CN111355881A - A Video Stabilization Method to Eliminate Rolling Shutter Artifacts and Jitters Simultaneously - Google Patents
A Video Stabilization Method to Eliminate Rolling Shutter Artifacts and Jitters Simultaneously Download PDFInfo
- Publication number
- CN111355881A CN111355881A CN201911260902.8A CN201911260902A CN111355881A CN 111355881 A CN111355881 A CN 111355881A CN 201911260902 A CN201911260902 A CN 201911260902A CN 111355881 A CN111355881 A CN 111355881A
- Authority
- CN
- China
- Prior art keywords
- frame
- grid
- motion
- intra
- video
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 83
- 230000006641 stabilisation Effects 0.000 title claims abstract description 24
- 238000011105 stabilization Methods 0.000 title claims abstract description 24
- 238000005096 rolling process Methods 0.000 claims abstract description 46
- 230000009466 transformation Effects 0.000 claims abstract description 33
- 238000009499 grossing Methods 0.000 claims abstract description 20
- 230000003044 adaptive effect Effects 0.000 claims abstract description 19
- 238000005457 optimization Methods 0.000 claims abstract description 18
- 238000006073 displacement reaction Methods 0.000 claims description 36
- 239000011159 matrix material Substances 0.000 claims description 32
- 238000012545 processing Methods 0.000 claims description 13
- 238000009825 accumulation Methods 0.000 claims description 12
- 238000005070 sampling Methods 0.000 claims description 9
- 239000013598 vector Substances 0.000 claims description 9
- 230000008859 change Effects 0.000 claims description 3
- 230000002123 temporal effect Effects 0.000 claims description 3
- 230000008569 process Effects 0.000 abstract description 6
- 238000012360 testing method Methods 0.000 description 15
- 230000008439 repair process Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000004088 simulation Methods 0.000 description 7
- 230000000007 visual effect Effects 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 1
- 208000003464 asthenopia Diseases 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000016776 visual perception Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/68—Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
- H04N23/681—Motion detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/77—Retouching; Inpainting; Scratch removal
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
- G06T7/246—Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/68—Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
- H04N23/689—Motion occurring during a rolling shutter mode
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10016—Video; Image sequence
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Studio Devices (AREA)
Abstract
本发明公开了一种同时消除卷帘伪影和抖动的视频稳定化方法,包括如下步骤:1)网格化视频帧;2)估计帧间运动;3)构造数据保真项与运动平滑正则项;4)构建帧间帧内运动联合优化模型;5)估计帧内运动;6)设定自适应滑动窗口;7)计算自适应权重;8)求解复原变换;9)同时去卷帘伪影稳定化视频生成。本发明通过网格化视频的每一帧,利用单应性变换模拟帧间运动,刚性变换模拟帧内运动,建立帧间帧内运动联合模型,直接求解出去卷帘伪影且去抖动的复原变换;该方法可同时实现视频去卷帘伪影与视频稳定化,避免了视频去抖过程中的过平滑问题,可广泛应用于采用CMOS相机的手机拍摄、无人机拍摄、车载导航等多种类型的视频稳定化。
The invention discloses a video stabilization method for simultaneously eliminating rolling shutter artifacts and jitter, comprising the following steps: 1) gridding video frames; 2) estimating motion between frames; 3) constructing data fidelity terms and motion smoothing rules 4) Construct a joint optimization model for intra-frame motion; 5) Estimate intra-frame motion; 6) Set adaptive sliding window; 7) Calculate adaptive weights; 8) Solve restoration transformation; 9) Simultaneously remove rolling shutter pseudo Shadow stabilized video generation. By gridding each frame of the video, the present invention uses homography transformation to simulate inter-frame motion, rigid transformation simulates intra-frame motion, establishes a joint model of inter-frame and intra-frame motion, and directly solves the restoration of rolling shutter artifacts and de-jittering. Transform; this method can simultaneously achieve video rolling shutter artifact removal and video stabilization, avoiding the problem of over-smoothing in the video de-shake process, and can be widely used in mobile phone shooting, drone shooting, vehicle navigation, etc. using CMOS cameras types of video stabilization.
Description
技术领域technical field
本发明涉及抖动视频稳定化技术,特别是一种同时消除卷帘伪影和抖动的视 频稳定化方法。The present invention relates to the stabilization technology of shaking video, in particular to a video stabilization method for simultaneously eliminating rolling shutter artifacts and shaking.
