CN111341452B - Multisystem atrophy disability prediction method, model building method, device and equipment - Google Patents
Multisystem atrophy disability prediction method, model building method, device and equipment Download PDFInfo
- Publication number
- CN111341452B CN111341452B CN202010252559.9A CN202010252559A CN111341452B CN 111341452 B CN111341452 B CN 111341452B CN 202010252559 A CN202010252559 A CN 202010252559A CN 111341452 B CN111341452 B CN 111341452B
- Authority
- CN
- China
- Prior art keywords
- system atrophy
- multiple system
- disability
- patient
- score
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 208000001089 Multiple system atrophy Diseases 0.000 title claims abstract description 124
- 238000000034 method Methods 0.000 title claims abstract description 48
- 201000010099 disease Diseases 0.000 claims abstract description 20
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 20
- 238000012545 processing Methods 0.000 claims description 25
- 230000006870 function Effects 0.000 claims description 24
- 230000002489 hematologic effect Effects 0.000 claims description 24
- 206010031127 Orthostatic hypotension Diseases 0.000 claims description 21
- 208000024891 symptom Diseases 0.000 claims description 20
- 238000003745 diagnosis Methods 0.000 claims description 18
- 238000012706 support-vector machine Methods 0.000 claims description 17
- 102000001554 Hemoglobins Human genes 0.000 claims description 15
- 108010054147 Hemoglobins Proteins 0.000 claims description 15
- 208000025535 REM sleep behavior disease Diseases 0.000 claims description 15
- 210000003743 erythrocyte Anatomy 0.000 claims description 15
- 206010041235 Snoring Diseases 0.000 claims description 12
- 108010003415 Aspartate Aminotransferases Proteins 0.000 claims description 11
- 102000004625 Aspartate Aminotransferases Human genes 0.000 claims description 11
- BPYKTIZUTYGOLE-IFADSCNNSA-N Bilirubin Chemical compound N1C(=O)C(C)=C(C=C)\C1=C\C1=C(C)C(CCC(O)=O)=C(CC2=C(C(C)=C(\C=C/3C(=C(C=C)C(=O)N\3)C)N2)CCC(O)=O)N1 BPYKTIZUTYGOLE-IFADSCNNSA-N 0.000 claims description 10
- 210000003651 basophil Anatomy 0.000 claims description 10
- 238000004820 blood count Methods 0.000 claims description 10
- 238000004422 calculation algorithm Methods 0.000 claims description 10
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 claims description 10
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 claims description 10
- 210000003979 eosinophil Anatomy 0.000 claims description 10
- 210000004698 lymphocyte Anatomy 0.000 claims description 10
- 210000001616 monocyte Anatomy 0.000 claims description 10
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 9
- 238000004590 computer program Methods 0.000 claims description 9
- 238000010276 construction Methods 0.000 claims description 9
- 210000000440 neutrophil Anatomy 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 9
- 208000037656 Respiratory Sounds Diseases 0.000 claims description 8
- 210000002804 pyramidal tract Anatomy 0.000 claims description 8
- 102100036475 Alanine aminotransferase 1 Human genes 0.000 claims description 6
- 108010082126 Alanine transaminase Proteins 0.000 claims description 6
- 206010008025 Cerebellar ataxia Diseases 0.000 claims description 6
- 206010047924 Wheezing Diseases 0.000 claims description 6
- 102000034279 3-hydroxybutyrate dehydrogenases Human genes 0.000 claims description 5
- 108090000124 3-hydroxybutyrate dehydrogenases Proteins 0.000 claims description 5
- 108010088751 Albumins Proteins 0.000 claims description 5
- 102000009027 Albumins Human genes 0.000 claims description 5
- 102000004420 Creatine Kinase Human genes 0.000 claims description 5
- 108010042126 Creatine kinase Proteins 0.000 claims description 5
- 102000012192 Cystatin C Human genes 0.000 claims description 5
- 108010061642 Cystatin C Proteins 0.000 claims description 5
- 238000008789 Direct Bilirubin Methods 0.000 claims description 5
- 108020004206 Gamma-glutamyltransferase Proteins 0.000 claims description 5
- 102000006395 Globulins Human genes 0.000 claims description 5
- 108010044091 Globulins Proteins 0.000 claims description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 5
- 102000015779 HDL Lipoproteins Human genes 0.000 claims description 5
- 108010010234 HDL Lipoproteins Proteins 0.000 claims description 5
- 102000003855 L-lactate dehydrogenase Human genes 0.000 claims description 5
- 108700023483 L-lactate dehydrogenases Proteins 0.000 claims description 5
- 102000007330 LDL Lipoproteins Human genes 0.000 claims description 5
- 108010007622 LDL Lipoproteins Proteins 0.000 claims description 5
- 238000008050 Total Bilirubin Reagent Methods 0.000 claims description 5
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 claims description 5
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 claims description 5
- 239000004202 carbamide Substances 0.000 claims description 5
- 235000012000 cholesterol Nutrition 0.000 claims description 5
- 229940109239 creatinine Drugs 0.000 claims description 5
- 102000006640 gamma-Glutamyltransferase Human genes 0.000 claims description 5
- 239000008103 glucose Substances 0.000 claims description 5
- 238000005534 hematocrit Methods 0.000 claims description 5
- 210000000265 leukocyte Anatomy 0.000 claims description 5
- 235000018102 proteins Nutrition 0.000 claims description 5
- 102000004169 proteins and genes Human genes 0.000 claims description 5
- 108090000623 proteins and genes Proteins 0.000 claims description 5
- 210000002966 serum Anatomy 0.000 claims description 5
- 229940116269 uric acid Drugs 0.000 claims description 5
- 206010003840 Autonomic nervous system imbalance Diseases 0.000 claims description 4
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 4
- 102000002260 Alkaline Phosphatase Human genes 0.000 claims description 3
- 108020004774 Alkaline Phosphatase Proteins 0.000 claims description 3
- 206010042241 Stridor Diseases 0.000 claims description 3
- 238000012729 kappa analysis Methods 0.000 claims description 3
- 230000000306 recurrent effect Effects 0.000 claims description 3
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 claims description 3
- VVJYUAYZJAKGRQ-UHFFFAOYSA-N 1-[4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]-5-methylpyrimidine-2,4-dione Chemical compound O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C(O)C1 VVJYUAYZJAKGRQ-UHFFFAOYSA-N 0.000 claims description 2
- 208000018737 Parkinson disease Diseases 0.000 claims description 2
- -1 aminotransferase, alanine Amino acid Chemical class 0.000 claims description 2
- 210000003714 granulocyte Anatomy 0.000 claims description 2
- 108090000340 Transaminases Proteins 0.000 claims 2
- 102000003929 Transaminases Human genes 0.000 claims 2
- 206010003694 Atrophy Diseases 0.000 claims 1
- 229940024606 amino acid Drugs 0.000 claims 1
- 235000001014 amino acid Nutrition 0.000 claims 1
- 230000037444 atrophy Effects 0.000 claims 1
- 230000007935 neutral effect Effects 0.000 claims 1
- 230000009885 systemic effect Effects 0.000 claims 1
- 150000003626 triacylglycerols Chemical class 0.000 claims 1
- 238000004393 prognosis Methods 0.000 description 7
- 238000011282 treatment Methods 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 206010061818 Disease progression Diseases 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 230000005750 disease progression Effects 0.000 description 3
- 238000012549 training Methods 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 208000027089 Parkinsonian disease Diseases 0.000 description 2
- 206010034010 Parkinsonism Diseases 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- 208000035977 Rare disease Diseases 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 230000002567 autonomic effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000035487 diastolic blood pressure Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011337 individualized treatment Methods 0.000 description 1
- 230000003907 kidney function Effects 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000003908 liver function Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000035488 systolic blood pressure Effects 0.000 description 1
- 238000005891 transamination reaction Methods 0.000 description 1
- 230000002485 urinary effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/50—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Medical Informatics (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Health & Medical Sciences (AREA)
- Pathology (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- Biomedical Technology (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Medical Treatment And Welfare Office Work (AREA)
Abstract
Description
技术领域technical field
本发明属于疾病预测技术领域,具体涉及一种多系统萎缩失能预测方法、模型建立方法、装置及设备。The invention belongs to the technical field of disease prediction, and in particular relates to a multiple system atrophy disability prediction method, model building method, device and equipment.
