒作为潜在的润滑油添加剂,包括硅、钛和锌的金属氧化物;铈、镧和钙等金属氟化物;锌、铜和铅硫化物等。还考虑了纯金属,例如镍,锌和铜,钼化合物和碳纳米管。这些纳米颗粒中通常含有硫、氯和磷。而钛、镍和硅额颗粒尺寸一般在3至10微米之间,但一般在只有在微米以下级别范围(小于3微米)才能表现出润滑性能。
在过去二十年中,填料或添加剂领域的一个主要发展是碳纳米管(CNT),其具有广泛的纳米技术应用。已经进行了若干尝试将CNT用作润滑剂、润滑脂和传热流体中的填料。观察到CNT在低负荷和低速条件下改善这些流体的粘度,导热性和抗磨性能。有关碳纳米管在润滑油中使用的代表性报告包括:
1.D.Moy等人,“含有碳纳米管的润滑剂”,美国专利No.4,522,517。美国专利号 6,828,282(2004年12月7日)。
2.H.Hong等人,“具有增强导热性的含碳纳米颗粒的亲水性纳米流体”,美国公开号2008/0302998(2008年12月11日)。
由于CNT倾向于彼此聚集或物理缠结以及CNT表面的化学惰性,因此 CNT在流体中的均匀分散和含有高CNT浓度的流体的处理是非常困难的。
石墨烯(NGP)是由一层或多层石墨烯平面组成的薄片或带,其厚度可小至0.34nm(一个碳原子厚)。单层石墨烯由碳原子组成,通过强的面内共价键形成二维六方晶格。在多层NGP中,几个石墨烯平面通过范德瓦尔斯力在厚度方向上弱结合在一起。从概念上讲,NGP可以被视为碳纳米管(CNT)的扁平片,具有对应于单壁CNT的单层石墨烯和对应于多壁CNT的多层石墨烯。然而,这种几何形状的差异也使得NGP和CNT之间的电子结构和相关的物理和化学性质非常不同。
与单壁CNT相比,单层NGP具有两倍的比表面积。单层石墨烯的热导率高达5,300W/mk,是基于实际实验测量报告的单壁CNT的最高热导率的两倍。如果NGP适当地分散在润滑剂或油脂材料中,这种高导热率可以转化为很大的散热能力。但由于石墨烯的先天纳米结构,堆积密度非常低,容易因范德华力产生大量团聚,即便其具有非常优异的物理性能,但要实际应用到工业中,依然是非常棘手的难题。为了能使石墨烯实际发挥其润滑和导热效果,一般都要对石墨烯进行改性,如中国台湾专利TW201439309A,采用特定的表面改性剂对石墨烯进行改性之后才能加入到润滑剂以降低摩擦系数;中国发明专利申请CN106381206A公开一种含碳纳米管和石墨烯的润滑油的制备,对碳纳米管进行酸化改性,对石墨烯进超声波分散,然后再取出溶剂油,得到石墨烯,结合碳纳米管一起加入到润滑油中混合,能够减小摩擦,降低磨损,但由于碳纳米管通过强酸处理后,对碳纳米管本身的物性产生的较大的影响,降低了其本身的导热性能,而石墨烯必须提前超声波分散一段较长的时间,会存在一定的损耗,生产成本高,性价比还是有所欠缺。
发明内容
针对现有技术存在的不足,本发明的目的在于提供一种分散剂、润滑剂及其制备方法,通过加入该分散剂,可直接将石墨烯和碳纳米管添加到润滑剂中,搅拌混合即可,得到的润滑剂能有效提高润滑导热效果,降低磨损。
本发明的上述技术目的是通过以下技术方案得以实现的:
一种分散剂,由聚醚胺与环氧树脂合成,所述聚醚胺含有聚烯羟弹性体或聚合物多元醇任一链段,所述聚醚胺含有聚烯羟弹性体或聚合物多元醇任一链段,所述聚醚胺与所述环氧树脂的摩尔比为1-9:2-9。
聚醚胺可包括氧乙烯和/或氧丙烯链段,聚醚胺-单胺,聚醚二胺-聚醚胺三胺。
聚醚胺-单胺的通式为R-NH2,具有以下结构式:R为H(EO)或CH3 (PO),PO/EO的摩尔比为0.15-9。
Figure BDA0001928417600000031
聚醚胺-单胺的具体物质可以是Huntsman Chemical Co.或Aldrich ChemicalCo.的Jeffamine M2070,上述结构式中具有平均分子量2,000和x=10,y=32,也可以是Jeffamine M-600(XTJ-505),PO/EO的摩尔比为9/1,分子量为600; M-1000(XTJ-506),PO/EO的摩尔比为3/19,分子量为1000;M-1000(XTJ-507), PO/EO的摩尔比为29/6,分子量为2000。
聚醚胺-二胺的通式为H2N-R-NH2,具有以下结构式:
Figure BDA0001928417600000032
其中e=10-50,d或f=0-10。
聚醚胺-二胺的具体物质可以是Huntsman Chemical Co.或Aldrich ChemicalCo.的Jeffamine ED-2003,其在上述中具有平均分子量2000和d+f= 6,e=39。
聚醚胺的其他结构式如下所示:
Figure BDA0001928417600000041