背景技术Background technique
在视频处理与显示领域,通过车载摄像平台、无人机或舰船摄像系统、手持 摄像设备等采用CMOS相机拍摄到的视频信号,往往会因为摄像机逐行成像而 存在卷帘伪影,并且拍摄过程受到随机扰动也易造成视频抖动。一方面,这些视 频退化极易引起视频观测者的视觉疲劳并且影响视频图像的内容理解,导致观察 者的误判或者漏判;另一方面,这些视频抖动和卷帘效应通常会妨碍人们对这些 视频的后续处理,例如跟踪、识别和模式分析等。In the field of video processing and display, video signals captured by CMOS cameras through vehicle-mounted camera platforms, UAV or ship camera systems, handheld camera equipment, etc. often have rolling shutter artifacts due to the camera's progressive imaging, and the shooting The random disturbance of the process is also easy to cause video jitter. On the one hand, these video degradations can easily cause visual fatigue of video observers and affect the content understanding of video images, leading to misjudgment or omission by observers; Subsequent processing of video, such as tracking, recognition and pattern analysis, etc.
目前,已经有许多针对卷帘伪影和视频抖动分离处理的方法,例如鲁棒网格 修复方法[Yeong Jun Koh,Chulwoo Lee,and Chang-Su Kim.2015.Video StabilizationBased on Feature Trajectory Augmentation and Selection and Robust Mesh GridWarping.IEEE Transactions on Image Processing 24,12(2015), 5260-5273.]和子空间方法[Feng Liu,Michael Gleicher,Jue Wang,Hailin Jin and AseemAgarwala.2011.Subspace video stabilization.ACM Transactions on Graphics 30,1(2011),4.]。鲁棒网格修复方法采取分离处理的框架,其首先对无卷帘伪影 的运动轨迹进行估计,然后对修正后的特征轨迹进行运动平滑。而子空间方法将 卷帘伪影作为一组结构化的噪声,在视频稳像的过程中隐式地去除卷帘伪影。At present, there have been many methods for rolling shutter artifacts and video jitter separation processing, such as robust mesh restoration methods [Yeong Jun Koh, Chulwoo Lee, and Chang-Su Kim. 2015. Video StabilizationBased on Feature Trajectory Augmentation and Selection and Robust Mesh GridWarping. IEEE Transactions on Image Processing 24, 12(2015), 5260-5273.] and subspace methods [Feng Liu, Michael Gleicher, Jue Wang, Hailin Jin and AseemAgarwala. 2011. Subspace video stabilization. ACM Transactions on Graphics 30 , 1 (2011), 4.]. The robust mesh repair method adopts the framework of separation processing, which firstly estimates the motion trajectories without rolling shutter artifacts, and then performs motion smoothing on the corrected feature trajectories. In contrast, the subspace method treats rolling artifact as a set of structured noises and implicitly removes the rolling artifact during video stabilization.
然而,无论是鲁棒网格修复方法或子空间方法,都是基于分别处理卷帘伪影 或视频抖动,算法过程复杂。However, both the robust mesh repair method and the subspace method are based on dealing with rolling shutter artifacts or video jitter respectively, and the algorithm process is complicated.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种同时消除卷帘伪影和抖动的视频稳定化方法。The object of the present invention is to provide a video stabilization method that simultaneously eliminates rolling shutter artifacts and jitter.
实现本发明目的的技术解决方案为:一种同时消除卷帘伪影和抖动的视频稳 定化方法,该方法包括以下步骤:The technical solution that realizes the object of the present invention is: a kind of video stabilization method that simultaneously eliminates rolling shutter artifact and jitter, and the method comprises the following steps:
步骤1、网格化视频帧:假设观测到的含有卷帘伪影的抖动视频序列 为:{It|t∈[1,N]},其中N表示视频序列的帧数,对于每一帧视频图像,定义形式 为8×8的网格,则第t帧It中第i行第j列的网格可表示为并定义同一网格列下相邻网格之间的曝光时间为单位时间;
步骤2、估计帧间运动:将视频序列中两两相邻帧对应的网格应用特征点检 测得到运动特征点,利用随机抽样一致性方法计算每一帧视频图像的刚性变换矩 阵与单应性矩阵,则第t帧第i行第j列网格的刚性变换矩阵与单应性矩阵分别可 表示为:其中i,j∈[1,8],t∈[1,N];
步骤3、构造数据保真项与运动平滑正则项:定义网格的在单位时间内的 帧内运动为利用当前帧It的前后帧It-1与It+1;
依据同一网格列下的帧内运动之和与帧间运动之间的保真性,构造帧间帧内 运动数据保真项 According to the fidelity between the sum of the intra-frame motion and the inter-frame motion under the same grid column, construct the inter-frame intra-frame motion data fidelity term
依据帧内运动在采样密度浓的条件下具有的相似性,构造帧内运动平滑正则 项According to the similarity of intra-frame motion under the condition of dense sampling density, construct the smoothing regular term of intra-frame motion