背景技术Background technique
多系统萎缩(multiple system atrophy,MSA)是一种罕见的,进行性进展的神经变性疾病,其特征为帕金森综合征,小脑共济失调及自主神经功能障碍的不同组合。患者从发病到走路需要协助、坐轮椅、卧床及死亡的平均中位时间分别为3,5,8和9年。由于发病率低,该病已被国家列入罕见病目录。该病起病隐匿,进展迅速,生存期短,给患者及其家庭乃至整个社会带来极大的负担。Multiple system atrophy (MSA) is a rare, progressive neurodegenerative disorder characterized by varying combinations of parkinsonism, cerebellar ataxia, and autonomic dysfunction. The mean median times from the onset of illness to needing assistance in walking, wheelchair use, bedridden, and death were 3, 5, 8, and 9 years, respectively. Due to its low incidence, the disease has been included in the national list of rare diseases. The disease has an insidious onset, rapid progression, and short survival period, which brings a great burden to patients, their families and the whole society.
既往对多系统萎缩患者的预后进行研究的文献,主要以死亡作为临床结局指标,构建死亡预测模型。研究发现以植物神经症状起病、起病年龄较晚、频繁跌倒等因素与预后密切相关。Previous studies on the prognosis of patients with multiple system atrophy mainly used death as the clinical outcome indicator to construct a death prediction model. Studies have found that the onset of autonomic symptoms, late onset age, frequent falls and other factors are closely related to the prognosis.
但是,现有技术中,尚无对多系统萎缩患者失能进行预测。由于多系统萎缩患者疾病进展迅速,在病程的4-5年就逐渐丧失行动能力而限制于轮椅,失去生活自理能力,严重影响生活质量。因此,建立多系统萎缩失能预测模型显得尤为重要,能够指导临床医生对患者进行个体化的精准治疗,提高其生活质量,改善患者预后。However, in the prior art, there is no prediction of disability in patients with multiple system atrophy. Due to the rapid disease progression of patients with multiple system atrophy, they gradually lose their mobility within 4-5 years of the course of the disease and are confined to wheelchairs. They lose their ability to take care of themselves and seriously affect their quality of life. Therefore, it is particularly important to establish a multiple system atrophy disability prediction model, which can guide clinicians to carry out individualized and precise treatment for patients, improve their quality of life, and improve the prognosis of patients.
发明内容Contents of the invention
为了至少解决现有技术存在的上述问题,本发明提供了一种多系统萎缩失能预测方法、模型建立方法、装置及设备。In order to at least solve the above-mentioned problems in the prior art, the present invention provides a multi-system atrophy disability prediction method, a model building method, a device and equipment.
本发明提供的技术方案如下:The technical scheme provided by the invention is as follows:
一方面,一种多系统萎缩失能预测模型的构建方法,包括:On the one hand, a method for constructing a multiple system atrophy disability prediction model, comprising:
获取病程在预设时间段的多系统萎缩患者的基本数据,所述基本数据,包括:临床指标数据和血液学指标数据;Obtain the basic data of patients with multiple system atrophy whose disease course is within a preset time period, the basic data includes: clinical index data and hematological index data;
基于预设处理规则,对所述临床指标数据和所述血液学指标数据进行处理,获取目标数据集;Processing the clinical index data and the hematology index data based on preset processing rules to obtain a target data set;
根据所述目标数据集、支持向量机算法及预设线性核函数,使用R程序中的kernlab程序包构建多系统萎缩失能的预测模型。According to the target data set, the support vector machine algorithm and the preset linear kernel function, the prediction model of multiple system atrophy and disability is constructed by using the kernlab package in the R program.
可选的,所述基于预设处理规则,对所述临床指标数据和所述血液学指标数据进行处理,获取目标数据集,包括:Optionally, the processing of the clinical index data and the hematology index data based on preset processing rules to obtain a target data set includes:
采用快速眼动期睡眠行为障碍评估量表,对患者群内患者进行评分;Use the rapid eye movement sleep behavior disorder assessment scale to score the patients in the patient group;
采用统一多系统萎缩评估量表,对患者的运动症状进行评估;The unified multiple system atrophy assessment scale was used to evaluate the motor symptoms of the patients;
基于预设直立性低血压评估规则,对患者是否有直立性低血压进行评估。Based on the preset orthostatic hypotension evaluation rules, the patients were evaluated for orthostatic hypotension.
可选的,临床指标包括:年龄、性别、发病年龄、诊断延迟、病程、体重指数、诊断类型、首发症状形式、是否在预设时间段内反复跌倒、是否有锥体束征、是否有喘鸣、是否有严重的鼾声、是否有快速眼动期睡眠行为障碍,统一多系统萎缩评估量表第一部分得分、统一多系统萎缩评估量表第二部分得分、统一多系统萎缩评估量表第四部分得分、统一多系统萎缩评估量表总分、是否有直立性低血压;Optionally, the clinical indicators include: age, gender, age of onset, delay in diagnosis, course of disease, body mass index, type of diagnosis, form of first symptoms, whether there are repeated falls within a preset time period, whether there are pyramidal tract signs, whether there is wheezing Snoring, severe snoring, rapid eye movement sleep behavior disorder, unified multisystem atrophy assessment scale first part score, unified multiple system atrophy assessment scale second part score, unified multiple system atrophy assessment scale The score in the fourth part of the table, the total score of the Unified Multiple System Atrophy Assessment Scale, and whether there is orthostatic hypotension;
血液学指标包括:红细胞计数、血红蛋白、红细胞压积、平均红细胞体积、平均红细胞血红蛋白含量、平均红细胞血红蛋白浓度、红细胞分布宽度CV、红细胞分布宽度SD、血小板计数、白细胞计数、中性分叶核粒细胞百分率、淋巴细胞百分率、单核细胞百分率、嗜酸性粒细胞百分率、嗜碱性粒细胞百分率、中性分叶核粒细胞绝对值、淋巴细胞绝对值、单核细胞绝对值、嗜酸细胞绝对值、嗜碱细胞绝对值、总胆红素、直接胆红素、间接胆红素、丙氨酸氨基转移酶、门冬氨酸氨基转移酶、丙氨酸氨基转移酶/门冬氨酸氨基转移酶的比值、总蛋白、白蛋白、球蛋白、白球比例、葡萄糖、尿素、肌酐、血清胱抑素C、尿酸、甘油三酯、胆固醇、高密度脂蛋白、低密度脂蛋白、碱性磷酸酶、谷氨酰转肽酶、肌酸激酶、乳酸脱氢酶、羟丁酸脱氢酶。Hematological indicators include: red blood cell count, hemoglobin, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin content, mean corpuscular hemoglobin concentration, red blood cell distribution width CV, red blood cell distribution width SD, platelet count, white blood cell count, neutrophils Percentage of cells, percentage of lymphocytes, percentage of monocytes, percentage of eosinophils, percentage of basophils, absolute value of neutrophils, absolute value of lymphocytes, absolute value of monocytes, absolute value of eosinophils value, absolute value of basophils, total bilirubin, direct bilirubin, indirect bilirubin, alanine aminotransferase, aspartate aminotransferase, alanine aminotransferase/aspartate amino Transferase ratio, total protein, albumin, globulin, white globule ratio, glucose, urea, creatinine, serum cystatin C, uric acid, triglyceride, cholesterol, high-density lipoprotein, low-density lipoprotein, alkaline phosphate enzymes, glutamyl transpeptidase, creatine kinase, lactate dehydrogenase, hydroxybutyrate dehydrogenase.
