CN111361700A - 基于机器视觉的船舶空重载识别方法 - Google Patents

基于机器视觉的船舶空重载识别方法 Download PDF

Info

Publication number
CN111361700A
CN111361700A CN202010207430.6A CN202010207430A CN111361700A CN 111361700 A CN111361700 A CN 111361700A CN 202010207430 A CN202010207430 A CN 202010207430A CN 111361700 A CN111361700 A CN 111361700A
Authority
CN
China
Prior art keywords
ship
water gauge
waterline
image
picture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010207430.6A
Other languages
English (en)
Inventor
高君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Changmiao Technology Co ltd
Original Assignee
Nanjing Changmiao Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Changmiao Technology Co ltd filed Critical Nanjing Changmiao Technology Co ltd
Priority to CN202010207430.6A priority Critical patent/CN111361700A/zh
Publication of CN111361700A publication Critical patent/CN111361700A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/12Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude for indicating draught or load

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了基于机器视觉的船舶空重载识别方法,涉及图像处理技术领域;为了降低测量工作复杂性的问题;具体包括如下步骤:远程控制水上无人机在水面上运动,采集船舶表面的水尺视频数据;对采集的水尺视频数据进行预处理,截取水尺感兴趣区域;根据截取水尺感兴趣区域,判定吃水线水平方向上的预测区间。本发明可以近距离靠近船舶,能够从多个角度拍摄到船舶水尺的高清视频数据,实现基于高清数字摄影的船舶拍摄,进而实现基于机器视觉的船舶吃水线区域快速、准确识别,降低读取吃水线的设备成本,可以在复杂的图像环境下快速、准确识别出水线区域,快速搜索到船舶水尺部分的相关区域,准确、实时地对进港船只进行空重载识别。