x=1-68,分子量为200-4000,例如Aldrich Chemical Co.的Jeffamine D-230,D400,D-2000,D-4000(XTJ-510)。
Figure BDA0001928417600000042
,x=2-3,分子量为600- 900,例如Jeffamine EDR-148,EDR-176。
Figure BDA0001928417600000043
其中R为H 或C2H5,n为0-1,x+y+z=5-85,分子量为400-5000。例如Jeffamine T403,T- 3000(XTJ-509),T-5000。
Figure BDA0001928417600000044
如Jeffamine SD-231,SD- 401,SD-2001,SD-404。
优选的,所述环氧树脂可以为双酚A双环氧甘油醚、聚乙二醇二缩水甘油醚、聚丙二醇二缩水甘油醚。
双酚A双环氧甘油醚,结构式如下。
Figure BDA0001928417600000051
分子量近似350。
聚乙二醇二缩水甘油醚,结构式如下:
Figure BDA0001928417600000052
分子量近似526。
聚丙二醇二缩水甘油醚,结构式如下:
Figure BDA0001928417600000053
分子量近似640。
通过由聚醚胺与环氧树脂制备得到的分散剂,添加到润滑剂中,可直接添加石墨烯或碳纳米管进行简单的机械混合即可提升润滑剂的润滑效果,充分发挥碳纳米管和石墨烯的润滑性和导热性。
上述分散剂的制备方法,按照摩尔比将聚醚胺与环氧树脂混合,在氮气保护下搅拌反应3-8小时,反应温度控制在90-180℃。
一种润滑剂,包括有上述的质量百分比为0.3-4%的分散剂,0.3-4.9%的碳纳米材料,石墨烯和碳纳米管任一种或两者的混合,余量为润滑油。
优选的,所述碳纳米材料为石墨烯和碳纳米管任一种或两者的混合。
优选的,所述润滑油为石油馏分、合成石油、油脂、凝胶、油溶性聚合物组合物、植物油及其组合。
优选的,所述润滑油为聚α-烯烃、多元醇酯及其组合,多元醇酯可选自季戊四醇酯、三羟甲基丙烷酯、新戊二醇酯及其组合。
一种润滑剂的制备方法,按照质量百分比将分散剂、碳纳米材料和润滑油混合,超声或者机械搅拌2-8小时即可。
优选的,所述机械搅拌速度为1500-8000rpm。
综上所述,本发明对比于现有技术的有益效果为:利用本发明合成的分散剂与机械搅拌能够直接由原始产生超薄、原始的石墨烯与碳纳米管分散均匀的液体,石墨烯和碳纳米管无需经过化学插层或氧化。
本发明包括简单地将原始石墨与碳纳米管粉末颗粒分散在含有分散剂与润滑油获得悬浮液,然后将悬浮液进行机械搅拌处理。起始材料不需要化学嵌入或氧化。在整个纳米石墨与碳纳米管生产过程中,碳材料无需要再经过前处理。该工艺将原始石墨与碳纳米管材料的剥离和分离结合到一个步骤中。因此,这种简单而有效的方法消除了将石墨暴露于高温或化学氧化环境的问题,得到的 NGP与碳纳米管基本上是原始状态的,并且分散均匀,其在电学上和热学上都是高导电导热性。
具体实施方式
以下对本发明作进一步详细说明。
(一)合成分散剂实施例一:取ED2003于500ml之三颈瓶中,加入双酚A的双环氧甘油醚 (diglycidyl ether of bisphenol A,BE188)(7g,0.02mol)、ED2003(可为购自Huntsman Chemical Co.或Aldrich Chemical Co.之
Figure BDA0001928417600000061
ED2003,平均分子量为2000,)(60g,0.03mol),使BE188/ED2003之摩尔比为2:3。以机械搅拌,全程充氮气,温度控制于150℃,反应5小时,反应完成后,得到淡黄色黏稠液体,反应结构式如下所示:
Figure BDA0001928417600000062
实施例二:取ED2003于500ml之三颈瓶中,加入双酚A的双环氧甘油醚(diglycidylether of bisphenol A,BE188)(3.5g,0.01mol)、ED2003(可为购自Huntsman ChemicalCo.或Aldrich Chemical Co.之
Figure BDA0001928417600000063
ED2003,平均分子量为2000,)(180g,0.09mol),使BE188/ED2003之摩尔比为1:9。以机械搅拌,全程充氮气,温度控制于150℃,反应5小时,反应完成后,得到淡黄色黏稠液体。
实施例三:取ED2003于500ml之三颈瓶中,加入双酚A的双环氧甘油醚(diglycidylether of bisphenol A,BE188)(31.5g,0.09mol)、ED2003(可为购自Huntsman ChemicalCo.或Aldrich Chemical Co.之