可选的,所述基于预设处理规则,对所述临床指标数据和所述血液学指标数据进行处理,获取目标数据集,包括:Optionally, the processing of the clinical index data and the hematology index data based on preset processing rules to obtain a target data set includes:
根据性别,对患者性别进行赋值,男性=1,女性=0;According to gender, the gender of the patient is assigned, male = 1, female = 0;
获取患者的体重指数,体重指数=体重/身高的平方;Obtain the patient's body mass index, body mass index = weight/height squared;
根据诊断类型,对患者的诊断类型进行赋值,帕金森症为主型=1、小脑共济失调为主型=0;首发症状的形式分为植物神经功能障碍起病=0;运动症状起病=1;3年内出现反复发作的跌倒=1,未出现=0;有锥体束征=1,没有=0;有喘鸣=1,没有=0;有严重的鼾声=1,没有=0;有快速眼动期睡眠行为障碍=1,没有=0;有直立性低血压=1,没有=0。According to the diagnosis type, the diagnosis type of the patient is assigned, Parkinson's disease-dominant type = 1, cerebellar ataxia-dominant type = 0; the form of the first symptom is divided into the onset of autonomic dysfunction = 0; the onset of motor symptoms = 1; recurrent falls within 3 years = 1, no = 0; pyramidal tract sign = 1, no = 0; wheezing = 1, no = 0; severe snoring = 1, no = 0 ; REM sleep behavior disorder = 1, no = 0; orthostatic hypotension = 1, no = 0.
可选的,所述预设线性核函数的构建方法,包括:Optionally, the method for constructing the preset linear kernel function includes:
构建核函数:k(xi,xj)=φ(xi)·φ(xj);Construct kernel function: k(xi,xj)=φ(xi)·φ(xj);
基于松弛变量,创建软间隔,获取分类平面约束条件为:yi(wxi+b)≥1,i=1,2,…,N;Based on the slack variable, create a soft interval, and obtain the classification plane constraints: y i (wx i + b)≥1, i=1,2,...,N;
获取软边界目标函数:ξi≥0,i=1,2,…,N;Obtain the soft-boundary objective function: ξ i ≥ 0, i=1,2,...,N;
yi(wxi+b)≥1-ξi,ξi≥0;y i (wx i +b)≥1-ξ i , ξ i ≥0;
其中,C为错误惩罚因子;ξ为松弛变量。Among them, C is the error penalty factor; ξ is the slack variable.
可选的,支持向量机的错误惩罚因子C的选择范围为5-8。Optionally, the selection range of the error penalty factor C of the support vector machine is 5-8.
可选的,还包括:基于Kappa统计量对所述预测模型的准确度进行评估。Optionally, it also includes: evaluating the accuracy of the prediction model based on Kappa statistics.
又一方面,一种多系统萎缩失能预测方法,包括:In yet another aspect, a multiple system atrophy disability prediction method, comprising:
获取目标多系统萎缩患者的基本数据,所述基本数据,包括:临床指标数据和血液学指标数据;Obtain the basic data of the target multiple system atrophy patient, the basic data including: clinical index data and hematological index data;
基于预设处理规则,对所述目标数据进行处理,获取目标数据;Processing the target data based on preset processing rules to obtain the target data;
根据所述目标数据及上述任一所述的多系统萎缩失能预测模型的构建方法建立的模型,预测所述目标多系统萎缩患者的失能情况。Predict the disability of the target multiple system atrophy patient according to the target data and the model established by any of the methods for constructing the multiple system atrophy disability prediction model described above.
又一方面,一种多系统萎缩失能预测模型构建装置,包括:获取模块、处理模块和构建模块;In yet another aspect, a device for constructing a multi-system atrophy disability prediction model includes: an acquisition module, a processing module, and a construction module;
所述获取模块,用于获取病程在预设时间段的多系统萎缩患者的基本数据,所述基本数据,包括:临床指标数据和血液学指标数据;The obtaining module is used to obtain basic data of patients with multiple system atrophy whose course of disease is within a preset time period, the basic data includes: clinical index data and hematological index data;
所述处理模块,用于基于预设处理规则,对所述临床指标数据和所述血液学指标数据进行处理,获取目标数据集;The processing module is configured to process the clinical index data and the hematology index data based on preset processing rules to obtain a target data set;
所述构建模块,用于根据所述目标数据集、支持向量机算法及预设线性核函数,使用R程序中的kernlab程序包构建多系统萎缩失能的预测模型。The construction module is used to construct a prediction model of multiple system atrophy and disability by using the kernlab program package in the R program according to the target data set, the support vector machine algorithm and the preset linear kernel function.
又一方面,一种多系统萎缩失能预测设备,包括:处理器,以及与所述处理器相连接的存储器;In yet another aspect, a multiple system atrophy disability prediction device includes: a processor, and a memory connected to the processor;
所述存储器用于存储计算机程序,所述计算机程序至少用于执行上述所述的多系统萎缩失能预测方法;The memory is used to store a computer program, and the computer program is at least used to execute the above-mentioned multiple system atrophy disability prediction method;
所述处理器用于调用并执行所述存储器中的所述计算机程序。The processor is used to call and execute the computer program in the memory.
本发明的有益效果为:The beneficial effects of the present invention are:
本发明提供的多系统萎缩失能预测方法、模型建立方法、装置及设备,首次采用多系统萎缩患者的临床指标联合血液学指标作为预测数据,对预测数据进行特征筛选,对筛选出的多个特征采用支持向量机建模,从而实现对多系统萎缩患者失能的精准预测,从而指导临床医生对患者进行个体化的精准治疗,提高其生活质量,改善患者预后。The multiple system atrophy disability prediction method, model building method, device and equipment provided by the present invention use the clinical indicators of patients with multiple system atrophy combined with hematological indicators as the prediction data for the first time, perform feature screening on the prediction data, and filter out multiple The features are modeled by support vector machines, so as to realize the accurate prediction of the disability of patients with multiple system atrophy, so as to guide clinicians to carry out individualized and precise treatment for patients, improve their quality of life, and improve the prognosis of patients.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.