Description

基于机器视觉的船舶空重载识别方法
技术领域
本发明涉及图像处理技术领域,尤其涉及基于机器视觉的船舶空重载识别方法。
背景技术
船舶作为交通运输工具的一种,在运输业中发挥着重要的作用,进出口货物重量鉴定是港口的重要工作之一,船舶载重计算的基础是船舶吃水的测量,船舶吃水测量的精度决定了船舶载货量计算的准确性,同时计重结果可作为商业纠纷,例如商品的交接结算,处理索赔,港口使用费和通关计税等的依据,所以船舶水尺测量的准确性对保护托运人、发货人和收货人的利益都具有重要意义,目前主要的鉴定方法是水尺计重,吃水线的检测结果直接影响货物计重的准确性,关乎商品的交接结算,纠纷索赔,港口计价费和关税计算等问题,因此,如何快速准确测量吃水线得到越来越多的重视,目前通常采用压力传感器检测、激光水位检测以及图像检测来代替人工测量方法,实现轮船吃水线的估算,提高港口管理的实时性和计重准确性,但以上三种方法均存在一定的局限性,随着图像处理技术的发展和日益完善,通过图像处理来自动测量船舶水尺刻度已经成为了可能,通过分析水尺的视频图像,船舶水尺上的刻度字可以由计算机自动识别、读取结果,这样既能克服前面所介绍的各种测量方法引起的一系列问题,又可以完整地记录整个观测阶段的水尺刻度和吃水线位置,使后续的数据处理成为可能,同时,拍摄到的吃水线照片可以作为测量记录的证据保存,为今后复核查对、解决纠纷提供依据,并且由于拍摄设备性能的不断完善,设备的分辨率能够达到很高的精度要求,拍摄的图片清晰度非常高,使吃水线的求取能够更加精确,所以利用图像处理技术对船舶水尺的自动识别,已经受到越来越多人的关注。
经检索,中国专利申请号为CN201210509998.9的专利,公开了一种基于机器视觉的便携式船舶水尺自动检测和识别方法,以水上环境下船舶水尺视频数据为主要研究对象,以机器视觉和图像处理理论作为主要手段,检测并识别船舶水尺刻度,并对视频连续帧的检测结果进行统计分析,最终得出船舶吃水值。上述专利中的基于机器视觉的便携式船舶水尺自动检测和识别方法存在以下不足:对船舶水线的拍摄比较复杂,需要反复搬运设备,增加测量工作复杂性,降低效率。
发明内容
本发明的目的是为了解决现有技术中存在的缺点,而提出的基于机器视觉的船舶空重载识别方法。
为了实现上述目的,本发明采用了如下技术方案:
基于机器视觉的船舶空重载识别方法,包括如下步骤:
S1:远程控制水上无人机在水面上运动,采集船舶表面的水尺视频数据;
S2:对采集的水尺视频数据进行预处理,截取水尺感兴趣区域;
S3:根据截取水尺感兴趣区域,判定吃水线水平方向上的预测区间;
S4:得到的水平方向上预测区间,计算曲线斜率得到吃水线竖直方向上的预测区间;
S5:根据得到的水平方向上预测区间和竖直方向上预测区间,识别出船舶吃水线及相应字符具体位置,得出船舶当前的空重载量。
优选地:所述S1中采集船舶表面的水尺视频数据具体包括船舶的船首、船尾、两侧船舷均设有吃水刻度线,且水尺为白色标记,搭载有摄像头的水上无人机靠近船首、船尾和两侧船舷拍摄。
优选地:所述S1中水上无人机包括动力推进模块、摄像模块和无线通信模块,远程控制端控制水上无人机运动和采集水尺视频数据。
优选地:所述S1中水上无人机于离船体表面8米范围内,船舶吃水线处采集船舶表面的水尺视频数据,对采集的视频文件进行保存,对拍摄的视频图像按照固定帧数截取得到处理图片。
优选地:所述S2中对采集的水尺视频数据进行预处理,包括图像去噪、高斯平滑、直方图均衡化和增强图像对比度。
优选地:所述S2中截取水尺感兴趣区域包括如下步骤:
S11:将图片放缩到规定的输入尺寸(960,680),长宽小于规定尺寸则进行像素值为128的像素填充;
S12:阈值化处理,将图片变为二值图片;
S13:提取二值图片轮廓信息,提取图片上所有连通域的轮廓,对S12得到的二值图片进行处理,通过处理后的二值图片进行颜色聚类,颜色聚类后的图片进行竖直方向上的投影;
S14:对图像在竖直方向上进行直方图投影,在投影图上进行滑动窗口搜索。
优选地:所述S12中阈值化处理包括将图片变为二值图片,包括如下步骤:
S21:对采集的船舶水尺图像进行灰度化处理,将图片输入到双边滤波器中,使得保留图片内部边缘并且降低噪声,输出像素的值依赖于邻域像素值的加权值组合:
Figure BDA0002421622110000041
Figure BDA0002421622110000042
S22:基于滤波降噪后的图像,根据局部邻域内像素值确定阈值,利用自适应阈值处理得到二值图片。
优选地:所述S3中判定吃水线水平方向上的预测区间,包括如下步骤:
S31:在S12中得到的二值图片上进行查找轮廓的操作,得到整张图片中所有轮廓及其坐标位置;
S32:将整张图片的宽度划分为k个区间:len=width/k;
S33:根据S31得到的轮廓所在坐标位置,以及划分区间,将S31得到的轮廓所在坐标位置划归到对应的区间,记第n个区间内包含的轮廓数为Cn;