Figure BDA0001928417600000071
ED2003,平均分子量为2000,)(20g,0.01mol),使BE188/ED2003之摩尔比为9:1。以机械搅拌,全程充氮气,温度控制于150℃,反应5小时,反应完成后,得到淡黄色黏稠液体。
实施例四:取ED2003于500ml之三颈瓶中,加入双酚A的双环氧甘油醚(diglycidylether of bisphenol A,BE188)(7g,0.02mol)、ED2003(可为购自 Huntsman Chemical Co.或Aldrich Chemical Co.之
Figure BDA0001928417600000072
ED2003,平均分子量为2000,)(60g,0.03mol),使BE188/ED2003之摩尔比为2:3。以机械搅拌,全程充氮气,温度控制于180℃,反应3小时,反应完成后,得到淡黄色黏稠液体。
实施例五:取ED2003于500ml之三颈瓶中,加入双酚A的双环氧甘油醚(diglycidylether of bisphenol A,BE188)(7g,0.02mol)、ED2003(可为购自 Huntsman Chemical Co.或Aldrich Chemical Co.之
Figure BDA0001928417600000073
ED2003,平均分子量为2000,)(60g,0.03mol),使BE188/ED2003之摩尔比为2:3。以机械搅拌,全程充氮气,温度控制于90℃,反应8小时,反应完成后,得到淡黄色黏稠液体。
实施例六:取M2070于500ml之三颈瓶中,加入双酚A的双环氧甘油醚 (diglycidylether of bisphenol A,BE188)(7g,0.02mol)、D2000(可为购自 Huntsman Chemical Co.或Aldrich Chemical Co.之
Figure BDA0001928417600000074
D2000,平均分子量为2000,)(60g,0.03mol),使BE188/ED2003之摩尔比为2:3。以机械搅拌,全程充氮气,温度控制于90℃,反应8小时,反应完成后,得到淡黄色黏稠液体。
(二)润滑剂的制备将石墨、碳纳米管与实施例一合成的分散剂按质量百分比加入到润滑油(以下实施例4-7)内,将实施例二-六制备的分散剂分别加入到以下实施例8-12中,碳纳米管选用为Cnano(江苏天奈)的FT7000,石墨为一般膨胀石墨即可((ExpandedGraphite,简称EG),润滑油是台塑石化股份有限公司生产的型号:150N,添加完毕后于立式罐体搅拌,
实施例1~7搅拌速率为4500rpm,搅拌时间保持为8小时,完成后可得一黑色润滑油液体,比例为下表1所示:
实施例8~9搅拌速率为8000rpm,搅拌时间保持为15小时,完成后可得一黑色润滑油液体,比例为下表1所示:
实施例10~12搅拌速率为1500rpm,搅拌时间保持为2小时,完成后可得一黑色润滑油液体,比例为下表1所示:
Figure BDA0001928417600000081
从上述的表格最后的平均粒径可以看出,没有添加本发明的分散剂的粒径超出可测得的范围(编号2,3),说明碳材料发生了团聚,在润滑油中的分散效果不好。而添加了本发明的分散剂的润滑剂中的粒径基本跟碳材料本身的平均粒径相近,证明碳材料在本发明分散剂存在的润滑剂中分散效果较好。
(三)碳材料润滑油测试经由上述实施例制备的润滑剂经由ASTM D4712B检测所得结果如表2所示,从结果上可以看出,单纯加入为分散的石墨或碳纳米管并不能对润滑效果有显着帮助,但同时加入分散剂的碳材料,则可以大幅增加润滑性质,减少磨痕直径,而石墨与碳管之复合材料显现最佳润滑(耐磨耗效果),最佳比例为石墨:CNT为 2:1。
表2:
样品序号 样品成分 平均磨痕直径(微米)
1 未添加碳材料 950
2 添加石墨(0.3%)未添加分散剂 938
3 添加碳管(0.3%)未添加分散剂 955
4 添加石墨(0.3%) 850
5 添加碳管(0.3%) 910
6 添加石墨(0.1%)/碳管(0.2%) 705
7 添加石墨(0.2%)/碳管(0.1%) 683
8 添加石墨(4.9%)/碳管(0.1%) 830
9 添加石墨(0.1%)/碳管(4.9%) 856
10 添加石墨(0.05%)/碳管(0.45%) 759
11 添加石墨(0.45%)/碳管(0.05%) 732
12 添加石墨(0.45%)/碳管(0.05%) 720
注:平均磨痕直径表示两个物质之间的摩擦所留下的磨痕的平均直径,数值越小,表示摩擦损耗越小,润滑效果越好。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。