图1为本发明实施例提供的一种多系统萎缩失能预测模型的构建方法流程示意图;Fig. 1 is a schematic flowchart of a method for constructing a multiple system atrophy disability prediction model provided by an embodiment of the present invention;
图2为本发明实施例提供的一种多系统萎缩失能预测方法流程示意图;Fig. 2 is a schematic flowchart of a method for predicting multiple system atrophy disability provided by an embodiment of the present invention;
图3为本发明实施例提供的一种多系统萎缩失能预测模型构建装置结构示意图;Fig. 3 is a schematic structural diagram of a device for constructing a multi-system atrophy disability prediction model provided by an embodiment of the present invention;
图4为本发明实施例提供的一种多系统萎缩失能预测设备结构示意图。Fig. 4 is a schematic structural diagram of a multi-system atrophy disability prediction device provided by an embodiment of the present invention.
附图标记:31-获取模块;32-处理模块;33-构建模块;41-处理器;42-存储器。Reference numerals: 31 - acquisition module; 32 - processing module; 33 - building module; 41 - processor; 42 - memory.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面将对本发明的技术方案进行详细的描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施方式,都属于本发明所保护的范围。In order to make the purpose, technical solution and advantages of the present invention clearer, the technical solution of the present invention will be described in detail below. Apparently, the described embodiments are only some of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other implementations obtained by persons of ordinary skill in the art without making creative efforts fall within the protection scope of the present invention.
多系统萎缩的疾病进展过程十分复杂,通常是多因素共同作用的结果,传统的回归分析统计学方法在处理复杂多因素时表现不佳,而目前尚无多系统萎缩失能的预测模型。The disease progression of multiple system atrophy is very complex, usually the result of multiple factors acting together. Traditional regression analysis statistical methods do not perform well when dealing with complex multiple factors, and there is currently no prediction model for multiple system atrophy disability.
基于此,本发明基于支持向量机技术建立多系统萎缩的失能预测模型,从而指导个体化治疗,延缓疾病进展,提高生活质量。Based on this, the present invention establishes a disability prediction model of multiple system atrophy based on support vector machine technology, thereby guiding individualized treatment, delaying disease progression, and improving quality of life.
本发明实施例提供一种多系统萎缩失能预测模型的构建方法。An embodiment of the present invention provides a method for constructing a multiple system atrophy disability prediction model.
图1为本发明实施例提供的一种多系统萎缩失能预测模型的构建方法流程示意图,请参阅图1,本发明实施例提供的方法,可以包括以下步骤:Figure 1 is a schematic flowchart of a method for constructing a multiple system atrophy disability prediction model provided by an embodiment of the present invention, please refer to Figure 1, the method provided by an embodiment of the present invention may include the following steps:
S11、获取预设时间段的多系统萎缩患者的基本数据,基本数据,包括:临床指标数据和血液学指标数据。S11. Obtain basic data of patients with multiple system atrophy in a preset time period, the basic data including: clinical index data and hematological index data.
S12、基于预设处理规则,对临床指标数据和血液学指标数据进行处理,获取目标数据集。S12. Based on preset processing rules, the clinical index data and the hematological index data are processed to obtain a target data set.
在构建多系统萎缩失能预测模型时,可以先采集病程在预设时间段的多萎缩患者的基本数据,基本数据可以包括:临床指标数据和血液学指标数据。When constructing the multiple system atrophy disability prediction model, the basic data of multiple system atrophy patients whose disease course is within a preset time period can be collected first, and the basic data can include: clinical index data and hematological index data.
例如,预设时间段可以为3年,采集某医院或某区域内就诊时病程在3年内的多系统萎缩患者的基本数据(基线临床资料)。临床指标数据,可以包括:年龄、性别、发病日期、首次诊断日期、诊断延迟、病程、体重指数、诊断类型、首发症状形式、是否在3年内反复跌倒、是否有锥体束征、是否有喘鸣、是否有严重的鼾声、是否有快速眼动期睡眠行为障碍、统一多系统萎缩评估量表第一部分得分、统一多系统萎缩评估量表第二部分得分、统一多系统萎缩评估量表第四部分得分、统一多系统萎缩评估量表总分、是否有直立性低血压For example, the preset time period may be 3 years, and the basic data (baseline clinical data) of multiple system atrophy patients whose disease course is within 3 years at the time of treatment in a certain hospital or a certain area are collected. Clinical index data, which can include: age, gender, date of onset, date of first diagnosis, delay in diagnosis, course of disease, body mass index, type of diagnosis, form of first symptoms, whether there are repeated falls within 3 years, whether there are pyramidal tract signs, whether there is asthma Snoring, severe snoring, rapid eye movement sleep behavior disorder, Unified Multiple System Atrophy Assessment Scale Part I score, Unified Multiple System Atrophy Assessment Scale Part II score, Unified Multiple System Atrophy Assessment Scale The score in the fourth part of the table, the total score of the Unified Multiple System Atrophy Assessment Scale, and whether there is orthostatic hypotension
其中,在判断是否有快速眼动期睡眠行为障碍(Rapid eye movement sleepbehavior disorder,RBD)时,采用快速眼动期睡眠行为障碍评估量表进行评估,评分大于或等于5分代表有RBD。采用统一多系统萎缩评估量表(Unified Rating MSA Scale,UMSARS)评估患者的运动症状。评估患者是否有直立性低血压时,可以让患者先平躺在检查床上安静休息10分钟,然后测量卧位血压并记录,然后让患者从检查床上起身保持站立位,测量1,3,5,10分钟后的立位血压并记录,若患者的任意一次立位的收缩压比卧位的下降超过30mmHg,或者舒张压比卧位下降超过15mmHg,则定义为直立性低血压(Orthostatichypotension,OH)。Among them, when judging whether there is rapid eye movement sleep behavior disorder (Rapid eye movement sleep behavior disorder, RBD), the rapid eye movement sleep behavior disorder assessment scale is used for evaluation, and a score greater than or equal to 5 means RBD. The motor symptoms of patients were assessed by Unified Rating MSA Scale (UMSARS). When evaluating whether a patient has orthostatic hypotension, the patient can lie flat on the examination bed and rest quietly for 10 minutes, then measure and record the supine blood pressure, and then ask the patient to stand up from the examination bed and measure 1, 3, 5, Orthostatic hypotension (OH) was defined as orthostatic hypotension (OH) if the systolic blood pressure in the upright position decreased by more than 30 mmHg compared with the supine position, or the diastolic blood pressure decreased by more than 15 mmHg compared with the supine position. .
在获取血液学指标数据时,可以采集就诊时期患者的空腹血液学样本进行检测:检测指标为血常规、肝肾功能。When obtaining hematological index data, fasting hematological samples of patients during the treatment period can be collected for testing: the testing indicators are blood routine, liver and kidney function.
排除基线评估时即丧失行动能力坐轮椅的患者后,纳入病程小于3年的多系统萎缩患者共167例。A total of 167 patients with multiple system atrophy with a disease course of less than 3 years were included after excluding patients who were incapacitated in a wheelchair at the baseline assessment.
对167例多系统萎缩患者进行随访评估,随访评估为每年一次的面对面评估或者电话评估,观察他们有无出现丧失行动能力并限制于轮椅,并记录开始使用轮椅的时间。患者丧失行动能力限制于轮椅定义为失能。我们以失能作为结局指标。根据随访结果,我们以病程4年时间为界限,在4年内出现失能标记为0,超过4年未出现失能标记为1,同时剔除病程在4年以内但未出现失能的数据。最终得到137例多系统萎缩患者的数据,所有患者根据2008年第二版诊断标准均符合很可能的多系统萎缩。A follow-up evaluation was performed on 167 patients with multiple system atrophy. The follow-up evaluation was an annual face-to-face evaluation or telephone evaluation to observe whether they were incapacitated and confined to a wheelchair, and recorded the time when they started using the wheelchair. Patient incapacity confined to a wheelchair was defined as disability. We used disability as the outcome measure. According to the follow-up results, we took the 4-year duration of the disease as the limit, marking 0 for disability within 4 years, and marking 1 for no disability within 4 years. At the same time, we excluded data with no disability within 4 years of disease course. Finally, the data of 137 patients with multiple system atrophy were obtained, and all patients met the probable multiple system atrophy according to the second edition of diagnostic criteria in 2008.
对137例多系统萎缩患者的数据进行预处理和格式转化:性别(男性=1,女性=0);体重指数(BMI)=体重/身高的平方(国际单位kg/m2);诊断类型分为帕金森症为主型(MSA with predominantly parkinsonian features,MSA-P)=1和小脑共济失调为主型(MSA with predominantly cerebellar ataxia,MSA-C)=0;首发症状的形式分为植物神经功能障碍起病=0(包括小便障碍和直立性低血压)和运动症状起病=1(包括小脑共济失调症状和帕金森样症状);3年内出现反复发作的跌倒=1,未出现=0;有锥体束征=1,没有=0;有喘鸣=1,没有=0;有严重的鼾声=1,没有=0;有RBD=1,没有=0;有直立性低血压=1,没有=0;其余指标均为数值型数据。The data of 137 patients with multiple system atrophy were preprocessed and format transformed: gender (male=1, female=0); body mass index (BMI) = weight/height squared (international unit kg/m2); diagnosis types were divided into MSA with predominantly parkinsonian features (MSA-P) = 1 and MSA with predominantly cerebellar ataxia (MSA-C) = 0; Onset of disturbance = 0 (including urinary disturbance and orthostatic hypotension) and onset of motor symptoms = 1 (including symptoms of cerebellar ataxia and parkinsonism); recurrent falls within 3 years = 1, absence = 0 ;with pyramidal tract sign=1, without=0;with stridor=1,without=0;with severe snoring=1,without=0;with RBD=1,without=0;with orthostatic hypotension=1 , none = 0; the rest of the indicators are numerical data.
最终获取到目标数据集包括:临床指标包括:年龄、性别、发病年龄、诊断延迟、病程、体重指数(Body Mass Index,BMI)、诊断类型、首发症状形式、是否在3年内反复跌倒、是否有锥体束征、是否有喘鸣、是否有严重的鼾声、是否有快速眼动期睡眠行为障碍(RBD),统一多系统萎缩评估量表(Unified Rating MSA Scale,UMSARS)第一部分得分、UMSARS第二部分得分、UMSARS第四部分得分、UMSARS总分、是否有直立性低血压;血液学指标包括:红细胞计数、血红蛋白、红细胞压积、平均红细胞体积、平均红细胞血红蛋白含量、平均红细胞血红蛋白浓度、红细胞分布宽度CV、红细胞分布宽度SD、血小板计数、白细胞计数、中性分叶核粒细胞百分率、淋巴细胞百分率、单核细胞百分率、嗜酸性粒细胞百分率、嗜碱性粒细胞百分率、中性分叶核粒细胞绝对值、淋巴细胞绝对值、单核细胞绝对值、嗜酸细胞绝对值、嗜碱细胞绝对值、总胆红素、直接胆红素、间接胆红素、丙氨酸氨基转移酶(ALT)、门冬氨酸氨基转移酶(AST)、AST/ALT的比值、总蛋白、白蛋白、球蛋白、白球比例、葡萄糖、尿素、肌酐、血清胱抑素C、尿酸、甘油三酯、胆固醇、高密度脂蛋白、低密度脂蛋白、碱性磷酸酶、谷氨酰转肽酶、肌酸激酶、乳酸脱氢酶、羟丁酸脱氢酶。The target data set finally obtained includes: clinical indicators include: age, gender, age of onset, delay in diagnosis, course of disease, body mass index (BMI), type of diagnosis, form of first symptoms, whether repeated falls within 3 years, whether there is Pyramidal tract signs, wheezing, severe snoring, rapid eye movement sleep behavior disorder (RBD), Unified Multiple System Atrophy Assessment Scale (Unified Rating MSA Scale, UMSARS) first part score, UMSARS Second part score, UMSARS fourth part score, UMSARS total score, whether there is orthostatic hypotension; hematological indicators include: red blood cell count, hemoglobin, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin content, mean corpuscular hemoglobin concentration, Red blood cell distribution width CV, red blood cell distribution width SD, platelet count, white blood cell count, percentage of neutrophils, percentage of lymphocytes, percentage of monocytes, percentage of eosinophils, percentage of basophils, neutrophils Absolute granulocytes, absolute lymphocytes, absolute monocytes, absolute eosinophils, absolute basophils, total bilirubin, direct bilirubin, indirect bilirubin, alanine transamination Enzyme (ALT), aspartate aminotransferase (AST), AST/ALT ratio, total protein, albumin, globulin, white globule ratio, glucose, urea, creatinine, serum cystatin C, uric acid, triglycerides Ester, cholesterol, high-density lipoprotein, low-density lipoprotein, alkaline phosphatase, glutamyl transpeptidase, creatine kinase, lactate dehydrogenase, hydroxybutyrate dehydrogenase.
例如,以患者1为例,性别男=1,年龄49岁,发病年龄47岁,诊断延迟1.5年,病程2年,体重指数23.6,诊断类型为MSA-P型=1,首发症状为运动症状=1,3年内反复跌倒=1,有锥体束征=1,无喘鸣=0,无严重鼾声=0,有快速动眼期睡眠行为障碍=1,UMSARS第一部分评分为10分,UMSARS第二部分评分为12分,UMSARS第四部分评分为2分,UMSARS总分为24分,有直立性低血压=1,红细胞计数=4.76、血红蛋白=138、红细胞压积=0.41、平均红细胞体积=86.3、平均红细胞血红蛋白含量=29、平均红细胞血红蛋白浓度=336、红细胞分布宽度CV=12.7、红细胞分布宽度SD=40.5、血小板计数=199、白细胞计数=6.1、中性分叶核粒细胞百分率=56.6、淋巴细胞百分率=36.9、单核细胞百分率=4.4、嗜酸性粒细胞百分率=1.8、嗜碱性粒细胞百分率=0.3、中性分叶核粒细胞绝对值=3.45、淋巴细胞绝对值=2.25、单核细胞绝对值=0.27、嗜酸细胞绝对值=0.11、嗜碱细胞绝对值=0.02、总胆红素=14.2、直接胆红素=3.2、间接胆红素=11、丙氨酸氨基转移酶(ALT)=11、门冬氨酸氨基转移酶(AST)=15、AST/ALT的比值=1.36、总蛋白=69.2、白蛋白=40.8、球蛋白=28.4、白球比例=1.44、葡萄糖=5.38、尿素=4.88、肌酐=67.1、血清胱抑素C=0.94、尿酸=424、甘油三酯=2.1、胆固醇=4.81、高密度脂蛋白=1、低密度脂蛋白=2.89、碱性磷酸酶=82、谷氨酰转肽酶=16、肌酸激酶=82、乳酸脱氢酶=173、羟丁酸脱氢酶=125。根据随访在病程第3年出现失能=0。For example, take patient 1 as an example, gender male=1, age 49 years old, age of onset 47 years old, diagnosis delayed by 1.5 years, course of disease 2 years, body mass index 23.6, diagnosis type MSA-P=1, first symptom was motor symptoms = 1, repeated falls within 3 years = 1, pyramidal tract sign = 1, no wheeze = 0, no severe snoring = 0, rapid eye movement sleep behavior disorder = 1, UMSARS first part score is 10 points, UMSARS Score of 12 on the second part, 2 on the fourth part of UMSARS, 24 on the total UMSARS score, with orthostatic hypotension = 1, red blood cell count = 4.76, hemoglobin = 138, hematocrit = 0.41, mean corpuscular volume = 86.3, mean corpuscular hemoglobin content = 29, mean corpuscular hemoglobin concentration = 336, red blood cell distribution width CV = 12.7, red blood cell distribution width SD = 40.5, platelet count = 199, white blood cell count = 6.1, percentage of neutrophils = 56.6, percentage of lymphocytes=36.9, percentage of monocytes=4.4, percentage of eosinophils=1.8, percentage of basophils=0.3, absolute value of neutrophils=3.45, absolute value of lymphocytes=2.25 , Absolute value of monocytes=0.27, absolute value of eosinophils=0.11, absolute value of basophils=0.02, total bilirubin=14.2, direct bilirubin=3.2, indirect bilirubin=11, alanine amino Transferase (ALT) = 11, aspartate aminotransferase (AST) = 15, AST/ALT ratio = 1.36, total protein = 69.2, albumin = 40.8, globulin = 28.4, white globule ratio = 1.44, glucose =5.38, urea=4.88, creatinine=67.1, serum cystatin C=0.94, uric acid=424, triglyceride=2.1, cholesterol=4.81, high-density lipoprotein=1, low-density lipoprotein=2.89, alkaline phosphate Enzyme = 82, glutamyl transpeptidase = 16, creatine kinase = 82, lactate dehydrogenase = 173, hydroxybutyrate dehydrogenase = 125. Disability at the 3rd year of follow-up = 0.
S13、根据目标数据集、预设线性核函数及支持向量机算法支持向量机算法及预设线性核函数,使用R程序中的kernlab程序包构建多系统萎缩失能的预测模型。S13. According to the target data set, the preset linear kernel function and the support vector machine algorithm and the support vector machine algorithm and the preset linear kernel function, use the kernlab package in the R program to construct a prediction model of multiple system atrophy and disability.
在获得到目标数据集后,优先使用线性不可分的支持向量机算法,利用核函数:k(xi,xj)=φ(xi)·φ(xj),使用R程序中的kernlab程序包构建多系统萎缩失能的预测模型。After obtaining the target data set, use the linear inseparable support vector machine algorithm first, use the kernel function: k( xi , x j )=φ( xi )·φ(x j ), use the kernlab program in the R program Package to build predictive models of multiple system atrophy disability.
在本申请中,分类平面约束条件,可以为:In this application, the classification plane constraints can be:
yi(wxi+b)≥1,i=1,2,…,N。y i (wx i +b)≥1, i=1,2,...,N.
为了权衡泛化能力和错误分类,在min1/2‖w‖2中引入惩罚项: In order to balance generalization ability and misclassification, a penalty term is introduced in min1/ 2‖w‖2 :
将目标函数转化为:Transform the objective function into:
ξi≥0,i=1,2,…,N。 ξ i ≥0, i=1,2,...,N.
其中C为错误惩罚因子,也称为成本值,代表对错分样本点的惩罚程度。因此该算法试图使总成本最小,而不是寻找最大间隔。即Among them, C is the error penalty factor, also known as the cost value, which represents the degree of punishment for misclassified sample points. So the algorithm tries to minimize the total cost instead of finding the maximum interval. Right now
yi(wxi+b)≥1-ξi,ξi≥0。y i (wx i +b)≥1-ξ i , ξi≥0.
将目标数据集输入支持向量机模型,通过系统将全部有效样本随机分为训练集和测试集。例如,通过系统抽样将137例样本随机分为训练集和测试集;其中80%(109例)为训练集,20%(28例)为测试集。值得说明的是,此处对数据只是列举,并不是限定。The target data set is input into the support vector machine model, and all valid samples are randomly divided into training set and test set through the system. For example, 137 samples are randomly divided into training set and test set through systematic sampling; 80% (109 cases) of them are training set, and 20% (28 cases) are test set. It is worth noting that the data here are just enumerations, not limitations.
根据支持向量机算法和上述的线性核函数、目标数据集,构建多系统萎缩失能预测模型。According to the support vector machine algorithm and the above-mentioned linear kernel function and the target data set, a multiple system atrophy disability prediction model was constructed.
支持向量机的错误惩罚因子C的选择范围为5-20,例如可以考虑选取5,6,7,8,…,17,18,19,20及其上述数值之间的具体点值,此处不做具体赘述,优选的惩罚因子为5-8。The selection range of the error penalty factor C of the support vector machine is 5-20, for example, it can be considered to select specific point values between 5, 6, 7, 8, ..., 17, 18, 19, 20 and the above values, here Without going into details, the preferred penalty factor is 5-8.
为了验证失能预测模型评估的准确度,可以使用Kappa统计量来衡量。Kappa的取值范围是是[0,1],这个系数的值越高,则代表模型实现的分类准确度越高,一般Kappa取值为0.6及以上数值时,代表模型的预测值与真实值有着较好的一致性。In order to verify the accuracy of the assessment of the disability prediction model, Kappa statistics can be used to measure. The value range of Kappa is [0,1]. The higher the value of this coefficient, the higher the classification accuracy of the model. Generally, when the value of Kappa is 0.6 or above, it represents the predicted value and the real value of the model. have a good consistency.
本发明中使用Cohen的kappa统计量计算方法,其表达式可以为:Use Cohen's kappa statistical calculation method among the present invention, its expression can be:
Pr(a)是表示模型预测值和真实值之间的真实一致性,Pr(e)表示模型预测值和期望值的一致性。Pr(a) represents the real consistency between the model predicted value and the real value, and Pr(e) represents the consistency between the model predicted value and the expected value.
得到预测模型结果后,用测试集进行验证,对预测结果和实际情况进行比较,得到两者之间的混淆矩阵,混淆矩阵见下表1,其中8是实际4年内发生失能被预测为失能的样本例数,2是实际4年内发生失能被预测为未发生失能的样本例数,4是实际在4年内未发生失能被预测为发生失能的样本例数;14是实际在4年内未发生失能被预测为未发生失能的样本例数。After obtaining the results of the prediction model, use the test set for verification, compare the prediction results with the actual situation, and obtain the confusion matrix between the two. The confusion matrix is shown in Table 1 below, where 8 means that the actual disability within 4 years is predicted to be a disability. 2 is the number of samples that were actually disabled within 4 years and were predicted to be non-disabled; 4 is the number of samples that were predicted to be disabled without actually occurring within 4 years; 14 is the actual The number of sample cases in which disability-free within 4 years is predicted to be non-disabled.
表1Table 1
表1中,0代表4年内发生失能,1代表4年内未发生失能。In Table 1, 0 means disability occurred within 4 years, and 1 means no disability occurred within 4 years.
因此,本实施例构建的失能预测模型敏感度为:87.5%,特异度为:66.7%,Kappa系数为0.6,0.6取值范围属于[0.6,1],因此,该模型的准确度良好。Therefore, the sensitivity of the disability prediction model constructed in this example is 87.5%, the specificity is 66.7%, the Kappa coefficient is 0.6, and the value range of 0.6 belongs to [0.6,1]. Therefore, the accuracy of the model is good.
本发明基于支持向量机的多系统萎缩失能预测模型的构建方法,根据多系统萎缩患者的临床特征联合血液学指标进行特征筛选,对筛选出的多个特征采用支持向量机建模,实现对多系统萎缩患者失能的精准预测,从而指导临床医生对患者进行个体化的精准治疗,以期改善患者预后,提高其生活质量。The method for constructing a multi-system atrophy disability prediction model based on a support vector machine in the present invention performs feature screening according to the clinical characteristics of patients with multiple system atrophy combined with hematological indicators, and adopts support vector machine modeling for multiple features screened out to realize Accurate prediction of disability in patients with multiple system atrophy, so as to guide clinicians to carry out individualized precise treatment for patients, in order to improve the prognosis of patients and improve their quality of life.
本发明实施例提供的多系统萎缩失能预测模型构建方法,首次采用多系统萎缩患者的临床特征联合血液学指标作为预测数据,对预测数据进行特征筛选,对筛选出的多个特征采用支持向量机建模,从而实现对多系统萎缩患者失能的精准预测,从而指导临床医生对患者进行个体化的精准治疗,以改善患者预后情况,提高其生活质量。The multiple system atrophy disability prediction model construction method provided by the embodiment of the present invention uses the clinical characteristics of patients with multiple system atrophy combined with hematological indicators as the prediction data for the first time, performs feature screening on the prediction data, and uses support vectors for the screened out multiple features Machine modeling, so as to achieve accurate prediction of disability in patients with multiple system atrophy, so as to guide clinicians to carry out individualized and precise treatment for patients, so as to improve the prognosis of patients and improve their quality of life.
基于一个总的发明构思,本发明实施例还提供一种多系统萎缩失能预测方法。Based on a general inventive concept, an embodiment of the present invention also provides a multiple system atrophy disability prediction method.
图2为本发明实施例提供的一种多系统萎缩失能预测方法流程示意图,请参阅图2,本发明实施例提供的预测方法,可以包括以下步骤:Fig. 2 is a schematic flowchart of a method for predicting multiple system atrophy disability provided by an embodiment of the present invention, please refer to Fig. 2, the prediction method provided by an embodiment of the present invention may include the following steps:
S21、获取目标多系统萎缩患者的基本数据,基本数据,包括:临床指标数据和血液学指标数据。S21. Obtain basic data of the target multiple system atrophy patient, the basic data including: clinical index data and hematological index data.
S22、基于预设处理规则,对目标数据进行处理,获取目标数据。S22. Based on a preset processing rule, process the target data to obtain the target data.
S23、根据目标数据及上述任一的多系统萎缩失能预测模型的构建方法建立的模型,预测目标多系统萎缩患者的失能情况。S23. Predict the disability of the target multiple system atrophy patient according to the target data and the model established by any one of the methods for constructing the multiple system atrophy disability prediction model mentioned above.
在一个具体的预测过程中,可以通过获取目标患者的基本数据,具体的获取过程及处理过程在上述实施例已记载,此处不做赘述。将获取到的目标数据,输入到构建的预测模型中,从而获取到目标患者的失能预测情况。In a specific prediction process, the basic data of the target patient can be acquired. The specific acquisition process and processing process have been described in the above-mentioned embodiments, and will not be repeated here. The obtained target data is input into the constructed prediction model, so as to obtain the disability prediction of the target patient.
基于一个总的发明构思,本发明实施例还提供一种多系统萎缩失能预测模型构建装置。Based on a general inventive concept, an embodiment of the present invention also provides a device for constructing a multi-system atrophy and disability prediction model.
图3为本发明实施例提供的一种多系统萎缩失能预测模型构建装置结构示意图,请参阅图3,本发明实施例提供的多系统萎缩失能预测模型构建装置,包括:获取模块31、处理模块32和构建模块33。FIG. 3 is a schematic structural diagram of a device for constructing a multi-system atrophy disability prediction model provided by an embodiment of the present invention. Please refer to FIG.
获取模块31,用于获取病程在预设时间段的多系统萎缩患者的基本数据,基本数据,包括:临床指标数据和血液学指标数据;An
处理模块32,用于基于预设处理规则,对临床指标数据和血液学指标数据进行处理,获取目标数据集;A
构建模块33,用于根据目标数据集、支持向量机算法及预设线性核函数,使用R程序中的kernlab程序包构建多系统萎缩失能的预测模型。The
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。Regarding the apparatus in the foregoing embodiments, the specific manner in which each module executes operations has been described in detail in the embodiments related to the method, and will not be described in detail here.
本发明实施例提供的多系统萎缩失能预测模型构建装置,首次采用多系统萎缩患者的临床指标联合血液学指标作为预测数据,对预测数据进行特征筛选,对筛选出的多个特征采用支持向量机建模,从而实现对多系统萎缩患者失能的精准预测,从而指导临床医生对患者进行个体化的精准治疗,以改善患者预后,提高其生活质量。The multiple system atrophy disability prediction model construction device provided by the embodiment of the present invention uses the clinical indicators of multiple system atrophy patients combined with hematological indicators as the prediction data for the first time, performs feature screening on the prediction data, and uses support vectors for the screened out multiple features Machine modeling, so as to achieve accurate prediction of disability in patients with multiple system atrophy, so as to guide clinicians to carry out individualized and precise treatment for patients, so as to improve the prognosis of patients and improve their quality of life.
基于一个总的发明构思,本发明实施例还提供一种多系统萎缩失能预测设备。Based on a general inventive concept, an embodiment of the present invention also provides a multi-system atrophy disability prediction device.
图4为本发明实施例提供的一种多系统萎缩失能预测设备结构示意图,请参阅图4,本发明实施例提供的一种多系统萎缩失能预测设备,包括:处理器41,以及与处理器相连接的存储器42。Figure 4 is a schematic structural diagram of a multi-system atrophy disability prediction device provided by an embodiment of the present invention, please refer to Figure 4, a multi-system atrophy disability prediction device provided by an embodiment of the present invention includes: a
存储器42用于存储计算机程序,计算机程序至少用于上述任一实施例记载的多系统萎缩失能预测方法;The
处理器41用于调用并执行存储器中的计算机程序。The
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。The above is only a specific embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Anyone skilled in the art can easily think of changes or substitutions within the technical scope disclosed in the present invention. Should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.
可以理解的是,上述各实施例中相同或相似部分可以相互参考,在一些实施例中未详细说明的内容可以参见其他实施例中相同或相似的内容。It can be understood that, the same or similar parts in the above embodiments can be referred to each other, and the content that is not described in detail in some embodiments can be referred to the same or similar content in other embodiments.
需要说明的是,在本发明的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本发明的描述中,除非另有说明,“多个”的含义是指至少两个。It should be noted that, in the description of the present invention, terms such as "first" and "second" are only used for description purposes, and should not be understood as indicating or implying relative importance. In addition, in the description of the present invention, unless otherwise specified, the meaning of "plurality" means at least two.
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。Any process or method descriptions in flowcharts or otherwise described herein may be understood to represent modules, segments or portions of code comprising one or more executable instructions for implementing specific logical functions or steps of the process , and the scope of preferred embodiments of the invention includes alternative implementations in which functions may be performed out of the order shown or discussed, including substantially concurrently or in reverse order depending on the functions involved, which shall It is understood by those skilled in the art to which the embodiments of the present invention pertain.
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。It should be understood that various parts of the present invention can be realized by hardware, software, firmware or their combination. In the embodiments described above, various steps or methods may be implemented by software or firmware stored in memory and executed by a suitable instruction execution system. For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques known in the art: Discrete logic circuits, ASICs with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。Those of ordinary skill in the art can understand that all or part of the steps carried by the methods of the above embodiments can be completed by instructing related hardware through a program, and the program can be stored in a computer-readable storage medium. During execution, one or a combination of the steps of the method embodiments is included.
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。In addition, each functional unit in each embodiment of the present invention may be integrated into one processing module, each unit may exist separately physically, or two or more units may be integrated into one module. The above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. If the integrated modules are implemented in the form of software function modules and sold or used as independent products, they can also be stored in a computer-readable storage medium.
上述提到的存储介质可以是只读存储器,磁盘或光盘等。The storage medium mentioned above may be a read-only memory, a magnetic disk or an optical disk, and the like.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, descriptions referring to the terms "one embodiment", "some embodiments", "example", "specific examples", or "some examples" mean that specific features described in connection with the embodiment or example , structure, material or characteristic is included in at least one embodiment or example of the present invention. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。Although the embodiments of the present invention have been shown and described above, it can be understood that the above embodiments are exemplary and should not be construed as limiting the present invention, those skilled in the art can make the above-mentioned The embodiments are subject to changes, modifications, substitutions and variations.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010252559.9A CN111341452B (en) | 2020-04-01 | 2020-04-01 | Multisystem atrophy disability prediction method, model building method, device and equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010252559.9A CN111341452B (en) | 2020-04-01 | 2020-04-01 | Multisystem atrophy disability prediction method, model building method, device and equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111341452A CN111341452A (en) | 2020-06-26 |
CN111341452B true CN111341452B (en) | 2023-07-07 |
Family
ID=71184607
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010252559.9A Active CN111341452B (en) | 2020-04-01 | 2020-04-01 | Multisystem atrophy disability prediction method, model building method, device and equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111341452B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112462073B (en) * | 2020-11-03 | 2024-06-11 | 佛山市第一人民医院(中山大学附属佛山医院) | Data processing method and system for hematology index |
CN116052892B (en) * | 2023-03-20 | 2023-06-16 | 北京大学第三医院(北京大学第三临床医学院) | Amyotrophic lateral sclerosis disease progression classification system and method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012170387A (en) * | 2011-02-21 | 2012-09-10 | Hokkaido Univ | Method for examination of neurodegenerative disease |
CN105102621A (en) * | 2013-02-05 | 2015-11-25 | 国立大学法人东京大学 | Method for detecting risk of multiple system atrophy, detection kit, and drug for treating or preventing multiple system atrophy |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180179594A1 (en) * | 2016-10-31 | 2018-06-28 | Parkinson's Institute | Multiple system atrophy and the treatment thereof |
CN106778014B (en) * | 2016-12-29 | 2020-06-16 | 浙江大学 | Disease risk prediction modeling method based on recurrent neural network |
-
2020
- 2020-04-01 CN CN202010252559.9A patent/CN111341452B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012170387A (en) * | 2011-02-21 | 2012-09-10 | Hokkaido Univ | Method for examination of neurodegenerative disease |
CN105102621A (en) * | 2013-02-05 | 2015-11-25 | 国立大学法人东京大学 | Method for detecting risk of multiple system atrophy, detection kit, and drug for treating or preventing multiple system atrophy |
Also Published As
Publication number | Publication date |
---|---|
CN111341452A (en) | 2020-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Enquobahrie et al. | Early pregnancy lipid concentrations and the risk of gestational diabetes mellitus | |
Gubhaju et al. | Assessment of renal functional maturation and injury in preterm neonates during the first month of life | |
Makuyana et al. | Liver and kidney function tests in normal and pre-eclamptic gestation: a comparison with non-gestational reference values | |
CN111341452B (en) | Multisystem atrophy disability prediction method, model building method, device and equipment | |
Rodríguez-Dennen et al. | Comparison of hemodynamic, biochemical and hematological parameters of healthy pregnant women in the third trimester of pregnancy and the active labor phase | |
Tezcan et al. | Diagnostic performance of lower extremity venous wall thickness and laboratory findings in the diagnosis of the Behçet disease | |
van Donge et al. | Age‐dependent changes of kidney injury biomarkers in pediatrics | |
CN117577330A (en) | Device and storage medium for predicting liver fibrosis degree of nonalcoholic fatty liver disease | |
Safina Nageen et al. | Platelet count, mean platelet volume, and red cell distribution width as markers for psoriasis severity | |
Zhou et al. | Diagnostic value of growth differentiation factor-15 and β2-microglobulin in children with congenital heart disease combined with chronic heart failure and its relationship with cardiac function. | |
Melekoglu et al. | Evaluation of second trimester amniotic fluid ADAMTS4, ADAMTS5, interleukin‐6 and tumor necrosis factor‐α levels in patients with gestational diabetes mellitus | |
Lin et al. | Chronic kidney disease, atherosclerosis, and cognitive and physical function in the geriatric group of the National Health and Nutrition Survey 1999–2002 | |
Jeon et al. | Depressive symptoms, its sub-factors, and augmentation index: the modifying effects according to inflammatory markers | |
Cho et al. | The clinical significance of serum cystatin C in critically ill newborns with normal serum creatinine | |
CN111007258A (en) | Reagent for early diagnosis of Kawasaki disease and application thereof | |
Kamal et al. | Serum beta-2 microglobulin is a reliable biomarker to predict diabetic nephropathy | |
Surmiak et al. | Umbilical Neutrophil Gelatinase‐Associated Lipocalin Level as an Early Predictor of Acute Kidney Injury in Neonates with Hypoplastic Left Heart Syndrome | |
CN112180093B (en) | Critical disease mortality diagnostic biomarker tenascin-c and application thereof | |
Esfandiar et al. | Urinary system and renal involvement in children with cystic fibrosis | |
Rugină et al. | Gestational obesity and subclinical inflammation: The pathway from simple assessment to complex outcome (: STROBE-compliant article:) | |
RU2704960C1 (en) | Method for prediction of atherosclerosis development | |
An et al. | Clinical significance and influencing factors of carotid pulse wave velocity in patients with diabetic microangiopathy | |
Naumovic et al. | Application of artificial neural networks in estimating predictive factors and therapeutic efficacy in idiopathic membranous nephropathy | |
Tarnovski et al. | SEX DIFFERENCES IN CARDIOVASCULAR RISK FACTORS AND RENAL FUNCTION AMONG YOUNG ADULTS AFTER INTRAUTERINE GROWTH RESTRICTION. | |
Hassan et al. | Proenkephalin is an Early Biomarker to Predict Septic Acute Kidney Injury among Patients in Intensive Care Unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |