CN111339908B - 基于多模态信息融合与决策优化的组群行为识别方法 - Google Patents
基于多模态信息融合与决策优化的组群行为识别方法 Download PDFInfo
- Publication number
- CN111339908B CN111339908B CN202010111024.XA CN202010111024A CN111339908B CN 111339908 B CN111339908 B CN 111339908B CN 202010111024 A CN202010111024 A CN 202010111024A CN 111339908 B CN111339908 B CN 111339908B
- Authority
- CN
- China
- Prior art keywords
- fusion
- network
- space
- time
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000004927 fusion Effects 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 title claims abstract description 44
- 238000005457 optimization Methods 0.000 title claims abstract description 37
- 230000003287 optical effect Effects 0.000 claims abstract description 40
- 230000011218 segmentation Effects 0.000 claims abstract description 27
- 230000000007 visual effect Effects 0.000 claims abstract description 12
- 239000013589 supplement Substances 0.000 claims abstract description 10
- 238000012549 training Methods 0.000 claims description 25
- 230000006870 function Effects 0.000 claims description 24
- 230000005284 excitation Effects 0.000 claims description 23
- 230000006835 compression Effects 0.000 claims description 13
- 238000007906 compression Methods 0.000 claims description 13
- 239000011159 matrix material Substances 0.000 claims description 11
- 230000007774 longterm Effects 0.000 claims description 10
- 238000011176 pooling Methods 0.000 claims description 10
- 230000007246 mechanism Effects 0.000 claims description 4
- 238000012905 input function Methods 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 2
- 239000000047 product Substances 0.000 claims description 2
- 238000007499 fusion processing Methods 0.000 claims 1
- 238000004364 calculation method Methods 0.000 abstract description 7
- 238000007500 overflow downdraw method Methods 0.000 abstract description 7
- 241000288105 Grus Species 0.000 abstract 1
- 230000006399 behavior Effects 0.000 description 60
- 238000012360 testing method Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 10
- 238000000605 extraction Methods 0.000 description 10
- 238000013527 convolutional neural network Methods 0.000 description 8
- 230000000295 complement effect Effects 0.000 description 7
- 238000002372 labelling Methods 0.000 description 6
- 230000002123 temporal effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 238000013441 quality evaluation Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000003062 neural network model Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- QDGIAPPCJRFVEK-UHFFFAOYSA-N (1-methylpiperidin-4-yl) 2,2-bis(4-chlorophenoxy)acetate Chemical compound C1CN(C)CCC1OC(=O)C(OC=1C=CC(Cl)=CC=1)OC1=CC=C(Cl)C=C1 QDGIAPPCJRFVEK-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000011273 social behavior Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/103—Static body considered as a whole, e.g. static pedestrian or occupant recognition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2415—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on parametric or probabilistic models, e.g. based on likelihood ratio or false acceptance rate versus a false rejection rate
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/047—Probabilistic or stochastic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/52—Surveillance or monitoring of activities, e.g. for recognising suspicious objects
- G06V20/53—Recognition of crowd images, e.g. recognition of crowd congestion
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Probability & Statistics with Applications (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Multimedia (AREA)
- Human Computer Interaction (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010111024.XA CN111339908B (zh) | 2020-02-24 | 2020-02-24 | 基于多模态信息融合与决策优化的组群行为识别方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010111024.XA CN111339908B (zh) | 2020-02-24 | 2020-02-24 | 基于多模态信息融合与决策优化的组群行为识别方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111339908A CN111339908A (zh) | 2020-06-26 |
CN111339908B true CN111339908B (zh) | 2023-08-15 |
Family
ID=71181798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010111024.XA Active CN111339908B (zh) | 2020-02-24 | 2020-02-24 | 基于多模态信息融合与决策优化的组群行为识别方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111339908B (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112767451B (zh) * | 2021-02-01 | 2022-09-06 | 福州大学 | 一种基于双流卷积神经网络的人群分布预测方法及其系统 |
CN113420697B (zh) * | 2021-07-01 | 2022-12-09 | 中科人工智能创新技术研究院(青岛)有限公司 | 基于表观和形状特征的换装视频行人重识别方法及系统 |
CN113609355B (zh) * | 2021-07-15 | 2022-06-03 | 哈尔滨理工大学 | 一种基于动态注意力与图网络推理的视频问答系统、方法、计算机及存储介质 |
CN113343937B (zh) * | 2021-07-15 | 2022-09-02 | 北华航天工业学院 | 一种基于深度卷积和注意力机制的唇语识别方法 |
CN113780230B (zh) * | 2021-09-22 | 2024-08-23 | 湖南工业大学 | 一种基于不变时空注意融合网络的不平衡故障诊断方法 |
CN116189281B (zh) * | 2022-12-13 | 2024-04-02 | 北京交通大学 | 基于时空自适应融合的端到端人体行为分类方法及系统 |
CN115695852B (zh) * | 2022-12-30 | 2023-03-28 | 成都华栖云科技有限公司 | 一种基于多模态信息融合的视频镜头自动挑选组合方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110287870A (zh) * | 2019-06-25 | 2019-09-27 | 大连大学 | 基于综合光流特征描述符及轨迹的人群异常行为检测方法 |
CN110532862A (zh) * | 2019-07-19 | 2019-12-03 | 青岛科技大学 | 基于门控融合单元的特征融合组群识别方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9805255B2 (en) * | 2016-01-29 | 2017-10-31 | Conduent Business Services, Llc | Temporal fusion of multimodal data from multiple data acquisition systems to automatically recognize and classify an action |
WO2018126323A1 (en) * | 2017-01-06 | 2018-07-12 | Sportlogiq Inc. | Systems and methods for behaviour understanding from trajectories |
-
2020
- 2020-02-24 CN CN202010111024.XA patent/CN111339908B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110287870A (zh) * | 2019-06-25 | 2019-09-27 | 大连大学 | 基于综合光流特征描述符及轨迹的人群异常行为检测方法 |
CN110532862A (zh) * | 2019-07-19 | 2019-12-03 | 青岛科技大学 | 基于门控融合单元的特征融合组群识别方法 |
Non-Patent Citations (1)
Title |
---|
基于区域特征融合网络的群组行为识别;杨兴明;范楼苗;;模式识别与人工智能;32(12);1116-1121 * |
Also Published As
Publication number | Publication date |
---|---|
CN111339908A (zh) | 2020-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111339908B (zh) | 基于多模态信息融合与决策优化的组群行为识别方法 | |
CN107609460B (zh) | 一种融合时空双重网络流和attention机制的人体行为识别方法 | |
US11195051B2 (en) | Method for person re-identification based on deep model with multi-loss fusion training strategy | |
CN111709311B (zh) | 一种基于多尺度卷积特征融合的行人重识别方法 | |
CN108133188B (zh) | 一种基于运动历史图像与卷积神经网络的行为识别方法 | |
CN109961034B (zh) | 基于卷积门控循环神经单元的视频目标检测方法 | |
CN107341452B (zh) | 基于四元数时空卷积神经网络的人体行为识别方法 | |
CN108765394B (zh) | 基于质量评价的目标识别方法 | |
Johnson et al. | Clustered pose and nonlinear appearance models for human pose estimation. | |
CN110717411A (zh) | 一种基于深层特征融合的行人重识别方法 | |
CN110569773B (zh) | 基于时空显著性行为注意力的双流网络行为识别方法 | |
CN102938070B (zh) | 一种基于动作子空间与权重化行为识别模型的行为识别方法 | |
Li et al. | Pedestrian detection based on deep learning model | |
CN113239801B (zh) | 基于多尺度特征学习和多级域对齐的跨域动作识别方法 | |
CN113297936B (zh) | 一种基于局部图卷积网络的排球群体行为识别方法 | |
CN112434599B (zh) | 一种基于噪声通道的随机遮挡恢复的行人重识别方法 | |
CN110728216A (zh) | 一种基于行人属性自适应学习的无监督行人再识别方法 | |
Lu et al. | Light cascaded convolutional neural networks for accurate player detection | |
Wang et al. | Intermediate fused network with multiple timescales for anomaly detection | |
Basha et al. | An information-rich sampling technique over spatio-temporal CNN for classification of human actions in videos | |
Tao et al. | Object detection with class aware region proposal network and focused attention objective | |
CN113255602A (zh) | 基于多模态数据的动态手势识别方法 | |
Algamdi et al. | Learning temporal information from spatial information using CapsNets for human action recognition | |
Jiang et al. | LigMSANet: Lightweight multi-scale adaptive convolutional neural network for dense crowd counting | |
Haq et al. | Dynamic mode decomposition via convolutional autoencoders for dynamics modeling in videos |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240325 Address after: 509 Kangrui Times Square, Keyuan Business Building, 39 Huarong Road, Gaofeng Community, Dalang Street, Longhua District, Shenzhen, Guangdong Province, 518000 Patentee after: Shenzhen Litong Information Technology Co.,Ltd. Country or region after: China Address before: 266000 Songling Road, Laoshan District, Qingdao, Shandong Province, No. 99 Patentee before: QINGDAO University OF SCIENCE AND TECHNOLOGY Country or region before: China |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240717 Address after: D188, 2nd Floor, Yingbo Office Building, No. 61 Donghuan 2nd Road, Fukang Community, Longhua Street, Longhua District, Shenzhen City, Guangdong Province 518110 Patentee after: Shenzhen Iteng Information Technology Co.,Ltd. Country or region after: China Address before: 509 Kangrui Times Square, Keyuan Business Building, 39 Huarong Road, Gaofeng Community, Dalang Street, Longhua District, Shenzhen, Guangdong Province, 518000 Patentee before: Shenzhen Litong Information Technology Co.,Ltd. Country or region before: China |