CN111377716A - 一种机器人用石墨烯增强氧化铝基陶瓷型轴承 - Google Patents

一种机器人用石墨烯增强氧化铝基陶瓷型轴承 Download PDF

Info

Publication number
CN111377716A
CN111377716A CN201811650172.8A CN201811650172A CN111377716A CN 111377716 A CN111377716 A CN 111377716A CN 201811650172 A CN201811650172 A CN 201811650172A CN 111377716 A CN111377716 A CN 111377716A
Authority
CN
China
Prior art keywords
powder
ceramic
alumina
ceramic core
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811650172.8A
Other languages
English (en)
Inventor
杨振勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guoren Robot Tianjin Co ltd
Original Assignee
Guoren Robot Tianjin Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guoren Robot Tianjin Co ltd filed Critical Guoren Robot Tianjin Co ltd
Priority to CN201811650172.8A priority Critical patent/CN111377716A/zh
Publication of CN111377716A publication Critical patent/CN111377716A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/22Moulds for peculiarly-shaped castings
    • B22C9/24Moulds for peculiarly-shaped castings for hollow articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63496Bituminous materials, e.g. tar, pitch
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种机器人用石墨烯增强氧化铝基陶瓷型轴承,将氧化铝陶瓷粉末与石墨烯粉末使用三维混料机进行混合,获得混合均一的氧化铝基陶瓷型芯粉体。将陶瓷粉体与增塑剂混合配置成所需的陶瓷浆料,使用热压注成型方法压制出湿态的陶瓷型芯样品,而后将获得的湿态陶瓷型芯在惰性气氛保护下烧结,获得石墨烯增强的氧化铝基陶瓷型芯。本发明创新性地将具有优异力学性能及热性能的石墨烯材料引入氧化铝基陶瓷型芯材料体系,所提供的石墨烯增强氧化铝基陶瓷型芯材料制备工艺简单易行,可操作性强,所制备的陶瓷型芯具有优异的高温性能且易于溶除。该陶瓷型芯能够满足单晶空心叶片的制备使用需要,且可保证叶片的尺寸精度和合格率。