步骤4、构建帧间帧内运动联合优化模型:依据步骤3构造的约束项,建立 帧间帧内运动联合优化模型:argmin{F}P(F)+λQ(F),其中,正则化参数λ>0;
步骤5、估计帧内运动:依据刚性变换矩阵参数中的角度θ、水平位移x与垂 直位移y具有的可加性,将步骤4中的联合模型针对三种参数分别进行优化,最 终分别求解出帧内运动的角度θ、水平位移x与垂直位移y三种参数,并合成求解 出帧内运动矩阵
步骤6、设定自适应滑动窗口:对每一个网格采用窗口化处理,窗口大小设 置为s,则步骤2中得到的第t帧It的帧间运动矩阵 与步骤5中得到的帧内运动矩阵 s的取值范围为[0,30]的整数;
步骤7、计算自适应权重:计算当前网格到第k帧全局快门点网格之间的时 间距离与空间距离,则权重其中G(·)表 示高斯函数,最终可获得一组权重向量并为同一帧的网格估计一个统一的 权重向量:||·||1为矩阵的L1范数;
步骤8、求解复原变换:依据步骤7得到的自适应权重,依据关系可求解第t帧It中第i行第j列的网格 的复原变化,其中wt,k为自适应权重,为窗口中网格到网格之间的帧间 运动的累积,为第k帧i行j列网格到该网格列全局快门点的帧内运动累积, 则可表示当前网格到第k帧全局快门点的总运动;
步骤9、同时去卷帘伪影稳定化视频生成:依据变换矩阵 对每一帧视频图像的每一网格进行重新绘制,最终生成去卷帘伪影的稳 定的视频图像序列。
进一步的,步骤3中构造数据保真项时,依据网格的帧内运动将与同一 网格列中的其他网格共享,可得到性质等 式左侧为网格经过8个单位时间帧内运动的累积,右侧为该网格对应的帧间 运动,依据此性质可设计帧内运动之和与帧间运动之间的数据保真项P(F)。Further, when constructing the data fidelity item in
进一步的,步骤3中构造运动平滑正则项时,依据帧内运动在高频采样条件 下应当具有的相似性,对于网格的帧内运动其与同一网格列下一网格行 的网格的帧内运动应具有相似性,则可设计平滑正则项 Further, when constructing the motion smoothing regular term in
进一步的,步骤5中刚性变换定义为三自由度变换其中θ、x与y分别表示两两相邻网格之间的旋 转角度、水平位移与垂直位移;该变换具有的可加性,即 Further, the rigid transformation in
进一步的,步骤5中依据刚性变换具有可加性的性质,则步骤4中的最优化 模型可转化为三个自由度上的最优化模型,对于水平位移,f表示帧内水平位移, r表示帧间水平位移,则步骤3中的数据保真项与运动平滑项转化为:Further, according to the additive property of rigid transformation in
最优化模型转化为argmin{f}P(f)+λQ(f),通过新的模型可求出每一网格的水 平位移垂直位移与旋转角度求解方法同水平位移;该模型以矩阵-矢量形式 可表示为:The optimization model is transformed into argmin {f} P(f)+λQ(f), and the horizontal displacement of each grid can be obtained through the new model The solution methods of vertical displacement and rotation angle are the same as horizontal displacement; the model can be expressed in matrix-vector form as:
进一步的,步骤7中构造自适应权重时时,定义网格到网格的时 间距离与空间距离分别为|t-k|与 则为两个网 格之间的水平距离,为两个网格之间的垂直距离。Further, when constructing the adaptive weight in
进一步的,步骤8中定义为第k帧第i行j列网格到全局快门点的帧内运 动累积,若以第4网格行作为全局快门点,则第t帧It中第k行第j列的网格的帧内 运动复原矩阵可表示为:通过可去除每一网 格的卷帘伪影。Further, as defined in
本发明与现有技术相比,其显著优点为:(1)针对低质视频同时出现卷帘伪 影和抖动的退化问题,现有技术往往需要去卷帘伪影和去抖动两种分离的预处理 过程,而本发明建立了一个联合处理的最优化模型,通过网格化视频帧的帧内和 帧间运动估计以及自适应滑动窗口全职调整,可克服视频稳定化中的欠平滑与过 平滑问题;(2)本发明充分利用了帧间帧内运动的相关性,并自适应地调整权重 参数,使得本发明方法同时在视频去抖动与视频去卷帘伪影方面都具有良好的效 果;(3)本发明通过网格化视频的每一帧,利用单应性变换模拟帧间运动,刚性 变换模拟帧内运动,建立帧间帧内运动联合模型,直接求解出去卷帘伪影且去抖 动的复原变换,可广泛应用于采用CMOS相机的手机拍摄、无人机拍摄、车载 导航等多种类型的视频稳定化。Compared with the prior art, the present invention has the following significant advantages: (1) For the degradation problem of rolling-shutter artifact and jitter appearing at the same time in low-quality video, the prior art often requires two separate methods for rolling-shutter artifact and jitter removal. preprocessing process, and the present invention establishes an optimization model of joint processing, which can overcome the under-smoothing and over-smoothing in video stabilization through intra-frame and inter-frame motion estimation of gridded video frames and full-time adjustment of adaptive sliding window. smoothing problem; (2) the present invention makes full use of the inter-frame and intra-frame motion correlation, and adaptively adjusts the weight parameters, so that the method of the present invention has good effects in both video de-jitter and video rolling-shutter artifact removal at the same time. (3) The present invention utilizes homography transformation to simulate inter-frame motion, and rigid transformation simulates intra-frame motion through each frame of gridded video, establishes a joint model of inter-frame intra-frame motion, and directly solves the rolling shutter artifact and The recovery transformation of de-shake can be widely used in various types of video stabilization, such as mobile phone shooting, drone shooting, and car navigation using CMOS cameras.
附图说明Description of drawings
图1是本发明的同时消除卷帘伪影和抖动的视频稳定化方法流程图。FIG. 1 is a flow chart of the video stabilization method for simultaneously eliminating rolling shutter artifacts and jitter according to the present invention.
图2(a)是第一个测试视频的第一帧图。Figure 2(a) is the first frame of the first test video.
图2(b)是第一个测试视频的第二帧图。Figure 2(b) is the second frame of the first test video.
图2(c)是原始两帧之间的残差图。Figure 2(c) is the residual map between the original two frames.
图2(d)是仅用本方法去抖动后两帧之间的残差图。Fig. 2(d) is the residual image between two frames after only using this method to de-jitter.
图2(e)是鲁棒网格修复方法处理后两帧之间的残差图。Figure 2(e) is a residual map between two frames after processing by the robust mesh repair method.
图2(f)是本方法同时去抖动与去卷帘伪影后两帧之间的残差图。Figure 2(f) is the residual image between two frames after simultaneous de-jitter and rolling-shutter artifact removal by this method.
图3(a)是原始的特征点轨迹图。Figure 3(a) is the original feature point trajectory map.
图3(b)是鲁棒网格修复方法处理后的特征点轨迹图。Figure 3(b) is the feature point trajectories processed by the robust mesh repair method.
图3(c)是子空间方法处理后的特征点轨迹图。Figure 3(c) is the feature point trajectory after processing by the subspace method.
图3(d)是本发明方法处理后的特征点轨迹图。Fig. 3(d) is a trajectory diagram of the feature points processed by the method of the present invention.
图4(a)是测试视频中随机挑选的三帧原始图。Figure 4(a) is the original image of three randomly selected frames in the test video.
图4(b)是三帧图经由鲁棒网格修复方法处理后的结果图。Figure 4(b) is the result of the three-frame image processed by the robust mesh repair method.
图4(c)是三帧图经由子空间方法处理后的结果图。FIG. 4( c ) is the result of processing the three-frame image by the subspace method.
图4(d)是三帧图经由本发明方法处理后的结果图。FIG. 4(d) is a result diagram of the three-frame image processed by the method of the present invention.
图5中的(1)-(10)分别为本发明实验使用的包含抖动与卷帘伪影的10 个测试视频图。(1)-(10) in FIG. 5 are 10 test video images including jitter and rolling shutter artifacts used in the experiment of the present invention, respectively.
图6是对35名用户的视频视觉评价结果图。FIG. 6 is a graph showing the results of video visual evaluation for 35 users.
具体实施方式Detailed ways
本发明针对CMOS相机拍摄的视频,实现同时去除视频中的卷帘伪影与抖 动的效果,通过对帧间帧内运动建立估计模型,提出了同时消除卷帘伪影和抖动 的一种联合优化方法。下面结合图1,详细说明本发明的实施过程:Aiming at the video shot by the CMOS camera, the invention realizes the effect of simultaneously removing the rolling shutter artifacts and the jitter in the video, and proposes a joint optimization for simultaneously eliminating the rolling shutter artifacts and the jitter by establishing an estimation model for the motion between frames and frames. method. Below in conjunction with Fig. 1, the implementation process of the present invention is described in detail:
步骤1、网格化视频帧:假设观测到的含有卷帘伪影的抖动视频序列 为:{It|t∈[1,N]},其中N表示视频序列的帧数,对于每一帧视频图像,定义形式 为8×8的网格,则第t帧It中第i行第j列的网格可表示为并定义同一网格列下相邻网格之间的曝光时间为单位时间。
步骤2、估计帧间运动:将视频序列中两两相邻帧对应的网格应用特征点检 测得到稠密的运动特征点,利用随机抽样一致性方法计算每一帧视频图像的刚性 变换矩阵与单应性矩阵,则第t帧第i行第j列网格的刚性变换矩阵与单应性矩阵 分别可表示为:其中i,j∈[1,8],t∈[1,N]。
步骤3、构造数据保真项与运动平滑正则项:定义网格的在单位时间内的 帧内运动为利用当前帧It的前后帧It-1与It+1。
依据同一网格列下的帧内运动之和与帧间运动之间的保真性,构造帧间帧内 运动数据保真项 According to the fidelity between the sum of the intra-frame motion and the inter-frame motion under the same grid column, construct the inter-frame intra-frame motion data fidelity term
依据帧内运动在采样密度浓的条件下具有的相似性,构造帧内运动平滑正则项According to the similarity of intra-frame motion under the condition of dense sampling density, construct an intra-frame motion smoothing regular term
步骤3.1、构造数据保真项时,依据网格的帧内运动将与同一网格列中的 其他网格共享,可得到性质等式左侧为网 格经过8个单位时间帧内运动的累积,右侧为该网格对应的帧间运动,依据 此性质可设计帧内运动之和与帧间运动之间的数据保真项P(F)。Step 3.1. When constructing data fidelity items, according to the grid The intra-frame motion will be shared with other grids in the same grid column shared, available The left side of the equation is the grid After the accumulation of motion in 8 unit time frames, the right side is the inter-frame motion corresponding to the grid. According to this property, the data fidelity term P(F) between the sum of intra-frame motion and inter-frame motion can be designed.
步骤3.2、构造运动平滑正则项时,依据帧内运动在高频采样条件下应当具 有的相似性,对于网格的帧内运动其与同一网格列下一网格行的网格 的帧内运动应具有相似性,则可设计平滑正则项 Step 3.2. When constructing the motion smoothing regular term, according to the similarity that the motion in the frame should have under the condition of high frequency sampling, for the grid Intra-frame motion its grid with the same grid column next grid row Intra-frame motion should have similarity, then a smooth regular term can be designed
步骤4、构建帧间帧内运动联合优化模型:依据步骤3构造的约束项,建立 帧间帧内运动联合优化模型:argmin{F}P(F)+λQ(F),其中,正则化参数λ>0。
步骤5、估计帧内运动:依据刚性变换矩阵参数中的角度θ、水平位移x与垂 直位移y具有的可加性,将步骤4中的联合模型针对三种参数分别进行优化,最 终分别求解出帧内运动的角度θ、水平位移x与垂直位移y三种参数,并合成求解 出帧内运动矩阵
步骤5.1、刚性变换定义为三自由度变换其 中θ,x与y分别表示两两相邻网格之间的旋转角度,水平位移与垂直位移。依据该 变换具有的可加性,即 Step 5.1, the rigid transformation is defined as a three-degree-of-freedom transformation where θ, x and y represent the rotation angle, horizontal displacement and vertical displacement between two adjacent grids, respectively. According to the additivity of this transformation, that is
步骤5.2、依据刚性变换具有可加性的性质,则步骤4中的最优化模型可转 化为三个自由度上的最优化模型,如对于水平位移,f表示帧内水平位移,r表示 帧间水平位移,则步骤3中的数据保真项与运动平滑项转化为:Step 5.2. According to the additivity of rigid transformation, the optimization model in
最优化模型转化为argmin{f}P(f)+λQ(f),通过新的模型可求出每一网格的水 平位移并推广到垂直位移与旋转角度上。该模型以矩阵-矢量形式可表示为:The optimization model is transformed into argmin {f} P(f)+λQ(f), and the horizontal displacement of each grid can be obtained through the new model And generalized to vertical displacement and rotation angle. The model can be represented in matrix-vector form as:
步骤6、设定自适应滑动窗口:对每一个网格采用窗口化处理,窗口大小设 置为s,则步骤2中得到的第t帧It的帧间运动矩阵 与步骤5中得到的帧内运动矩阵 s的取值范围为[0,30]的整数。
步骤7、计算自适应权重:计算当前网格到第k帧全局快门点网格之间的时 间距离与空间距离,则权重其中G(·)表 示高斯函数,最终可获得一组权重向量并为同一帧的网格估计一个统一的 权重向量:为矩阵的L1范数。
构造自适应权重时时,定义网格到网格的时间距离与空间距离分 别为|t-k|与 则为两个网格之间的水平距离, 为两个网格之间的垂直距离。When constructing adaptive weights , define the grid to grid The temporal and spatial distances are |tk| and is the horizontal distance between the two grids, is the vertical distance between the two grids.
步骤8、求解复原变换:依据步骤7得到的自适应权重,依据关系可求解第t帧It中第i行第j列的网格 的复原变化,其中wt,k为自适应权重,为窗口中网格到网格之间的帧间 运动的累积,为第k帧i行j列网格到改网格列全局快门点的帧内运动累积, 则可表示当前网格到第k帧全局快门点的总运动。
定义为第k帧i行j列网格到改网格列全局快门点的帧内运动累积,若以 第4网格行作为全局快门点,则第t帧It中第k行第j列的网格的帧内运动复原矩阵 可表示为:通过可去除每一网格的卷帘伪影。definition It is the intra-frame motion accumulation from the grid in the i row and j column of the kth frame to the global shutter point of the changed grid column. The intra-frame motion restoration matrix of the grid can be expressed as: pass Rolling shutter artifacts can be removed for each grid.
步骤9、同时去卷帘伪影稳定化视频生成:依据变换矩阵 对每一帧视频图像的每一网格进行重新绘制,最终生成去卷帘伪影的稳 定的视频图像序列。
本发明的效果可通过以下仿真实验进一步说明:The effect of the present invention can be further illustrated by the following simulation experiments:
(1)仿真条件(1) Simulation conditions
仿真实验采用十组含有卷帘伪影的抖动视频数据,本仿真实验均在Windows 7操作系统下采用Matlab R2012完成。处理器为Xeon W3520 CPU(2.66GHz), 内存为4GB。仿真实验中各个参数的初始化值为:正则化参数λ设置为1,两个 高斯函数的标准差分别为6与30,窗口长度为2s+1且s=30。Ten groups of jitter video data containing rolling shutter artifacts are used in the simulation experiments. The simulation experiments are all completed under the
本发明方法的性能通过用户视觉主观体验定性评价进行分析。实验中,35 名参与者对不同稳定化方法的结果视频进行主观打分,为了公平测试,参与者在 未知具体方法时选出人体视觉感受较好的视频。The performance of the method of the present invention is analyzed by qualitative evaluation of the user's visual subjective experience. In the experiment, 35 participants subjectively scored the resulting videos of different stabilization methods. For fair testing, participants selected videos with better human visual perception when the specific methods were unknown.
(2)仿真内容(2) Simulation content
本发明采用真实抖动视频数据检验算法的去抖动性能,测试视频为含有卷帘 伪影的抖动视频。为测试本发明算法的性能,将提出的视频稳定化方法与目前国 际上主流的方法对比。对比方法包括:鲁棒性网格修复方法与子空间方法。The present invention adopts real shaking video data to check the de-shaking performance of the algorithm, and the test video is a shaking video containing rolling shutter artifacts. In order to test the performance of the algorithm of the present invention, the proposed video stabilization method is compared with the current international mainstream method. The comparison methods include: robust mesh repair method and subspace method.
(3)仿真实验结果分析(3) Analysis of simulation results
图2(a)~图2(f)为不同去卷帘伪影方法得到两帧图像的残差图,图3(a) ~图3(d)为不同视频稳定化方法处理后的特征点轨迹图,图4(a)~图4(d) 为不同同时去除卷帘伪影与抖动的方法得到的结果图,图5为10个测试视频, 图6为35名用户对10个测试视频的视觉评价结果。Figures 2(a) to 2(f) are the residuals of two frames of images obtained by different methods of removing the rolling shutter artifact, and Figures 3(a) to 3(d) are the feature points processed by different video stabilization methods. Trajectory diagrams, Figure 4(a)~Figure 4(d) are the results obtained by different methods of simultaneously removing rolling shutter artifacts and jitter, Figure 5 is 10 test videos, Figure 6 is 35 users on 10 test videos visual evaluation results.
图2(a)~图2(f)中采用帧差法对修复效果进行可视化。图2(a)是第一 个测试视频的第一帧图,图2(b)是第一个测试视频的第二帧图,图2(c)是 原始两帧之间的残差图,图2(d)是仅用本方法去抖动后两帧之间的残差图, 图2(e)是鲁棒网格修复方法处理后两帧之间的残差图,图2(f)是本方法同 时去抖动与去卷帘伪影后两帧之间的残差图。可明显观察到,使用本方法同时去 除抖动与卷帘伪影得到两帧图像之间的残差最小,能够很好的去除视频中含有的 卷帘伪影与抖动效果。In Figures 2(a) to 2(f), the frame difference method is used to visualize the restoration effect. Figure 2(a) is the first frame of the first test video, Figure 2(b) is the second frame of the first test video, and Figure 2(c) is the residual image between the original two frames, Figure 2(d) is the residual image between the two frames after de-jittering with this method, Figure 2(e) is the residual image between the two frames after the robust mesh repair method, and Figure 2(f) is the residual map between the two frames after simultaneous de-jittering and rolling-shutter artifact removal by this method. It can be clearly observed that using this method to remove jitter and rolling shutter artifacts at the same time obtains the smallest residual between the two frames of images, which can well remove the rolling shutter artifacts and jitter effects contained in the video.
图3(a)是原始的特征点轨迹图,图3(b)是鲁棒网格修复方法处理后的 特征点轨迹图,图3(c)是子空间方法处理后的特征点轨迹图,图3(d)是本 发明方法处理后的特征点轨迹图。可观测到,本发明方法在处理视频抖动时也具 有良好的效果,由于采用了自适应的权重设计,在处理阶跃运动类型的抖动时, 不易出现过平滑的现象,表明了本发明方法在视频去抖动方面也有极好的效果。Figure 3(a) is the original feature point trajectory diagram, Figure 3(b) is the feature point trajectory diagram processed by the robust grid repair method, and Figure 3(c) is the feature point trajectory diagram processed by the subspace method, Fig. 3(d) is a trajectory diagram of the feature points processed by the method of the present invention. It can be observed that the method of the present invention also has a good effect when dealing with video jitter. Due to the adaptive weight design, when dealing with the jitter of the step motion type, the phenomenon of over-smoothing is not easy to occur, which shows that the method of the present invention is effective in It also has excellent results in video de-shaking.
图4(a)是测试视频中随机挑选的三帧原始图,图4(b)是三帧图经由鲁 棒网格修复方法处理后的结果图,图4(c)是三帧图经由子空间方法处理后的 结果图,图4(d)是三帧图经由本发明方法处理后的结果图。由图4(a)~图4 (d)可看出,子空间方法仅仅将卷帘伪影作为一种结构化的噪声,在视频去抖 动过程中隐式地处理,其结果出现了空间扭曲的现象,而鲁棒网格修复方法和本 发明方法都有一个特定的步骤来处理卷帘伪影,因此可在一定程度上纠正对象。 此外,由于本发明采用自适应权值,我们的结果比其他两种方法在快速运动的情 况下保存了更多的图像信息。Figure 4(a) is the original image of three frames randomly selected from the test video, Figure 4(b) is the result image of the three-frame image processed by the robust grid repair method, and Figure 4(c) is the image of the three-frame image after sub-processing Figure 4(d) is the result of the three-frame image processed by the method of the present invention. As can be seen from Figure 4(a)~Figure 4(d), the subspace method only treats the rolling shutter artifact as a kind of structured noise, which is implicitly processed in the process of video debounce, resulting in spatial distortion. phenomenon, while both the robust mesh repair method and the method of the present invention have a specific step to deal with the rolling shutter artifact, so the object can be corrected to a certain extent. Furthermore, our results preserve more image information than the other two methods in the case of fast motion due to the adaptive weights employed in the present invention.
图6显示了对35名用户的视频视觉评价结果图。由于人们可能有不同的标 准,因此很难设计一个指标来定量评估稳定和卷帘门校正的效果。因此,我们对 35名参与者进行了用户调研,进行了定性比较。图5为随机选择的是个测试视 频,对每个测试视频,用户在未知三种修复方法的情况下(鲁棒网格修复方法、 子空间方法与本发明方法),选择其认为视觉效果最好的视频。在第7、9、10 个视频的测试用例中,没有参与者选择子空间方法,因为存在明显的几何畸变, 视觉体验大大降低。此外,更多的用户更倾向于本发明方法,他们认为本发明方 法在运动平滑和信息保存之间取得了更好的平衡,因此认为本发明方法优于其它 两种最先进的方法,实现了同时去除视频抖动和去除卷帘伪影。Figure 6 shows a graph of video visual evaluation results for 35 users. Since people may have different standards, it is difficult to devise a metric to quantitatively assess the effects of stabilization and shutter correction. Therefore, we conducted a user survey of 35 participants for qualitative comparisons. Fig. 5 is a randomly selected test video. For each test video, when the user does not know the three repair methods (robust grid repair method, subspace method and the method of the present invention), he chooses the best visual effect. 's video. In the test cases of the 7th, 9th, and 10th videos, no participant chose the subspace method, because of the obvious geometric distortion, the visual experience was greatly reduced. In addition, more users are more inclined to the method of the present invention, they believe that the method of the present invention achieves a better balance between motion smoothing and information preservation, and therefore believe that the method of the present invention is superior to the other two state-of-the-art methods, achieving Simultaneously removes video jitter and removes rolling shutter artifacts.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911260902.8A CN111355881B (en) | 2019-12-10 | 2019-12-10 | Video stabilization method for simultaneously eliminating rolling artifacts and jitters |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911260902.8A CN111355881B (en) | 2019-12-10 | 2019-12-10 | Video stabilization method for simultaneously eliminating rolling artifacts and jitters |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111355881A true CN111355881A (en) | 2020-06-30 |
CN111355881B CN111355881B (en) | 2021-09-21 |
Family
ID=71193967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911260902.8A Active CN111355881B (en) | 2019-12-10 | 2019-12-10 | Video stabilization method for simultaneously eliminating rolling artifacts and jitters |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111355881B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014016451A (en) * | 2012-07-09 | 2014-01-30 | Ricoh Co Ltd | Imaging device, method for calculating camera shake correction amount, and program for calculating camera shake correction amount |
WO2016019238A1 (en) * | 2014-07-31 | 2016-02-04 | Apple Inc. | Piecewise perspective transform engine |
CN108010059A (en) * | 2017-12-05 | 2018-05-08 | 北京小米移动软件有限公司 | The method for analyzing performance and device of electronic flutter-proof algorithm |
CN108886584A (en) * | 2016-04-20 | 2018-11-23 | 三星电子株式会社 | Method and apparatus for generating high-fidelity scaling for mobile video |
CN109905565A (en) * | 2019-03-06 | 2019-06-18 | 南京理工大学 | Video debounce method based on motion mode separation |
-
2019
- 2019-12-10 CN CN201911260902.8A patent/CN111355881B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014016451A (en) * | 2012-07-09 | 2014-01-30 | Ricoh Co Ltd | Imaging device, method for calculating camera shake correction amount, and program for calculating camera shake correction amount |
WO2016019238A1 (en) * | 2014-07-31 | 2016-02-04 | Apple Inc. | Piecewise perspective transform engine |
CN108886584A (en) * | 2016-04-20 | 2018-11-23 | 三星电子株式会社 | Method and apparatus for generating high-fidelity scaling for mobile video |
CN108010059A (en) * | 2017-12-05 | 2018-05-08 | 北京小米移动软件有限公司 | The method for analyzing performance and device of electronic flutter-proof algorithm |
CN109905565A (en) * | 2019-03-06 | 2019-06-18 | 南京理工大学 | Video debounce method based on motion mode separation |
Non-Patent Citations (1)
Title |
---|
张博: "基于NSC1003的CMOS图像处理技术研究", 《中国优秀硕士学位论文全文数据库》 * |
Also Published As
Publication number | Publication date |
---|---|
CN111355881B (en) | 2021-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111539879B (en) | Blind video denoising method and device based on deep learning | |
Liu et al. | Blind quality assessment of camera images based on low-level and high-level statistical features | |
Nair et al. | At-ddpm: Restoring faces degraded by atmospheric turbulence using denoising diffusion probabilistic models | |
Aittala et al. | Burst image deblurring using permutation invariant convolutional neural networks | |
EP3800878B1 (en) | Cascaded camera motion estimation, rolling shutter detection, and camera shake detection for video stabilization | |
Ciancio et al. | No-reference blur assessment of digital pictures based on multifeature classifiers | |
Yasarla et al. | Learning to restore images degraded by atmospheric turbulence using uncertainty | |
CN104103050B (en) | A kind of real video restored method based on local policy | |
US11303793B2 (en) | System and method for high-resolution, high-speed, and noise-robust imaging | |
CN106204472B (en) | Video Image Deblurring Method Based on Sparse Features | |
CN107133923B (en) | A non-blind deblurring method for blurred images based on adaptive gradient sparse model | |
US20140126808A1 (en) | Recursive conditional means image denoising | |
Yasarla et al. | CNN-based restoration of a single face image degraded by atmospheric turbulence | |
He et al. | Atmospheric turbulence mitigation based on turbulence extraction | |
Sahu et al. | Blind deblurring using deep learning: A survey | |
KR101341871B1 (en) | Video deblur method and apparatus | |
US9008453B2 (en) | Blur-kernel estimation from spectral irregularities | |
Tao et al. | LEGAN: A low-light image enhancement generative adversarial network for industrial internet of smart-cameras | |
CN109905565B (en) | Video debounce method based on motion mode separation | |
CN111355881B (en) | Video stabilization method for simultaneously eliminating rolling artifacts and jitters | |
CN106530261B (en) | A kind of double dynamic fuzzy image recovery methods | |
Carbajal et al. | Single image non-uniform blur kernel estimation via adaptive basis decomposition | |
Lee et al. | Efficient Low Light Video Enhancement Based on Improved Retinex Algorithms | |
CN111553860B (en) | Deep learning non-neighborhood mean processing method and system for water color remote sensing images | |
Guilluy et al. | Feature trajectories selection for video stabilization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Xiao Liang Inventor after: Wu Huicong Inventor after: Yang Fan Inventor before: Wu Huicong Inventor before: Yang Fan Inventor before: Xiao Liang |
|
GR01 | Patent grant | ||
GR01 | Patent grant |