S34:从图片左侧开始筛选包含轮廓最大的区间,但要求轮廓数多于50个,并且满足和上一区间轮廓数、下一区间轮廓数相加都不大于300个,则在水平方向上认为该区间为水线范围:Cpmax=max{Cp};
S35:拥有符合要求的最大轮廓数Cpmax所在的区间len(p-1,p)被认定为水平方向上的水线范围,将此水平方向上的水线范围作为水平方向上预测区间。
优选地:所述S14中滑动窗口搜索包括如下步骤:
S41:确定滑动搜索框的大小,滑动框大小与检测图片中数字大小相适应,确保滑动框的宽度能比水尺读数部分如包括数字、单位的最大宽度大一些;
S42:确定滑动搜索框的起始点;
S43:确定滑动搜索框的搜索策略,水尺读数区域的像素聚集在某个区域,具有一定的连续性;
S44:确定滑动搜索的终止条件;
S45:根据滑动框滑动区域,截取感兴趣的水尺读数区域。
本发明的有益效果为:可以近距离靠近船舶,能够从多个角度拍摄到船舶水尺的高清视频数据,实现基于高清数字摄影的船舶拍摄,进而实现基于机器视觉的船舶吃水线区域快速、准确识别,水上无人机采集识别可以避免安装压力传感器、激光水位检测等设备,降低读取吃水线的设备成本,具有良好的可操作性,可以根据船舶水尺字符以及水线作为标志物实现吃水线的精确定位,有效克服港口环境复杂场景对水线定位的影响,可以在复杂的图像环境下快速、准确识别出水线区域,快速搜索到船舶水尺部分的相关区域,准确、实时地对进港船只进行空重载识别,解决了人工读数低效、不准确,依赖高精度测量仪器成本高、维护困难的问题。
附图说明
图1为本发明提出的基于机器视觉的船舶空重载识别方法的流程结构示意图;
图2为本发明提出的基于机器视觉的船舶空重载识别方法的对采集的水尺视频数据进行预处理流程结构示意图;
图3为本发明提出的基于机器视觉的船舶空重载识别方法的截取水尺感兴趣区域流程结构示意图。
具体实施方式
下面结合具体实施方式对本专利的技术方案作进一步详细地说明。
下面详细描述本专利的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本专利,而不能理解为对本专利的限制。
在本专利的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本专利和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本专利的限制。
在本专利的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“设置”应做广义理解,例如,可以是固定相连、设置,也可以是可拆卸连接、设置,或一体地连接、设置。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本专利中的具体含义。
实施例1:
基于机器视觉的船舶空重载识别方法,如图1-3所示,包括如下步骤:
S1:远程控制水上无人机在水面上运动,采集船舶表面的水尺视频数据;
S2:对采集的水尺视频数据进行预处理,截取水尺感兴趣区域;
S3:根据截取水尺感兴趣区域,判定吃水线水平方向上的预测区间;
S4:得到的水平方向上预测区间,计算曲线斜率得到吃水线竖直方向上的预测区间;
S5:根据得到的水平方向上预测区间和竖直方向上预测区间,识别出船舶吃水线及相应字符具体位置,得出船舶当前的空重载量。
所述S1中采集船舶表面的水尺视频数据具体包括船舶的船首、船尾、两侧船舷均设有吃水刻度线,且水尺为白色标记,搭载有摄像头的水上无人机靠近船首、船尾和两侧船舷拍摄。
所述S1中水上无人机包括动力推进模块、摄像模块和无线通信模块,远程控制端控制水上无人机运动和采集水尺视频数据。
所述S2中对采集的水尺视频数据进行预处理,包括图像去噪、高斯平滑、直方图均衡化和增强图像对比度。
所述S2中截取水尺感兴趣区域包括如下步骤:
S11:将图片放缩到规定的输入尺寸(960,680),长宽小于规定尺寸则进行像素值为128的像素填充;
S12:阈值化处理,将图片变为二值图片;
S13:提取二值图片轮廓信息,提取图片上所有连通域的轮廓,对S12得到的二值图片进行处理,通过处理后的二值图片进行颜色聚类,颜色聚类后的图片进行竖直方向上的投影。
所述S12中阈值化处理包括将图片变为二值图片,包括如下步骤:
S21:对采集的船舶水尺图像进行灰度化处理,将图片输入到双边滤波器中,使得保留图片内部边缘并且降低噪声,输出像素的值依赖于邻域像素值的加权值组合:
Figure BDA0002421622110000091
Figure BDA0002421622110000092
S22:基于滤波降噪后的图像,根据局部邻域内像素值确定阈值,利用自适应阈值理得到二值图片。
其中,ID(i,j)表示横坐标为i,纵坐标为j的像素点降噪后的值,k,l表示以(i,j)为中心的邻域区域,I(i,j)和I(k,l)分别表示像素点(i,j)和(k,l)的初始值,w(i,j,k,l)表示加权系数,σd和σr表示平滑参数。
所述S3中判定吃水线水平方向上的预测区间,包括如下步骤:
S31:在S12中得到的二值图片上进行查找轮廓的操作,得到整张图片中所有轮廓及其坐标位置;
S32:将整张图片的宽度划分为k个区间:len=width/k;
S33:根据S31得到的轮廓所在坐标位置,以及划分区间,将S31得到的轮廓所在坐标位置划归到对应的区间,记第n个区间内包含的轮廓数为Cn;
S34:从图片左侧开始筛选包含轮廓最大的区间,但要求轮廓数多于50个,并且满足和上一区间轮廓数、下一区间轮廓数相加都不大于300个,则在水平方向上认为该区间为水线范围:Cpmax=max{Cp},p=1,2,…,k;Cp≥50;s.t.Cp+Cp-1≤300;Cp+Cp+1≤300;
S35:拥有符合要求的最大轮廓数Cpmax所在的区间len(p-1,p)被认定为水平方向上的水线范围,将此水平方向上的水线范围作为水平方向上预测区间。
其中,width表示整张图片的宽度,len表示所划的一个区间的宽度,故第n个区间的宽度范围表示为len(n-1,n)。
所述S4中吃水线竖直方向上的预测区间,包括如下步骤:
S51:根据得到的水平方向上预测区间将二值图片裁剪至该范围,将RGB图像转换为Lab色彩空间;
S52:基于获得的Lab色彩空间图,采用聚类方法,将图像颜色分为两类,确定分成的簇数为2,迭代次数为R,从样本空间数据集上m个对象Xo中,随机选取2个点作为初始聚类中心Cq(r),其中,o=1,2,3,…,m,q=1,2,r=1,2,3,…,R;
S53:计算样本空间中各样本到聚类中心的相似度距离D(Xo,Cq(r)),将对象划分到距离聚类中心最小的类中,满足D(Xo,Cq(r))=||Xo-Cq(r)||2;
S54:分别计算新生成的各个类Wq中所有对象的均值,得到2个新的聚类中心:
Figure BDA0002421622110000101
其中,Cq(r+1)表示新生成的聚类中心,表示聚类q中像素点的值,m(q)表示聚类q中包含像素点的个数;
S55:规定聚类准则目标函数值J为:
Figure BDA0002421622110000111
经过多次迭代,若目标函数在最小化过程中前后变化小于某一设定值ε时,说明聚类准则函数已经收敛,就停止迭代;否则返回S53,继续迭代:|J(r+1)-J(r)|<ε
S56:经聚类处理得到的图片进行竖直方向上的投影,根据投影曲线,计算各点斜率,得到变化率最大的竖直方向坐标,同时要求坐标不得位于图像上端1/4,否则无法获得较为完整的水线字符;
S57:得到的投影曲线上变化率最大的竖直方向坐标,向上截取图像竖直长度的1/4,向下截取图像竖直长度的1/10,从而得到竖直方向上的水线范围,将此竖直方向上的水线范围作为竖直方向上预测区间。
实施例2:
基于机器视觉的船舶空重载识别方法,如图1-3所示,包括如下步骤:
S1:远程控制水上无人机在水面上运动,采集船舶表面的水尺视频数据;
S2:对采集的水尺视频数据进行预处理,截取水尺感兴趣区域;
S3:根据截取水尺感兴趣区域,判定吃水线水平方向上的预测区间;
S4:得到的水平方向上预测区间,计算曲线斜率得到吃水线竖直方向上的预测区间;
S5:根据得到的水平方向上预测区间和竖直方向上预测区间,识别出船舶吃水线及相应字符具体位置,得出船舶当前的空重载量。
所述S1中采集船舶表面的水尺视频数据具体包括船舶的船首、船尾、两侧船舷均设有吃水刻度线,且水尺为白色标记,搭载有摄像头的水上无人机靠近船首、船尾和两侧船舷拍摄。
所述S1中水上无人机包括动力推进模块、摄像模块和无线通信模块,远程控制端控制水上无人机运动和采集水尺视频数据。
所述S1中水上无人机于离船体表面8米范围内,船舶吃水线处采集船舶表面的水尺视频数据,对采集的视频文件进行保存,对拍摄的视频图像按照固定帧数截取得到处理图片。
所述S2中对采集的水尺视频数据进行预处理,包括图像去噪、高斯平滑、直方图均衡化和增强图像对比度。
所述S2中截取水尺感兴趣区域包括如下步骤:
S11:将图片放缩到规定的输入尺寸(960,680),长宽小于规定尺寸则进行像素值为128的像素填充;
S12:阈值化处理,将图片变为二值图片;
S13:提取二值图片轮廓信息,提取图片上所有连通域的轮廓,对S12得到的二值图片进行处理,通过处理后的二值图片进行颜色聚类,颜色聚类后的图片进行竖直方向上的投影;
S14:对图像在竖直方向上进行直方图投影,在投影图上进行滑动窗口搜索。
所述S12中阈值化处理包括将图片变为二值图片,包括如下步骤:
S21:对采集的船舶水尺图像进行灰度化处理,将图片输入到双边滤波器中,使得保留图片内部边缘并且降低噪声,输出像素的值依赖于邻域像素值的加权值组合:
Figure BDA0002421622110000131
Figure BDA0002421622110000132
S22:基于滤波降噪后的图像,根据局部邻域内像素值确定阈值,利用自适应阈值处理得到二值图片。
其中,ID(i,j)表示横坐标为i,纵坐标为j的像素点降噪后的值,k,l表示以(i,j)为中心的邻域区域,I(i,j)和I(k,l)分别表示像素点(i,j)和(k,l)的初始值,w(i,j,k,l)表示加权系数,σd和σr表示平滑参数。
所述S3中判定吃水线水平方向上的预测区间,包括如下步骤:
S31:在S12中得到的二值图片上进行查找轮廓的操作,得到整张图片中所有轮廓及其坐标位置;
S32:将整张图片的宽度划分为k个区间:len=width/k;
S33:根据S31得到的轮廓所在坐标位置,以及划分区间,将S31得到的轮廓所在坐标位置划归到对应的区间,记第n个区间内包含的轮廓数为Cn;
S34:从图片左侧开始筛选包含轮廓最大的区间,但要求轮廓数多于50个,并且满足和上一区间轮廓数、下一区间轮廓数相加都不大于300个,则在水平方向上认为该区间为水线范围:Cpmax=max{Cp},p=1,2,…,k;Cp≥50;s.t.Cp+Cp-1≤300;Cp+Cp+1≤300;
S35:拥有符合要求的最大轮廓数Cpmax所在的区间len(p-1,p)被认定为水平方向上的水线范围,将此水平方向上的水线范围作为水平方向上预测区间。
其中,width表示整张图片的宽度,len表示所划的一个区间的宽度,故第n个区间的宽度范围表示为len(n-1,n)。
所述S14中滑动窗口搜索包括如下步骤:
S41:确定滑动搜索框的大小,滑动框大小与检测图片中数字大小相适应,确保滑动框的宽度能比水尺读数部分如包括数字、单位的最大宽度大一些;
S42:确定滑动搜索框的起始点;
S43:确定滑动搜索框的搜索策略,水尺读数区域的像素聚集在某个区域,具有一定的连续性,用滑动搜索框进行滑动搜索时,把当前滑动框内所有像素的x轴坐标均值作为下一次滑动搜索框搜索的起始点,每次滑动框移动的距离不应超过滑动搜索框的这样可以保证不因滑动搜索框移动过快遗漏一部分像素;
S44:确定滑动搜索的终止条件,根据窗口内像素值为255的像素个数是否大于设定的阈值,从而确定该窗口是否为水尺读数区域,即滑动搜索的终止条件;当像素数少于这个阈值时,不再是水尺读数的有效区域,停止搜索;
S45:根据滑动框滑动区域,截取感兴趣的水尺读数区域。
所述S4中吃水线竖直方向上的预测区间,包括如下步骤:
S51:根据得到的水平方向上预测区间将二值图片裁剪至该范围,将RGB图像转换为Lab色彩空间;
S52:基于获得的Lab色彩空间图,采用聚类方法,将图像颜色分为两类,确定分成的簇数为2,迭代次数为R,从样本空间数据集上m个对象Xo中,随机选取2个点作为初始聚类中心Cq(r),其中,o=1,2,3,…,m,q=1,2,r=1,2,3,…,R;
S53:计算样本空间中各样本到聚类中心的相似度距离D(Xo,Cq(r)),将对象划分到距离聚类中心最小的类中,满足D(Xo,Cq(r))=||Xo-Cq(r)||2;
S54:分别计算新生成的各个类Wq中所有对象的均值,得到2个新的聚类中心:
Figure BDA0002421622110000161
其中,Cq(r+1)表示新生成的聚类中心,表示聚类q中像素点的值,m(q)表示聚类q中包含像素点的个数;
S55:规定聚类准则目标函数值J为:
Figure BDA0002421622110000162
经过多次迭代,若目标函数在最小化过程中前后变化小于某一设定值ε时,说明聚类准则函数已经收敛,就停止迭代;否则返回S53,继续迭代:|J(r+1)-J(r)|<ε
S56:经聚类处理得到的图片进行竖直方向上的投影,根据投影曲线,计算各点斜率,得到变化率最大的竖直方向坐标,同时要求坐标不得位于图像上端1/4,否则无法获得较为完整的水线字符;
S57:得到的投影曲线上变化率最大的竖直方向坐标,向上截取图像竖直长度的1/4,向下截取图像竖直长度的1/10,从而得到竖直方向上的水线范围,将此竖直方向上的水线范围作为竖直方向上预测区间。
本实施例在使用时,可以近距离靠近船舶,能够从多个角度拍摄到船舶水尺的高清视频数据,实现基于高清数字摄影的船舶拍摄,进而实现基于机器视觉的船舶吃水线区域快速、准确识别,水上无人机采集识别可以避免安装压力传感器、激光水位检测等设备,显著降低读取吃水线的设备成本,具有良好的可操作性,可以根据船舶水尺字符以及水线作为标志物实现吃水线的精确定位,有效克服港口环境复杂场景对水线定位的影响,计算复杂度低,能满足港口吃水线读取的快速性、准确性要求,可以在复杂的图像环境下快速、准确识别出水线区域,可以快速搜索到船舶水尺部分的相关区域,准确、实时地对进港船只进行空重载识别,解决了人工读数低效、不准确,依赖高精度测量仪器成本高、维护困难的问题。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (9)

1.基于机器视觉的船舶空重载识别方法,其特征在于,包括如下步骤:
S1:远程控制水上无人机在水面上运动,采集船舶表面的水尺视频数据;
S2:对采集的水尺视频数据进行预处理,截取水尺感兴趣区域;
S3:根据截取水尺感兴趣区域,判定吃水线水平方向上的预测区间;
S4:得到的水平方向上预测区间,计算曲线斜率得到吃水线竖直方向上的预测区间;
S5:根据得到的水平方向上预测区间和竖直方向上预测区间,识别出船舶吃水线及相应字符具体位置,得出船舶当前的空重载量。
2.根据权利要求1所述的基于机器视觉的船舶空重载识别方法,其特征在于,所述S1中采集船舶表面的水尺视频数据具体包括船舶的船首、船尾、两侧船舷均设有吃水刻度线,且水尺为白色标记,搭载有摄像头的水上无人机靠近船首、船尾和两侧船舷拍摄。
3.根据权利要求2所述的基于机器视觉的船舶空重载识别方法,其特征在于,所述S1中水上无人机包括动力推进模块、摄像模块和无线通信模块,远程控制端控制水上无人机运动和采集水尺视频数据。
4.根据权利要求3所述的基于机器视觉的船舶空重载识别方法,其特征在于,所述S1中水上无人机于离船体表面8米范围内,船舶吃水线处采集船舶表面的水尺视频数据,对采集的视频文件进行保存,对拍摄的视频图像按照固定帧数截取得到处理图片。
5.根据权利要求1所述的基于机器视觉的船舶空重载识别方法,其特征在于,所述S2中对采集的水尺视频数据进行预处理,包括图像去噪、高斯平滑、直方图均衡化和增强图像对比度。
6.根据权利要求5所述的基于机器视觉的船舶空重载识别方法,其特征在于,所述S2中截取水尺感兴趣区域包括如下步骤:
S11:将图片放缩到规定的输入尺寸(960,680),长宽小于规定尺寸则进行像素值为128的像素填充;
S12:阈值化处理,将图片变为二值图片;
S13:提取二值图片轮廓信息,提取图片上所有连通域的轮廓,对S12得到的二值图片进行处理,通过处理后的二值图片进行颜色聚类,颜色聚类后的图片进行竖直方向上的投影;
S14:对图像在竖直方向上进行直方图投影,在投影图上进行滑动窗口搜索。
7.根据权利要求6所述的基于机器视觉的船舶空重载识别方法,其特征在于,所述S12中阈值化处理包括将图片变为二值图片,包括如下步骤:
S21:对采集的船舶水尺图像进行灰度化处理,将图片输入到双边滤波器中,使得保留图片内部边缘并且降低噪声,输出像素的值依赖于邻域像素值的加权值组合:
Figure FDA0002421622100000031
Figure FDA0002421622100000032
S22:基于滤波降噪后的图像,根据局部邻域内像素值确定阈值,利用自适应阈值处理得到二值图片。
8.根据权利要求1所述的基于机器视觉的船舶空重载识别方法,其特征在于,所述S3中判定吃水线水平方向上的预测区间,包括如下步骤:
S31:在S12中得到的二值图片上进行查找轮廓的操作,得到整张图片中所有轮廓及其坐标位置;
S32:将整张图片的宽度划分为k个区间:len=width/k;
S33:根据S31得到的轮廓所在坐标位置,以及划分区间,将S31得到的轮廓所在坐标位置划归到对应的区间,记第n个区间内包含的轮廓数为Cn;
S34:从图片左侧开始筛选包含轮廓最大的区间,但要求轮廓数多于50个,并且满足和上一区间轮廓数、下一区间轮廓数相加都不大于300个,则在水平方向上认为该区间为水线范围:Cpmax=max{Cp};
S35:拥有符合要求的最大轮廓数Cpmax所在的区间len(p-1,p)被认定为水平方向上的水线范围,将此水平方向上的水线范围作为水平方向上预测区间。
9.根据权利要求7所述的基于机器视觉的船舶空重载识别方法,其特征在于,所述S14中滑动窗口搜索包括如下步骤:
S41:确定滑动搜索框的大小,滑动框大小与检测图片中数字大小相适应,确保滑动框的宽度能比水尺读数部分如包括数字、单位的最大宽度大一些;
S42:确定滑动搜索框的起始点;
S43:确定滑动搜索框的搜索策略,水尺读数区域的像素聚集在某个区域,具有一定的连续性;
S44:确定滑动搜索的终止条件;
S45:根据滑动框滑动区域,截取感兴趣的水尺读数区域。
CN202010207430.6A 2020-03-23 2020-03-23 基于机器视觉的船舶空重载识别方法 Pending CN111361700A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010207430.6A CN111361700A (zh) 2020-03-23 2020-03-23 基于机器视觉的船舶空重载识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010207430.6A CN111361700A (zh) 2020-03-23 2020-03-23 基于机器视觉的船舶空重载识别方法

Publications (1)

Publication Number Publication Date
CN111361700A true CN111361700A (zh) 2020-07-03

Family

ID=71200731

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010207430.6A Pending CN111361700A (zh) 2020-03-23 2020-03-23 基于机器视觉的船舶空重载识别方法

Country Status (1)

Country Link
CN (1) CN111361700A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111797777A (zh) * 2020-07-07 2020-10-20 南京大学 基于时空语义特征的手语识别系统及方法
CN111986117A (zh) * 2020-08-31 2020-11-24 南京大学 一种算术作业批改系统及方法
CN112124511A (zh) * 2020-10-09 2020-12-25 武汉理工大学 一种港口内船舶首尾吃水线测量装置及方法
CN113256702A (zh) * 2021-07-12 2021-08-13 海口鑫晟科技有限公司 基于无人机的船舶净空高度检测方法、系统、设备及介质
CN115165027A (zh) * 2022-09-07 2022-10-11 广东广宇科技发展有限公司 基于无人机的水位尺监测方法、系统、电子设备、介质
CN116303523A (zh) * 2022-11-30 2023-06-23 杭州数聚链科技有限公司 一种货船自动识别采样方法及系统
CN116338675A (zh) * 2023-05-19 2023-06-27 中国人民解放军海军工程大学 基于雷达、光电的舰炮对海射击脱靶量测量系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102975826A (zh) * 2012-12-03 2013-03-20 上海海事大学 基于机器视觉的便携式船舶水尺自动检测和识别方法
KR20150031510A (ko) * 2013-09-16 2015-03-25 현대중공업 주식회사 선박의 흘수 측정시스템
CN105046263A (zh) * 2015-06-30 2015-11-11 浙江海洋学院 一种基于机器视觉的水尺自动检测系统
CN109711353A (zh) * 2018-12-28 2019-05-03 中国矿业大学 一种基于机器视觉的船舶吃水线区域识别方法
CN110619328A (zh) * 2019-08-28 2019-12-27 南京理工大学 基于图像处理和深度学习的船舶水尺读数智能识别方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102975826A (zh) * 2012-12-03 2013-03-20 上海海事大学 基于机器视觉的便携式船舶水尺自动检测和识别方法
KR20150031510A (ko) * 2013-09-16 2015-03-25 현대중공업 주식회사 선박의 흘수 측정시스템
CN105046263A (zh) * 2015-06-30 2015-11-11 浙江海洋学院 一种基于机器视觉的水尺自动检测系统
CN109711353A (zh) * 2018-12-28 2019-05-03 中国矿业大学 一种基于机器视觉的船舶吃水线区域识别方法
CN110619328A (zh) * 2019-08-28 2019-12-27 南京理工大学 基于图像处理和深度学习的船舶水尺读数智能识别方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111797777A (zh) * 2020-07-07 2020-10-20 南京大学 基于时空语义特征的手语识别系统及方法
CN111797777B (zh) * 2020-07-07 2023-10-17 南京大学 基于时空语义特征的手语识别系统及方法
CN111986117A (zh) * 2020-08-31 2020-11-24 南京大学 一种算术作业批改系统及方法
CN112124511A (zh) * 2020-10-09 2020-12-25 武汉理工大学 一种港口内船舶首尾吃水线测量装置及方法
CN113256702A (zh) * 2021-07-12 2021-08-13 海口鑫晟科技有限公司 基于无人机的船舶净空高度检测方法、系统、设备及介质
CN113256702B (zh) * 2021-07-12 2024-02-02 广州智航船舶科技有限公司 基于无人机的船舶净空高度检测方法、系统、设备及介质
CN115165027A (zh) * 2022-09-07 2022-10-11 广东广宇科技发展有限公司 基于无人机的水位尺监测方法、系统、电子设备、介质
CN115165027B (zh) * 2022-09-07 2022-11-29 广东广宇科技发展有限公司 基于无人机的水位尺监测方法、系统、电子设备、介质
CN116303523A (zh) * 2022-11-30 2023-06-23 杭州数聚链科技有限公司 一种货船自动识别采样方法及系统
CN116303523B (zh) * 2022-11-30 2023-10-17 杭州数聚链科技有限公司 一种货船自动识别采样方法及系统
CN116338675A (zh) * 2023-05-19 2023-06-27 中国人民解放军海军工程大学 基于雷达、光电的舰炮对海射击脱靶量测量系统及方法
CN116338675B (zh) * 2023-05-19 2023-09-05 中国人民解放军海军工程大学 基于雷达、光电的舰炮对海射击脱靶量测量系统及方法

Similar Documents

Publication Publication Date Title
CN111361700A (zh) 基于机器视觉的船舶空重载识别方法
CN108564085B (zh) 一种自动读取指针式仪表读数的方法
CN102975826A (zh) 基于机器视觉的便携式船舶水尺自动检测和识别方法
CN110619328A (zh) 基于图像处理和深度学习的船舶水尺读数智能识别方法
CN109711353B (zh) 一种基于机器视觉的船舶吃水线区域识别方法
CN111401284B (zh) 基于图像处理的门开关状态识别方法
CN111476120B (zh) 一种无人机智能船舶水尺识别方法及装置
CN114049624B (zh) 一种基于机器视觉的船舶舱室智能检测方法及系统
CN110738106A (zh) 一种基于fpga的光学遥感图像船舶检测方法
CN113591592B (zh) 水上目标识别方法、装置、终端设备及存储介质
US20220128358A1 (en) Smart Sensor Based System and Method for Automatic Measurement of Water Level and Water Flow Velocity and Prediction
CN116824570B (zh) 一种基于深度学习的吃水检测方法
CN112419260A (zh) 一种pcb文字区域缺陷检测方法
CN115019103A (zh) 基于坐标注意力群组优化的小样本目标检测方法
CN115841633A (zh) 一种电力塔和电力线关联矫正的电力塔和电力线检测方法
CN114241438B (zh) 一种基于先验信息的交通信号灯快速精确的识别方法
CN110580697B (zh) 一种从超声视频图像中测量胎儿颈背透明物厚度的视频图像处理方法及系统
CN117037132A (zh) 一种基于机器视觉的船舶水尺读数检测和识别方法
CN116486212A (zh) 一种基于计算机视觉的水尺识别方法、系统及存储介质
CN116597370A (zh) 一种基于模式匹配的船舶监控入侵检测方法
CN116310263A (zh) 一种指针式航空地平仪示数自动读取实现方法
CN111950549B (zh) 一种基于海天线与视觉显著性融合的海面障碍物检测方法
Ivanovskii The Concept of Automated Draught Survey System for Marine Ships
CN111507177A (zh) 一种用于计量周转柜的识别方法及装置
CN111523583A (zh) 一种利用无人机对设备铭牌照片自动识别分类的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200703