CN111369615A - 一种基于多任务卷积神经网络的细胞核中心点检测方法 - Google Patents
一种基于多任务卷积神经网络的细胞核中心点检测方法 Download PDFInfo
- Publication number
- CN111369615A CN111369615A CN202010106930.0A CN202010106930A CN111369615A CN 111369615 A CN111369615 A CN 111369615A CN 202010106930 A CN202010106930 A CN 202010106930A CN 111369615 A CN111369615 A CN 111369615A
- Authority
- CN
- China
- Prior art keywords
- model
- point
- types
- extreme point
- connected domain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 210000003855 cell nucleus Anatomy 0.000 title claims abstract description 27
- 238000001514 detection method Methods 0.000 title claims abstract description 19
- 238000013527 convolutional neural network Methods 0.000 title claims abstract description 7
- 230000011218 segmentation Effects 0.000 claims abstract description 33
- 238000012549 training Methods 0.000 claims abstract description 12
- 238000000605 extraction Methods 0.000 claims description 12
- 210000004027 cell Anatomy 0.000 claims description 11
- 238000002360 preparation method Methods 0.000 claims description 4
- 239000003086 colorant Substances 0.000 claims description 3
- 230000000877 morphologic effect Effects 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 8
- 210000004940 nucleus Anatomy 0.000 abstract description 8
- 238000003491 array Methods 0.000 abstract description 3
- 230000001575 pathological effect Effects 0.000 abstract description 3
- 238000011156 evaluation Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004195 computer-aided diagnosis Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003748 differential diagnosis Methods 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000012151 immunohistochemical method Methods 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
- G06T7/66—Analysis of geometric attributes of image moments or centre of gravity
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/136—Segmentation; Edge detection involving thresholding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10056—Microscopic image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20112—Image segmentation details
- G06T2207/20132—Image cropping
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30096—Tumor; Lesion
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Geometry (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Quality & Reliability (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010106930.0A CN111369615B (zh) | 2020-02-21 | 2020-02-21 | 一种基于多任务卷积神经网络的细胞核中心点检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010106930.0A CN111369615B (zh) | 2020-02-21 | 2020-02-21 | 一种基于多任务卷积神经网络的细胞核中心点检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111369615A true CN111369615A (zh) | 2020-07-03 |
CN111369615B CN111369615B (zh) | 2023-05-23 |
Family
ID=71206213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010106930.0A Active CN111369615B (zh) | 2020-02-21 | 2020-02-21 | 一种基于多任务卷积神经网络的细胞核中心点检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111369615B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112750106A (zh) * | 2020-12-31 | 2021-05-04 | 山东大学 | 一种基于非完备标记的深度学习的核染色细胞计数方法、计算机设备、存储介质 |
CN113192047A (zh) * | 2021-05-14 | 2021-07-30 | 杭州迪英加科技有限公司 | 一种基于深度学习的自动判读ki67病理切片的方法 |
US20220148189A1 (en) * | 2020-11-10 | 2022-05-12 | Nec Laboratories America, Inc. | Multi-domain semantic segmentation with label shifts |
CN114782341A (zh) * | 2022-04-12 | 2022-07-22 | 湖南开启时代电子信息技术有限公司 | 一种基于特征提取和图像处理的细胞培养生长检测方法 |
CN116402775A (zh) * | 2023-03-29 | 2023-07-07 | 浙江大学 | 一种基于多任务感知网络的细胞形变控制方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106529402A (zh) * | 2016-09-27 | 2017-03-22 | 中国科学院自动化研究所 | 基于多任务学习的卷积神经网络的人脸属性分析方法 |
CN108334860A (zh) * | 2018-03-01 | 2018-07-27 | 北京航空航天大学 | 细胞图像的处理方法和装置 |
CN108876736A (zh) * | 2018-06-04 | 2018-11-23 | 南京信息工程大学 | 一种基于fpga的图像阶梯效应消除方法 |
CN109493330A (zh) * | 2018-11-06 | 2019-03-19 | 电子科技大学 | 一种基于多任务学习的细胞核实例分割方法 |
US20190147215A1 (en) * | 2017-11-16 | 2019-05-16 | General Electric Company | System and method for single channel whole cell segmentation |
CN110276745A (zh) * | 2019-05-22 | 2019-09-24 | 南京航空航天大学 | 一种基于生成对抗网络的病理图像检测算法 |
-
2020
- 2020-02-21 CN CN202010106930.0A patent/CN111369615B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106529402A (zh) * | 2016-09-27 | 2017-03-22 | 中国科学院自动化研究所 | 基于多任务学习的卷积神经网络的人脸属性分析方法 |
US20190147215A1 (en) * | 2017-11-16 | 2019-05-16 | General Electric Company | System and method for single channel whole cell segmentation |
CN108334860A (zh) * | 2018-03-01 | 2018-07-27 | 北京航空航天大学 | 细胞图像的处理方法和装置 |
CN108876736A (zh) * | 2018-06-04 | 2018-11-23 | 南京信息工程大学 | 一种基于fpga的图像阶梯效应消除方法 |
CN109493330A (zh) * | 2018-11-06 | 2019-03-19 | 电子科技大学 | 一种基于多任务学习的细胞核实例分割方法 |
CN110276745A (zh) * | 2019-05-22 | 2019-09-24 | 南京航空航天大学 | 一种基于生成对抗网络的病理图像检测算法 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220148189A1 (en) * | 2020-11-10 | 2022-05-12 | Nec Laboratories America, Inc. | Multi-domain semantic segmentation with label shifts |
US12045992B2 (en) * | 2020-11-10 | 2024-07-23 | Nec Corporation | Multi-domain semantic segmentation with label shifts |
CN112750106A (zh) * | 2020-12-31 | 2021-05-04 | 山东大学 | 一种基于非完备标记的深度学习的核染色细胞计数方法、计算机设备、存储介质 |
CN113192047A (zh) * | 2021-05-14 | 2021-07-30 | 杭州迪英加科技有限公司 | 一种基于深度学习的自动判读ki67病理切片的方法 |
CN114782341A (zh) * | 2022-04-12 | 2022-07-22 | 湖南开启时代电子信息技术有限公司 | 一种基于特征提取和图像处理的细胞培养生长检测方法 |
CN116402775A (zh) * | 2023-03-29 | 2023-07-07 | 浙江大学 | 一种基于多任务感知网络的细胞形变控制方法 |
CN116402775B (zh) * | 2023-03-29 | 2023-12-22 | 浙江大学 | 一种基于多任务感知网络的细胞形变控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111369615B (zh) | 2023-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111369615A (zh) | 一种基于多任务卷积神经网络的细胞核中心点检测方法 | |
CN109145939B (zh) | 一种小目标敏感的双通道卷积神经网络语义分割方法 | |
CN110472616B (zh) | 图像识别方法、装置、计算机设备及存储介质 | |
WO2021203795A1 (zh) | 一种基于显著性密集连接扩张卷积网络的胰腺ct自动分割方法 | |
CN108806792B (zh) | 深度学习面诊系统 | |
CN108305249A (zh) | 基于深度学习的全尺度病理切片的快速诊断和评分方法 | |
CN109670510A (zh) | 一种基于深度学习的胃镜活检病理数据筛查系统和方法 | |
CN111968138B (zh) | 基于3d动态边缘不敏感性损失函数的医学图像分割方法 | |
Tang et al. | Segnet-based gland segmentation from colon cancer histology images | |
CN111680706A (zh) | 一种基于编码和解码结构的双通道输出轮廓检测方法 | |
CN108765430A (zh) | 一种基于心脏ct图像和机器学习的心脏左腔区域分割方法 | |
CN110991349B (zh) | 一种基于度量学习的轻量级车辆属性识别方法 | |
CN111476266A (zh) | 一种基于迁移学习的非平衡类别白细胞分类方法 | |
CN109558902A (zh) | 一种快速目标检测方法 | |
CN108615229B (zh) | 基于曲率点聚类及决策树的碰撞检测优化方法 | |
CN109948467A (zh) | 人脸识别的方法、装置、计算机设备和存储介质 | |
CN111161278A (zh) | 一种基于深层网络聚合的眼底图像病灶分割方法 | |
Liu et al. | Gastric pathology image recognition based on deep residual networks | |
CN109344845A (zh) | 一种基于Triplet深度神经网络结构的特征匹配方法 | |
CN108288265A (zh) | 一种面向hcc病理图像细胞核的分割与分类方法 | |
Yuan et al. | Neighborloss: a loss function considering spatial correlation for semantic segmentation of remote sensing image | |
WO2022247573A1 (zh) | 模型训练方法、图像处理方法、装置、设备及存储介质 | |
CN111709911B (zh) | 一种基于神经网络的卵巢卵泡自动计数的方法 | |
CN107977618B (zh) | 一种基于双层级联神经网络的人脸对齐方法 | |
CN111127532B (zh) | 基于深度学习特征光流的医学图像形变配准方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230912 Address after: 100085 402, four floor 7, five street, Haidian District, Beijing. Patentee after: BEIJING UNIC TECH CO.,LTD. Address before: 215000 west of No.27 factory building, No.2 Taishan Road, high tech Zone, Suzhou City, Jiangsu Province Patentee before: SUZHOU YOUNA MEDICAL EQUIPMENT Co.,Ltd. |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240902 Address after: Building 22, Block B, Wuhan High tech Medical Equipment Park, No. 818 Gaoxin Avenue, Donghu New Technology Development Zone, Wuhan City, Hubei Province 430000, China Patentee after: Wuhan Youyun Intelligent Medical Technology Co.,Ltd. Country or region after: China Address before: 100085 402, four floor 7, five street, Haidian District, Beijing. Patentee before: BEIJING UNIC TECH CO.,LTD. Country or region before: China |