Description

一种机器人用石墨烯增强氧化铝基陶瓷型轴承
技术领域
本发明属于精密铸造领域,具体涉及一种机器人用石墨烯增强氧化铝基陶瓷型轴承。
背景技术
众所周知,在机器人操作过程中,驱动设备产生热,每个驱动设备包括多个电气组件,其可一忍受高达70℃的温度,超过了这个温度,驱动设备可能会损坏,工业机器人通常是被指定在一高达50℃的环境内操作,电机的功过温度经常达到145℃,这样电机和驱动设备产生热,现有技术的驱动设备位于控制柜内,冷却设备如风扇被设置在控制柜内来保持驱动设备的温度低于最大的操作极限温度70℃,这样的设计不但抑制电机的工作效率,而且风扇噪音大,而且由于散热不畅还有造成电机在热量过高的情况下发生故障的隐患。
氧化铝基陶瓷型芯以氧化铝粉为基体材料,通过添加MgO、SiO2、TiO2及稀土氧化物作为矿化剂,促进烧结。矿化剂加入容易导致氧化铝陶瓷型芯的高温性能下降,比如高温强度和高温挠度等。目前常用的氧化铝基陶瓷型芯高温强度在10MPa以下,高温挠度≤0.5mm,严重影响叶片的尺寸精度和浇注合格率。此外,由于氧化铝材料化学性质较为稳定,难与酸碱等物质发生反应,随着叶片内腔结构越来越复杂,氧化铝陶瓷型芯的脱除越来越成为制约其使用的瓶颈。为解决氧化铝陶瓷型芯高温性能差,脱芯难的问题,需要向氧化铝基陶瓷型芯体系中引入其他物质,以增强氧化铝陶瓷型芯在高温条件下的使用性能及化学溶除性。
发明内容
本发明的目的在于克服已有技术存在的不足,提供了一种机器人用石墨烯增强氧化铝基陶瓷型轴承,该陶瓷型芯制备工艺简单易行,可操作性强,所制备的氧化铝基陶瓷型芯具有优异的高温性能且易于溶除。该陶瓷型芯能够满足单晶空心叶片的制备使用需要,且能保证叶片的尺寸精度和合格率。
一种机器人用石墨烯增强氧化铝基陶瓷型轴承,陶瓷型芯材料的化学组成包括按照重量百分比分配的:氧化铝陶瓷粉90%~95%,氧化硅粉4.5%~8%,石墨烯粉0.5%~2%,增塑剂15%~24%。
本发明优选的,石墨烯粉为纳米级、亚微米级及微米级尺寸。
本发明优选的,氧化铝陶瓷粉为200目氧化铝陶瓷粉和325目氧化铝陶瓷粉的混合物。
本发明优选的,氧化硅粉为纳米氧化硅粉。
一种机器人用石墨烯增强氧化铝基陶瓷型轴承的制备方法,包括以下步骤:
(1)将氧化铝陶瓷粉、氧化硅粉、石墨烯粉按照的重量百分比使用三维混料机进行混合,制成混合均匀成分均一的陶瓷粉体。
(2)添加占陶瓷粉体质量15%~24%的增塑剂,先将增塑剂溶化后,再将陶瓷粉体逐步加入到增塑剂中,待陶瓷粉体全部加入后,继续搅拌10h~20h制得陶瓷型芯浆料。
(3)采用热压注成型方法制备陶瓷型芯,将在步骤(2)中获得的陶瓷型芯浆料装入压注设备中,在模具中获得所需的湿态陶瓷型芯,注射压力为2MPa~4MPa,并保压10s~30s;
(4)将在步骤(3)中获得的湿态陶瓷型芯在惰性气氛保护下进行烧结,采用的烧结工艺机制为:a、以1℃/min~2℃/min的升温速率加热至400℃~500℃,进行排蜡工艺;b、而后以2℃/min~3℃/min的升温速率加热1000℃~1200℃,并保温2h~6h,完成低温预烧结;c、再以不高于3℃/min~5℃/min的升温速率加热到1400℃~1600℃进行高温烧结处理,保温时间为3h~8h;d、最后烧结完成后随炉冷却,从而获得石墨烯增强氧化铝基陶瓷型芯。
本发明有益效果为:
本发明的一种机器人用石墨烯增强氧化铝基陶瓷型轴承,将具有优异力学性能及热性能的石墨烯材料引入氧化铝基陶瓷型芯材料体系,石墨烯材料提高了氧化铝基陶瓷型芯的高温性能及溶蚀性能、提高了叶片成品率及脱芯效率,解决了氧化铝陶瓷型芯脱除困难问题。石墨烯材料使氧化铝基陶瓷型芯的高温强度从10MPa提升到15MPa~30MPa,高温挠度从≤0.5mm进一步降低到≤0.3mm,气孔率从30%~50%提升到45%~55%。高温强度提升增强了陶瓷型芯的抗高温金属冲击能力,用于叶片浇注时断芯率降低30%;高温挠度的降低改善了陶瓷型芯的高温抗变形能力,用于叶片浇注时偏芯率降低30%;气孔率的提升使叶片的脱芯效率提高20%以上。本发明的一种机器人用石墨烯增强氧化铝基陶瓷型轴承适用于浇注条件苛刻、尺寸要求严格、内腔结构复杂的空心叶片使用。
具体实施方式
为能进一步了解本发明的内容、特点及功效,兹例举以下实施例详细说明如下。需要说明的是,本实施例是描述性的,不是限定性的,不能由此限定本发明的保护范围。
一种机器人用石墨烯增强氧化铝基陶瓷型轴承,陶瓷型芯材料的化学组成包括按照重量百分比分配的:氧化铝陶瓷粉90%~95%,氧化硅粉4.5%~8%,石墨烯粉0.5%~2%,增塑剂15%~24%。
本发明优选的,石墨烯粉为纳米级、亚微米级及微米级尺寸。
本发明优选的,氧化铝陶瓷粉为200目氧化铝陶瓷粉和325目氧化铝陶瓷粉的混合物。
本发明优选的,氧化硅粉为纳米氧化硅粉。
一种机器人用石墨烯增强氧化铝基陶瓷型轴承的制备方法,包括以下步骤:
(1)将氧化铝陶瓷粉、氧化硅粉、石墨烯粉按照的重量百分比使用三维混料机进行混合,制成混合均匀成分均一的陶瓷粉体。
(2)添加占陶瓷粉体质量15%~24%的增塑剂,先将增塑剂溶化后,再将陶瓷粉体逐步加入到增塑剂中,待陶瓷粉体全部加入后,继续搅拌10h~20h制得陶瓷型芯浆料。
(3)采用热压注成型方法制备陶瓷型芯,将在步骤(2)中获得的陶瓷型芯浆料装入压注设备中,在模具中获得所需的湿态陶瓷型芯,注射压力为2MPa~4MPa,并保压10s~30s;
(4)将在步骤(3)中获得的湿态陶瓷型芯在惰性气氛保护下进行烧结,采用的烧结工艺机制为:a、以1℃/min~2℃/min的升温速率加热至400℃~500℃,进行排蜡工艺;b、而后以2℃/min~3℃/min的升温速率加热1000℃~1200℃,并保温2h~6h,完成低温预烧结;c、再以不高于3℃/min~5℃/min的升温速率加热到1400℃~1600℃进行高温烧结处理,保温时间为3h~8h;d、最后烧结完成后随炉冷却,从而获得石墨烯增强氧化铝基陶瓷型芯。
另外,本发明优选的,增塑剂材料的化学组成按照质量百分比依次包括:石蜡93%~97%,蜂蜡1.5%~2%,聚乙烯1%~3%,改性石墨烯0.5%~2%。其作用效果为:提高了石蜡基增塑剂材料的适温性能及尺寸稳定性,压制陶瓷型芯成型率高,石墨烯在石蜡基增塑剂中均匀混合,以获得流动性好,成型率高的石墨烯增强石蜡基增塑剂材料。与常规石蜡基增塑剂材料相比,采用石墨烯增强石蜡基增塑剂材料制备的陶瓷型芯素胚收缩降低30%、素胚室温强度提高50%、素胚尺寸抗变形能力提高20%,成型率提高60%,陶瓷型芯素胚收缩可控制在0.1~0.3%,素胚室温强度可达10MPa以上,变形率低于10%,成型率高达90%以上。
另外,本发明优选的,改性石墨烯采用现有技术中的成熟产品。
为了更清楚地描述本发明的石墨烯增强氧化铝基陶瓷型芯及其制备方法,下面提供几种实施例:
实施例1
一种机器人用石墨烯增强氧化铝基陶瓷型轴承,采用包括下述原料制备:200目氧化铝粉45%,325目氧化铝粉45%,纳米氧化硅粉8%,亚微米级石墨烯粉2%。添加占陶瓷粉体质量15%的增塑剂。
陶瓷型芯的制备方法,包括:
(1)将氧化铝陶瓷粉、氧化硅粉及石墨烯粉使用三维混料机进行混合,制成混合均匀,成分均一的陶瓷粉体。
(2)添加占陶瓷粉体质量15%的增塑剂,将增塑剂溶化后,将陶瓷粉体逐步加入到增塑剂中,陶瓷粉体全部加入后,继续搅拌10h制得陶瓷型芯浆料。
(3)采用热压注成型方法制备陶瓷型芯,将在步骤(1)中获得的原料装入压注设备中,在模具中获得所需的湿态陶瓷型芯,注射压力为2MPa,并保压10s;
(4)将在步骤(3)中获得的湿态陶瓷型芯在惰性气氛保护下进行烧结,采用的烧结工艺机制为:首先以1℃/min的升温速率加热400℃,进行排蜡工艺;以2℃/min的升温速率加热1000℃,并保温2h,完成低温预烧结;接着以3℃/min的升温速率加热到1600℃进行高温烧结处理,保温时间为3h,烧结完成后随炉冷却,从而获得石墨烯增强氧化铝基陶瓷型芯。
采用本实施例制备的石墨烯增强氧化铝基陶瓷型芯高温强度为28.6MPa,高温挠度为 0.12mm,气孔率为46.2%。
实施例2
一种机器人用石墨烯增强氧化铝基陶瓷型轴承,采用包括下述原料制备:200目氧化铝粉 46%,325目氧化铝粉46%,纳米氧化硅粉6.5%,亚微米级石墨烯粉1.5%。添加占陶瓷粉体质量18%的增塑剂。
陶瓷型芯的制备方法,包括:
(1)将氧化铝陶瓷粉、氧化硅粉及石墨烯粉使用三维混料机进行混合,制成混合均匀,成分均一的陶瓷粉体。
(2)添加占陶瓷粉体质量18%的增塑剂,将增塑剂溶化后,将陶瓷粉体逐步加入到增塑剂中,陶瓷粉体全部加入后,继续搅拌15h制得陶瓷型芯浆料。
(3)采用热压注成型方法制备陶瓷型芯,将在步骤(1)中获得的原料装入压注设备中,在模具中获得所需的湿态陶瓷型芯,注射压力为2.5MPa,并保压180s。
(4)将在步骤(3)中获得的湿态陶瓷型芯在惰性气氛保护下进行烧结,采用的烧结工艺机制为:首先以1.2℃/min的升温速率加热450℃,进行排蜡工艺;以2.4℃/min的升温速率加热1100℃,并保温3h,完成低温预烧结;接着以3.2℃/min的升温速率加热到1550℃进行高温烧结处理,保温时间为4h,烧结完成后随炉冷却,从而获得石墨烯增强氧化铝基陶瓷型芯。
采用本实施例制备的石墨烯增强氧化铝基陶瓷型芯高温强度为28.6MPa,高温挠度为 0.12mm,气孔率为46.2%。
实施例3
一种机器人用石墨烯增强氧化铝基陶瓷型轴承,采用包括下述原料制备:200目氧化铝粉 47%,325目氧化铝粉46%,纳米氧化硅粉6%,亚微米级石墨烯粉1%。添加占陶瓷粉体质量19%的增塑剂。
陶瓷型芯的制备方法,包括:
(1)将氧化铝陶瓷粉、氧化硅粉及石墨烯粉使用三维混料机进行混合,制成混合均匀,成分均一的陶瓷粉体。
(2)添加占陶瓷粉体质量19%的增塑剂,将增塑剂溶化后,将陶瓷粉体逐步加入到增塑剂中,陶瓷粉体全部加入后,继续搅拌16h制得陶瓷型芯浆料。
(3)采用热压注成型方法制备陶瓷型芯,将在步骤(1)中获得的原料装入压注设备中,在模具中获得所需的湿态陶瓷型芯,注射压力为2.8MPa,并保压20s。
(4)将在步骤(3)中获得的湿态陶瓷型芯在惰性气氛保护下进行烧结,采用的烧结工艺机制为:首先以1.5℃/min的升温速率加热480℃,进行排蜡工艺,以2.5℃/min的升温速率加热1150℃,并保温3.5h,完成低温预烧结;以3.5℃/min的升温速率加热到1450℃进行高温烧结处理,保温时间为4.5h;烧结完成后随炉冷却,从而获得石墨烯增强氧化铝基陶瓷型芯。
采用本实施例制备的石墨烯增强氧化铝基陶瓷型芯高温强度为21.2MPa,高温挠度为 0.21mm,气孔率为52.1%。
实施例4
一种机器人用石墨烯增强氧化铝基陶瓷型轴承,采用包括下述原料制备:200目氧化铝粉 47%,325目氧化铝粉47%,纳米氧化硅粉5.2%,亚微米级石墨烯粉0.8%。添加占陶瓷粉体质量20%的增塑剂。
陶瓷型芯的制备方法,包括:
(1)将氧化铝陶瓷粉、氧化硅粉及石墨烯粉使用三维混料机进行混合,制成混合均匀,成分均一的陶瓷粉体。
(2)添加占陶瓷粉体质量20%的增塑剂,将增塑剂溶化后,将陶瓷粉体逐步加入到增塑剂中,陶瓷粉体全部加入后,继续搅拌18h制得陶瓷型芯浆料。
(3)采用热压注成型方法制备陶瓷型芯,将在步骤(1)中获得的原料装入压注设备中,在模具中获得所需的湿态陶瓷型芯,注射压力为3MPa,并保压28s。
(4)将在步骤(3)中获得的湿态陶瓷型芯在惰性气氛保护下进行烧结,采用的烧结工艺机制为:首先以1.6℃/min的升温速率加热485℃,进行排蜡工艺,以2.6℃/min的升温速率加热1185℃,并保温4.2h,完成低温预烧结;以4℃/min的升温速率加热到1400℃进行高温烧结处理,保温时间为5h;烧结完成后随炉冷却,从而获得石墨烯增强氧化铝基陶瓷型芯。
采用本实施例制备的石墨烯增强氧化铝基陶瓷型芯高温强度为21.2MPa,高温挠度为 0.21mm,气孔率为52.1%。
实施例5
一种机器人用石墨烯增强氧化铝基陶瓷型轴承,采用包括下述原料制备:200目氧化铝粉 47%,325目氧化铝粉48%,纳米氧化硅粉4.5%,亚微米级石墨烯粉0.5%。添加占陶瓷粉体质量24%的增塑剂。
陶瓷型芯的制备方法,包括:
(1)将氧化铝陶瓷粉、氧化硅粉及石墨烯粉使用三维混料机进行混合,制成混合均匀,成分均一的陶瓷粉体。
(2)添加占陶瓷粉体质量24%的增塑剂,将增塑剂溶化后,将陶瓷粉体逐步加入到增塑剂中,陶瓷粉体全部加入后,继续搅拌20h制得陶瓷型芯浆料。
(3)采用热压注成型方法制备陶瓷型芯,将在步骤(1)中获得的原料装入压注设备中,在模具中获得所需的湿态陶瓷型芯,注射压力为4MPa,并保压30s。
(4)将在步骤(3)中获得的湿态陶瓷型芯在惰性气氛保护下进行烧结,采用的烧结工艺机制为:首先以2℃/min的升温速率加热500℃,进行排蜡工艺,以3℃/min的升温速率加热1200℃,并保温6h,完成低温预烧结;接着以5℃/min的升温速率加热到1400℃进行高温烧结处理,保温时间为8h;烧结完成后随炉冷却,从而获得石墨烯增强氧化铝基陶瓷型芯。
采用该方法制备的石墨烯增强氧化铝基陶瓷型芯高温强度为15.2MPa,高温挠度为0.25 mm,气孔率为54.2%。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。
Figure BDA0001932815780000061
Figure BDA0001932815780000071

Claims (5)

1.一种机器人用石墨烯增强氧化铝基陶瓷型轴承,其特征在于:所述陶瓷型芯材料的化学组成包括按照重量百分比分配的:氧化铝陶瓷粉90%~95%,氧化硅粉4.5%~8%,石墨烯粉0.5%~2%,增塑剂15%~24%。
2.根据权利要求1所述的一种机器人用石墨烯增强氧化铝基陶瓷型轴承,其特征在于:所述石墨烯粉为纳米级、亚微米级及微米级尺寸。
3.根据权利要求1所述的一种机器人用石墨烯增强氧化铝基陶瓷型轴承,其特征在于:所述氧化铝陶瓷粉为280目氧化铝陶瓷粉和325目氧化铝陶瓷粉的混合物。
4.根据权利要求1所述的一种机器人用石墨烯增强氧化铝基陶瓷型轴承,其特征在于:所述氧化硅粉为纳米氧化硅粉。
5.一种如权利要求1所述的机器人用石墨烯增强氧化铝基陶瓷型轴承的制备方法,其特征在于:包括以下步骤:
(1)将氧化铝陶瓷粉、氧化硅粉、石墨烯粉按照所述的重量百分比使用三维混料机进行混合,制成混合均匀成分均一的陶瓷粉体;
(2)添加占陶瓷粉体质量15%~24%的增塑剂,先将增塑剂溶化后,再将陶瓷粉体逐步加入到增塑剂中,待陶瓷粉体全部加入后,继续搅拌10h~20h制得陶瓷型芯浆料;
(3)采用热压注成型方法制备陶瓷型芯,将在所述步骤(2)中获得的陶瓷型芯浆料装入压注设备中,在模具中获得所需的湿态陶瓷型芯,注射压力为2MPa~4MPa,并保压10s~30s;
(4)将在所述步骤(3)中获得的湿态陶瓷型芯在惰性气氛保护下进行烧结,采用的烧结工艺机制为:a、以1℃/min~2℃/min的升温速率加热至400℃~500℃,进行排蜡工艺;b、而后以2℃/min~3℃/min的升温速率加热1000℃~1200℃,并保温2h~6h,完成低温预烧结;c、再以不高于3℃/min~5℃/min的升温速率加热到1400℃~1600℃进行高温烧结处理,保温时间为3h~8h;d、最后烧结完成后随炉冷却,从而获得石墨烯增强氧化铝基陶瓷型芯。
CN201811650172.8A 2018-12-31 2018-12-31 一种机器人用石墨烯增强氧化铝基陶瓷型轴承 Pending CN111377716A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811650172.8A CN111377716A (zh) 2018-12-31 2018-12-31 一种机器人用石墨烯增强氧化铝基陶瓷型轴承

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811650172.8A CN111377716A (zh) 2018-12-31 2018-12-31 一种机器人用石墨烯增强氧化铝基陶瓷型轴承

Publications (1)

Publication Number Publication Date
CN111377716A true CN111377716A (zh) 2020-07-07

Family

ID=71216882

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811650172.8A Pending CN111377716A (zh) 2018-12-31 2018-12-31 一种机器人用石墨烯增强氧化铝基陶瓷型轴承

Country Status (1)

Country Link
CN (1) CN111377716A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112608136A (zh) * 2020-12-19 2021-04-06 西北工业大学 一种高气孔率陶瓷型芯的光固化3d打印制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112608136A (zh) * 2020-12-19 2021-04-06 西北工业大学 一种高气孔率陶瓷型芯的光固化3d打印制造方法

Similar Documents

Publication Publication Date Title
KR102249919B1 (ko) 열팽창 계수 조절이 가능한 실리카계 세라믹 코어의 제조방법
CN109879669B (zh) 一种具有高强度的高熵陶瓷复合材料及其制备方法和应用
CN102079653B (zh) 航空发动机叶片用硅基陶瓷型芯的制备方法
CN110590387A (zh) 一种无机纤维复合硅基陶瓷型芯及其制备方法
CN109467419A (zh) 一种石墨烯增强氧化铝基陶瓷型芯及其制备方法
CN108516803B (zh) 一种镁铝尖晶石增强氧化镁基泡沫陶瓷过滤器及其制备方法
CN104326766A (zh) 一种具有球形孔结构的多孔氮化硅陶瓷材料的制备方法
CN105127373B (zh) 一种双层壁空心叶片用空心陶瓷型芯的制备方法
CN109108224B (zh) 铌硅基合金叶片定向凝固熔模铸造用陶瓷型壳及制备方法
CN114853450B (zh) 一种光固化3d打印氧化铝基陶瓷型芯及其制备方法
CN112062587A (zh) 原位自生莫来石晶须增强的硅基陶瓷型芯制备方法
CN108299001B (zh) 一种硅基陶瓷型芯成型方法
CN112679213B (zh) 一种超多元高熵陶瓷及其制备方法和应用
CN108546093B (zh) 一种氧化铝短纤增强氧化镁基坩埚及其制备方法
CN111644573B (zh) 碳化硅增强硅基陶瓷型芯及其制备方法
CN107935628B (zh) 一种泡沫碳化硅陶瓷及其制备方法
CN112390633A (zh) 一种ZrB2纳米粉体增强氧化硅基陶瓷型芯及其制备方法
CN111704443A (zh) 一种中频炉用铝镁质捣打料及其制备方法
Zheng et al. Preparation of high-performance silica-based ceramic cores with B4C addition using selective laser sintering and SiO2–Al2O3 sol infiltration
CN111377716A (zh) 一种机器人用石墨烯增强氧化铝基陶瓷型轴承
CN101429045B (zh) 醋酸锆粘结氧化钇模壳及其制备方法
CN104072142A (zh) 一种氧化物结合SiC多孔陶瓷的制备方法
CN114249588A (zh) 重型燃机大尺寸定向空心叶片用氧化硅基陶瓷型芯及制备
CN106083005B (zh) 高孔隙率易脱除硅基陶瓷型芯制备方法
CN104844214A (zh) 致密化高强度碳化锆和碳化铪陶瓷材料及其低温制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200707

WD01 Invention patent application deemed withdrawn after publication