Claims (7)

1.一种润滑剂,其特征是:包括质量百分比为0.3-4%的分散剂,0.3-4.9%的碳纳米材料,所述碳纳米材料为石墨烯和碳纳米管两者的混合,余量为润滑油;
所述分散剂由聚醚胺与环氧树脂合成,所述聚醚胺与所述环氧树脂的摩尔比为1-9:2-9,所述分散剂的反应温度控制在90-180℃;
该润滑剂按照质量百分比将分散剂、碳纳米材料和润滑油混合,超声或者机械搅拌2-8小时即可制得,所述碳纳米管无需经过化学插层或氧化。
2.根据权利要求1所述的一种润滑剂,其特征是:所述聚醚胺包括氧乙烯和/或氧丙烯链段,聚醚胺-单胺,聚醚二胺-聚醚胺三胺。
3.根据权利要求1所述的一种润滑剂,其特征是:所述环氧树脂为双酚A双环氧甘油醚、聚乙二醇二缩水甘油醚、聚丙二醇二缩水甘油醚任一种。
4.根据权利要求1所述的一种润滑剂,其特征是:所述分散剂的由以下方法制备而成:按照摩尔比将聚醚胺与环氧树脂混合,在氮气保护下搅拌反应3-8小时。
5.根据权利要求1所述的润滑剂,其特征是:所述润滑油为石油馏分、合成石油、油脂、凝胶、油溶性聚合物组合物、植物油及其组合。
6.根据权利要求1所述的润滑剂,其特征是:所述润滑油为聚α-烯烃、多元醇酯及其组合。
7.根据权利要求1所述的润滑剂,其特征是:所述机械搅拌速度为1500-8000rpm。
CN201811631851.0A 2018-12-28 2018-12-28 一种分散剂及合成方法、润滑剂及其制备方法 Active CN111378108B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811631851.0A CN111378108B (zh) 2018-12-28 2018-12-28 一种分散剂及合成方法、润滑剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811631851.0A CN111378108B (zh) 2018-12-28 2018-12-28 一种分散剂及合成方法、润滑剂及其制备方法

Publications (2)

Publication Number Publication Date
CN111378108A CN111378108A (zh) 2020-07-07
CN111378108B true CN111378108B (zh) 2023-02-14

Family

ID=71214750

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811631851.0A Active CN111378108B (zh) 2018-12-28 2018-12-28 一种分散剂及合成方法、润滑剂及其制备方法

Country Status (1)

Country Link
CN (1) CN111378108B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024144998A1 (en) * 2022-12-30 2024-07-04 Dow Global Technologies Llc Oil-based graphite lubricant compositions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201402454A (zh) * 2012-07-05 2014-01-16 Univ Nat Taiwan 以聚醚胺分散奈米碳管之方法及其應用
CN103923241A (zh) * 2014-05-05 2014-07-16 安徽嘉智信诺化工有限公司 Ab嵌段型颜料分散剂及其制备方法
CN106381206A (zh) * 2016-08-31 2017-02-08 四川碳世界科技有限公司 一种含碳纳米管和石墨烯的润滑油的制备方法
CN108285533A (zh) * 2017-01-09 2018-07-17 合记化学股份有限公司 一种聚胺有机高分子型分散剂

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201402454A (zh) * 2012-07-05 2014-01-16 Univ Nat Taiwan 以聚醚胺分散奈米碳管之方法及其應用
CN103923241A (zh) * 2014-05-05 2014-07-16 安徽嘉智信诺化工有限公司 Ab嵌段型颜料分散剂及其制备方法
CN106381206A (zh) * 2016-08-31 2017-02-08 四川碳世界科技有限公司 一种含碳纳米管和石墨烯的润滑油的制备方法
CN108285533A (zh) * 2017-01-09 2018-07-17 合记化学股份有限公司 一种聚胺有机高分子型分散剂

Also Published As

Publication number Publication date
CN111378108A (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
US8222190B2 (en) Nano graphene-modified lubricant
Mousavi et al. Experimental investigation of ZnO nanoparticles effects on thermophysical and tribological properties of diesel oil
Meng et al. Au/graphene oxide nanocomposite synthesized in supercritical CO2 fluid as energy efficient lubricant additive
US8258086B2 (en) Anti-seize composition with nano-sized lubricating solid particles
Vattikuti et al. Synthesis and characterization of molybdenum disulfide nanoflowers and nanosheets: nanotribology
He et al. α-Zirconium phosphate nanoplatelets as lubricant additives
Rapoport et al. Applications of WS 2 (MoS 2) inorganic nanotubes and fullerene-like nanoparticles for solid lubrication and for structural nanocomposites
Ramón-Raygoza et al. Development of nanolubricant based on impregnated multilayer graphene for automotive applications: Analysis of tribological properties
Zheng et al. Macroscale superlubricity achieved via hydroxylated hexagonal boron nitride nanosheets with ionic liquid at steel/steel interface
He et al. Structural engineering design of carbon dots for lubrication
Guimarey et al. Thermophysical properties of polyalphaolefin oil modified with nanoadditives
US20160369197A1 (en) Carbon nanofiber materials and lubricants
CN111944585B (zh) 亲油型碳量子点基纳米润滑油添加剂及其制备方法
Ma et al. Tribological properties of SiO 2@ Cu and SiO 2@ MoS 2 core–shell microspheres as lubricant additives
CN111378108B (zh) 一种分散剂及合成方法、润滑剂及其制备方法
Jiang et al. Elucidation of the thermophysical mechanism of hexagonal boron nitride as nanofluids additives
Ci et al. A sustainable interlayer slip leads to the excellent tribological behaviour of hexagonal boron nitride microsheets
Zhang et al. Recent advances of two-dimensional lubricating materials: from tunable tribological properties to applications
Ronchi et al. Tribology of polymer-based nanocomposites reinforced with 2D materials
Kumari et al. Alkali-assisted hydrothermal exfoliation and surfactant-driven functionalization of h-BN nanosheets for lubrication enhancement
Opia et al. Eichhornia crassipes nanoparticles as a sustainable lubricant additive: Tribological properties optimization and performance under boundary lubrication regime
Yang et al. Facile synthesis of lipophilic alkylated boron nitride nanosheets as lubricating oil additive to greatly enhance the friction and heat-conducting properties
Hazarika et al. Revealing mechanical, tribological, and surface-wettability features of nanoscale inorganic fullerene-type tungsten disulfide dispersed in a polymer
Ali et al. Lubrication mechanism analysis of nickel-carbon-based tribological layer on sliding interfaces in automotive engines
Li et al. Oil-soluble deep eutectic solvent functionalized graphene oxide towards synergistic lubrication in non-polar PAO 20 lubricant

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant