CN111339816B - 基于小波神经网络的多无人机射频信号识别方法 - Google Patents

基于小波神经网络的多无人机射频信号识别方法 Download PDF

Info

Publication number
CN111339816B
CN111339816B CN201911250399.8A CN201911250399A CN111339816B CN 111339816 B CN111339816 B CN 111339816B CN 201911250399 A CN201911250399 A CN 201911250399A CN 111339816 B CN111339816 B CN 111339816B
Authority
CN
China
Prior art keywords
radio frequency
frequency signal
unmanned aerial
slope
aerial vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911250399.8A
Other languages
English (en)
Other versions
CN111339816A (zh
Inventor
曹聪慧
侯群
漆为民
张建敏
王芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jianghan University
Original Assignee
Jianghan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jianghan University filed Critical Jianghan University
Priority to CN201911250399.8A priority Critical patent/CN111339816B/zh
Publication of CN111339816A publication Critical patent/CN111339816A/zh
Application granted granted Critical
Publication of CN111339816B publication Critical patent/CN111339816B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/02Preprocessing
    • G06F2218/04Denoising
    • G06F2218/06Denoising by applying a scale-space analysis, e.g. using wavelet analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Computational Linguistics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明涉及基于小波神经网络的多无人机射频信号识别方法,包括以下步骤:对射频信号分别进行小波分解预处理;对射频信号的特征分别进行统计;对射频信号的特征进行优化;构建射频信号特征矩阵;运用小波神经网络建模分析方法对特征矩阵进行训练,获得最优权值、尺度及平移因子;根据最优权值、尺度及平移因子,运用判别运算公式,对待测射频信号特征矩阵进行运算,以确定待测射频信号中是否包含无人机射频信号。该方法可以不发射电磁波,仅接收无人机自身发射的射频信号,在保证不暴露身份的条件下实现远距离的探测,抗干扰的性能强,分辨率较高,环境适应性强。

Description

基于小波神经网络的多无人机射频信号识别方法
技术领域
本发明涉及通信技术领域,特别涉及基于小波神经网络的多无人机射频信号识别方法。
背景技术
近年来,在相关政策的支持下,低空空域已被逐步开放,无人机等低空目标急剧增加,无人机成本越来越低,开发厂家越来越多,无人机的发展给民用和军用各方面都带来了深远影响,带动了各个行业的发展,但是对于黑飞的无人机的失控和漏检可能会对军事作战、空中交通、比赛、消防、人类生活和隐私构成严重的威胁。
目前,无人机的检测已成为目标检测领域公认的难题,但针对其研究的相关文献还相对较少,现有的无人机检测技术有主动雷达探测、声学检测、红外检测、视觉检测等。主动雷达发射出的电磁波很可能会暴露自身身份,使其并不具有隐蔽性。声学、红外和视觉的检测范围有限,通常不超过300m,并且很容易受到其他低空目标的干扰。
发明内容
本发明提供了基于小波神经网络的多无人机射频信号识别方法,解决了现有方法隐藏性较差、检测范围有限的技术问题,实现了隐藏性高、能远距离探测的技术效果。
本发明所提供的一种基于小波神经网络的多无人机射频信号识别方法,包括以下步骤:
对多无人机样本射频信号及待测射频信号分别进行小波分解预处理,获得预处理样本射频信号及预处理待测射频信号;
对所述预处理样本射频信号及所述预处理待测射频信号的特征分别进行统计,所述特征包括:偏度、峭度及斜率;统计过程具体为:通过偏度公式确定所述偏度;通过峭度公式确定所述峭度;通过斜率公式确定所述斜率;
对所述预处理样本射频信号及所述预处理待测射频信号的特征进行优化,具体为:通过偏度改进公式确定改进后偏度;通过峭度改进公式确定改进后峭度;通过斜率改进公式确定改进后斜率;
通过所述预处理样本射频信号的改进后偏度、所述改进后峭度及所述改进后斜率构建样本射频信号特征矩阵;通过所述预处理待测射频信号的改进后偏度、所述改进后峭度及所述改进后斜率构建待测射频信号特征矩阵;
运用小波神经网络建模分析方法对所述样本射频信号特征矩阵进行训练,获得最优权值、尺度及平移因子;
根据所述最优权值、所述尺度及所述平移因子,运用判别运算公式,对所述待测射频信号特征矩阵进行运算,以确定所述待测射频信号中是否包含无人机射频信号,即确定是否有无人机出现。
作为优选,无人机通信时发射的射频信号是在2.4-2.5GHz之间跳变的一个带宽的射频波;
所述小波分解预处理为:将所述无人机通信时发射的射频波转换为多个谐波加上一个残波的形式,可以用小波分解射频信号表达式表示:
Figure BDA0002308861870000021
其中,f=2.4×109,...,2.5×109,si(f)指的是第i个谐波,r(f)指的是余波。
作为优选,为了滤除杂波噪声,去掉前两个谐波后的所述小波分解射频信号表达式为:
Figure BDA0002308861870000031
作为优选,对所述预处理样本射频信号及所述预处理待测射频信号的特征分别进行统计时,
每次检测时,无人机射频信号在带内的位置并不确定,但所述无人机射频信号带宽Ba已知,故可把所述Ba作为频域滑窗的宽度去寻找适合的特征。
作为优选,确定所述偏度的具体过程为:
以宽度为Ba的滑窗在频带内滑动,频域采样间隔和滑动间隔都为fw,滑窗对应Ne个样本点,计算滑窗滑动到每一个位置时滑窗内信号的偏度值,第k个位置对应的所述偏度公式为:
Figure BDA0002308861870000032
其中,
Figure BDA0002308861870000033
和σ是所述滑窗滑动到第k个位置处对应样本点的和均值方差,无人机射频信号所在位置的偏度接近为零
作为优选,确定所述峭度的具体过程为:
以宽度为Ba的滑窗在频带内滑动,频域采样间隔和滑动间隔都为fw,计算滑窗滑动到每一个位置时滑窗内信号的峭度,第k个位置对应的所述峭度公式为:
Figure BDA0002308861870000034
作为优选,确定所述斜率的具体过程为:
以带宽为Bb的滑窗在频带内滑动,频域采样间隔和滑动间隔都为fw,滑窗对应Nf个样本点,计算滑窗滑动到每一个位置时滑窗内信号的拟合斜率,第k个位置对应的所述斜率公式为:
Figure BDA0002308861870000041
作为优选,所述偏度改进公式为:
Figure BDA0002308861870000042
所述峭度改进公式为:
Figure BDA0002308861870000043
所述斜率改进公式为:
Figure BDA0002308861870000051
其中,PST=0.68,NST=-0.68,Lp和Lq是滑窗在第p和第q个频点位置的斜率值,Pa是满足斜率小于NST的频点位置,
Figure BDA0002308861870000052
是满足该条件的频点位置的数量,Pb是满足斜率大于PST的频点位置,
Figure BDA0002308861870000053
为满足该条件的频点位置的数量,Fab为两频点位置间距。
作为优选,所述最优权值、所述尺度及所述平移因子的数学表达式分别为:
Figure BDA0002308861870000054
Figure BDA0002308861870000061
Figure BDA0002308861870000062
Figure BDA0002308861870000063
作为优选,所述对所述预处理样本射频信号的特征分别进行统计后,还可根据所述特征,运用无人机个数估算公式计算无人机的数量;
所述无人机个数估算公式为:
Figure BDA0002308861870000064
其中,由于每次检测时信号在带内的位置并不确定,但无人机射频信号带宽Ba已知,故可把Ba作为频域滑窗的宽度去寻找适合的特征;对于滑窗滑动过的所有位置,若存在两个位置的间隔在(Ba-0.47×106)/fw和(Ba+0.47×106)/fw之间,U是包含满足上述条件的所有滑窗对的起始位置的集合,
Figure BDA0002308861870000071
是满足上述条件的滑窗对数量,T为U里面相邻元素间隔大于(Ba-0.47×106)/fw的前元素集合,
Figure BDA0002308861870000072
为T中元素的个数,也是检测到的无人机的个数。
本申请中提供的多无人机射频信号识别方法,至少具有如下技术效果或优点:
本申请提供的基于小波神经网络的多无人机射频信号识别方法,对被动收集到的无人机所在跳频范围内的频域信号进行分析和预处理,提取和改进三种无人机射频信号的特征,并利用此三种特征结合小波神经网络实现对多个无人机射频信号的识别,实现对多个无人机数量的估计,通过降低虚警概率和漏检概率来提高无人机射频信号的识别率。本识别方法可以不发射电磁波,仅接收无人机自身发射的射频信号,在保证不暴露身份的条件下实现远距离的探测,抗干扰的性能强,分辨率较高,环境适应性强。
附图说明
图1(a)为本申请的2.4-2.5GHz范围内的多无人机信号的波形图;
图1(b)为图1(a)的多无人机信号经过小波分解预处理后的波形图;
图2(a)为多无人机射频信号的偏度与频率的关系线形图;
图2(b)为多无人机射频信号的峭度与频率的关系线形图;
图2(c)为多无人机射频信号的斜率与频率的关系线形图;
图3为本申请的基于小波神经网络的多无人机射频识别算法的流程示意图;
图4(a)为本申请实施例中的室内不同距离下基于小波神经网络的多无人机射频信号识别率与数量的关系线形图;
图4(b)为本申请实施例中的室外不同距离下基于小波神经网络的多无人机射频信号识别率与数量的关系线形图;
图5为本申请实施例提供的多个无人机射频信号识别系统模型的组成示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
本申请提供了一种基于小波神经网络的多无人机射频信号识别方法,对被动收集到的无人机所在跳频范围内的频域信号进行分析和预处理,提取和改进三种无人机射频信号的特征,并利用此三种特征结合小波神经网络实现对多个无人机射频信号的识别,实现对多个无人机数量的估计,通过降低虚警概率和漏检概率来提高无人机射频信号的识别率。
本申请具体采用以下技术方案予以实现:
1、基于小波分解的多个无人机射频信号预处理
无人机通信时发射的信号是在2.4-2.5GHz之间跳变的一个带宽的射频波,如图1(a)所示。由于该信号为跳频OFDM通信方式,通信频率并不固定,因此为了提高识别率,需要接收2.4-2.5GHz通信频率范围内的所有信号,并且对其进行分析和处理。小波分解的基本思想是将一个频率变化不规则的波转换为多个谐波加上一个残波的形式,其可以用于任何类型信号的分解和预处理。在此,对接收到的射频信号做小波分解后可以表示为:
Figure BDA0002308861870000081
其中,f=2.4×109,...,2.5×109,si(f)指的是第i个谐波,r(f)指的是余波。为了滤除杂波噪声,去掉前两个谐波后的信号可以表示为:
Figure BDA0002308861870000082
图1(b)显示的是小波分解预处理后的信号波形,很明显可以看到,高斯白噪声被削减了。
2、多无人机射频信号统计特征分析
由于每次检测时信号在带内的位置并不确定,但无人机射频信号带宽Ba已知,故可把Ba作为频域滑窗的宽度去寻找适合的特征。
1)偏度
参见附图2(a),偏度描述了信号的对称性,而无人机信号在频域上亦是一个近似对称的信号,因此,宽度为Ba的滑窗在频带内滑动,频域采样间隔和滑动间隔都为fw,滑窗对应Ne个样本点,计算滑窗滑动到每一个位置时滑窗内信号的偏度值,第k个位置对应的偏度可表示为:
Figure BDA0002308861870000091
其中,
Figure BDA0002308861870000092
和σ是滑窗滑动到第k个位置处对应样本点的均值和方差,无人机射频信号所在位置的偏度接近为零。
2)峭度
参见附图2(b),峭度描述了信号的陡峭程度,无人机信号在频域上是一个带宽为Ba的近似方波的信号,同样以宽度为Ba的滑窗在频带内滑动,频域采样间隔和滑动间隔都为fw,计算滑窗滑动到每一个位置时滑窗内信号的峭度,第k个位置对应的峭度可表示为:
Figure BDA0002308861870000093
无人机信号的所在的位置处的峭度在0-2.5范围之间。
3)斜率
参见附图2(c),考虑到无人机频域信号有一个上升沿和一个下降沿,选用带宽为Bb的滑窗在频带内滑动,频域采样间隔和滑动间隔都为fw,滑窗对应Nf个样本点,计算滑窗滑动到每一个位置时滑窗内信号的拟合斜率,第k个位置对应的拟合斜率可表示为:
Figure BDA0002308861870000101
无人机信号的所在的位置处有一个极大和一个极小的斜率,这两个斜率所对应的频点位置的间距正好为信号的带宽Ba
为了检测多个无人机,对上述特征做了改进,改进的偏度可以表示为:
Figure BDA0002308861870000102
改进的峭度可以表示为:
Figure BDA0002308861870000103
改进的斜率可以表示为:
Figure BDA0002308861870000111
其中,PST=0.68,NST=-0.68,Lp和Lq是滑窗在第p和第q个频点位置的斜率值,Pa是满足斜率小于NST的频点位置,
Figure BDA0002308861870000113
是满足该条件的频点位置的数量,Pb是满足斜率大于PST的频点位置,
Figure BDA0002308861870000114
为满足该条件的频点位置的数量,Fab为两频点位置间距。
4、基于小波神经网络的多个无人机射频信号识别算法
小波神经网络指的是结合小波变换与多层前馈神经网络的新的建模分析方法,具有小波变换的局部化、神经网络非线性逼近与自适应学习的特征。利用改进的偏度、改进的峭度和改进的斜率构成的特征矩阵
Figure BDA0002308861870000112
输入到小波神经网络中进行训练,得到最优权值和尺度、平移因子,从而得到特征矩阵和分类向量之间的映射关系。经过Z次迭代,利用梯度下降法,由反向传播误差来自动调整各个参数,可表示为:
Figure BDA0002308861870000121
Figure BDA0002308861870000122
Figure BDA0002308861870000123
Figure BDA0002308861870000124
由于小波神经网络权值和尺度、平移因子收敛速度较慢,添加了动量项来改进该算法,加快收敛速度,各参数可改进为:
Figure BDA0002308861870000125
Figure BDA0002308861870000126
Figure BDA0002308861870000127
Figure BDA0002308861870000128
其中,α∈[0,1]是动量因子。
迭代次数设作100次,期望的最小误差设作0.1。选择Morlet小波为小波神经网络的激励函数,可以表示为:
Figure BDA0002308861870000131
基于小波神经网络的多个无人机射频识别算法流程如图3所示。在多次训练后,可得到最优的权值和尺度、平移因子。在测试过程中,利用训练得到的最优参数信息和数据集的特征矩阵进行运算便可对多无人机射频信号进行识别。
5、多无人机数量估计
由于无人机信号的带宽Ba已知,因此设计的无人机个数估计算法可表示为:
Figure BDA0002308861870000132
其中,对于滑窗滑动过的所有位置,若存在两个位置的间隔在(Ba-0.47×106)/fw和(Ba+0.47×106)/fw之间,U是包含满足上述条件的所有滑窗对的起始位置的集合,
Figure BDA0002308861870000141
是满足上述条件的滑窗对数量,T为U里面相邻元素间隔大于(Ba-0.47×106)/fw的前元素集合,
Figure BDA0002308861870000142
为T中元素的个数,也是检测到的无人机的个数。
6、性能分析
参见附图4(a)和4(b),给出了室内和室外不同环境中不同样本数不同距离下的基于小波神经网络的多无人机射频信号识别率。观察看到,随着样本数的增加识别率趋于稳定,随着距离的增加识别率逐渐下降,但在3km范围内,识别率仍然可以达到84%以上。
同时,在进行多无人机识别时,参见附图5,可以构建以下系统模型:
针对多个无人机的识别,u1,...,un为待检测的n个无人机,c1,...,cn为与其对应的遥控设备。RX为被动接收机,在其中,使用抛物旋转天线在同一时间收到多个无人机的射频信号,经频谱分析仪分析后,传到中央处理器完成对多无人机射频信号的识别。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种基于小波神经网络的多无人机射频信号识别方法,其特征在于,包括以下步骤:
对多无人机样本射频信号及待测射频信号分别进行小波分解预处理,获得预处理样本射频信号及预处理待测射频信号;
对所述预处理样本射频信号及所述预处理待测射频信号的特征分别进行统计,所述特征包括:偏度、峭度及斜率;统计过程具体为:通过偏度公式确定所述偏度;通过峭度公式确定所述峭度;通过斜率公式确定所述斜率;
对所述预处理样本射频信号及所述预处理待测射频信号的特征进行优化,具体为:通过偏度改进公式确定改进后偏度;通过峭度改进公式确定改进后峭度;通过斜率改进公式确定改进后斜率;
通过所述预处理样本射频信号的改进后偏度、所述改进后峭度及所述改进后斜率构建样本射频信号特征矩阵;通过所述预处理待测射频信号的改进后偏度、所述改进后峭度及所述改进后斜率构建待测射频信号特征矩阵;
运用小波神经网络建模分析方法对所述样本射频信号特征矩阵进行训练,获得最优权值、尺度及平移因子;
根据所述最优权值、所述尺度及所述平移因子,运用判别运算公式,对所述待测射频信号特征矩阵进行运算,以确定所述待测射频信号中是否包含无人机射频信号,即确定是否有无人机出现;
所述对所述预处理样本射频信号的特征分别进行统计后,还可根据所述特征,运用无人机个数估算公式计算无人机的数量;
所述无人机个数估算公式为:
Figure DEST_PATH_IMAGE004
其中,
Figure DEST_PATH_IMAGE006
为频域采样间隔和滑动间隔,滑窗对应
Figure DEST_PATH_IMAGE008
个样本点,PST=0.68,NST=-0.68,
Figure DEST_PATH_IMAGE010
Figure DEST_PATH_IMAGE012
是滑窗在第p和第q个频点位置的斜率值,
Figure DEST_PATH_IMAGE014
是满足斜率小于NST的频点位置,
Figure DEST_PATH_IMAGE016
是满足斜率小于NST的频点位置的数量,
Figure DEST_PATH_IMAGE018
是满足斜率大于PST的频点位置,
Figure DEST_PATH_IMAGE020
为满足斜率大于PST的频点位置的数量;
由于每次检测时信号在带内的位置并不确定,但无人机射频信号带宽
Figure DEST_PATH_IMAGE022
已知,故可把
Figure 481014DEST_PATH_IMAGE022
作为频域滑窗的宽度去寻找适合的特征;对于滑窗滑动过的所有位置,若存在两个位置的间隔在
Figure DEST_PATH_IMAGE024
Figure DEST_PATH_IMAGE026
之间,
Figure DEST_PATH_IMAGE028
是包含满足两个位置的间隔在
Figure DEST_PATH_IMAGE030
Figure DEST_PATH_IMAGE032
之间的所有滑窗对的起始位置的集合,
Figure DEST_PATH_IMAGE034
是满足两个位置的间隔在
Figure DEST_PATH_IMAGE036
Figure DEST_PATH_IMAGE038
之间的滑窗对数量,
Figure DEST_PATH_IMAGE040
Figure DEST_PATH_IMAGE042
里面相邻元素间隔大于
Figure DEST_PATH_IMAGE044
的前元素集合,
Figure DEST_PATH_IMAGE046
Figure DEST_PATH_IMAGE048
中元素的个数,也是检测到的无人机的个数。
2.如权利要求1所述的基于小波神经网络的多无人机射频信号识别方法,其特征在于,
无人机通信时发射的射频信号是在2.4-2.5 GHz之间跳变的一个带宽的射频波;
所述小波分解预处理为:将所述无人机通信时发射的射频波转换为多个谐波加上一个残波的形式,可以用小波分解射频信号表达式表示:
Figure DEST_PATH_IMAGE050
其中,
Figure DEST_PATH_IMAGE052
Figure DEST_PATH_IMAGE054
指的是第i个谐波,
Figure DEST_PATH_IMAGE056
指的是余波。
3.如权利要求2所述的基于小波神经网络的多无人机射频信号识别方法,其特征在于,为了滤除杂波噪声,去掉前两个谐波后的所述小波分解射频信号表达式为:
Figure DEST_PATH_IMAGE058
4.如权利要求1所述的基于小波神经网络的多无人机射频信号识别方法,其特征在于,对所述预处理样本射频信号及所述预处理待测射频信号的特征分别进行统计时,
每次检测时,无人机射频信号在带内的位置并不确定,但所述无人机射频信号带宽
Figure DEST_PATH_IMAGE060
已知,故可把所述
Figure 61470DEST_PATH_IMAGE060
作为频域滑窗的宽度去寻找适合的特征。
5.如权利要求4所述的基于小波神经网络的多无人机射频信号识别方法,其特征在于,确定所述偏度的具体过程为:
以宽度为
Figure DEST_PATH_IMAGE062
的滑窗在频带内滑动,频域采样间隔和滑动间隔都为
Figure DEST_PATH_IMAGE064
,滑窗对应
Figure DEST_PATH_IMAGE066
个样本点,计算滑窗滑动到每一个位置时滑窗内信号的偏度值,第k个位置对应的所述偏度公式为:
Figure DEST_PATH_IMAGE068
其中,
Figure DEST_PATH_IMAGE070
Figure DEST_PATH_IMAGE072
是所述滑窗滑动到第k个位置处对应样本点的均值和方差,无人机射频信号所在位置的偏度接近为零。
6.如权利要求5所述的基于小波神经网络的多无人机射频信号识别方法,其特征在于,确定所述峭度的具体过程为:
以宽度为
Figure DEST_PATH_IMAGE074
的滑窗在频带内滑动,频域采样间隔和滑动间隔都为
Figure DEST_PATH_IMAGE076
,计算滑窗滑动到每一个位置时滑窗内信号的峭度,第k个位置对应的所述峭度公式为:
Figure DEST_PATH_IMAGE078
7.如权利要求6所述的基于小波神经网络的多无人机射频信号识别方法,其特征在于,确定所述斜率的具体过程为:
以带宽为
Figure DEST_PATH_IMAGE080
的滑窗在频带内滑动,频域采样间隔和滑动间隔都为
Figure DEST_PATH_IMAGE082
,滑窗对应
Figure DEST_PATH_IMAGE084
个样本点,计算滑窗滑动到每一个位置时滑窗内信号的拟合斜率,第k个位置对应的所述斜率公式为:
Figure DEST_PATH_IMAGE086
8.如权利要求7所述的基于小波神经网络的多无人机射频信号识别方法,其特征在于,
所述偏度改进公式为:
Figure DEST_PATH_IMAGE088
所述峭度改进公式为:
Figure DEST_PATH_IMAGE090
所述斜率改进公式为:
Figure DEST_PATH_IMAGE092
其中,PST=0.68,NST=-0.68,
Figure DEST_PATH_IMAGE094
Figure DEST_PATH_IMAGE096
是滑窗在第p和第q个频点位置的斜率值,
Figure DEST_PATH_IMAGE098
是满足斜率小于NST的频点位置,
Figure DEST_PATH_IMAGE100
是满足斜率小于NST的频点位置的数量,
Figure DEST_PATH_IMAGE102
是满足斜率大于PST的频点位置,
Figure DEST_PATH_IMAGE104
为满足斜率大于PST的频点位置的数量,
Figure DEST_PATH_IMAGE106
为两频点位置间距。
9.如权利要求8所述的基于小波神经网络的多无人机射频信号识别方法,其特征在于,所述最优权值、所述尺度及所述平移因子的数学表达式分别为:
Figure DEST_PATH_IMAGE108
Figure DEST_PATH_IMAGE110
Figure DEST_PATH_IMAGE112
Figure DEST_PATH_IMAGE114
CN201911250399.8A 2019-12-09 2019-12-09 基于小波神经网络的多无人机射频信号识别方法 Active CN111339816B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911250399.8A CN111339816B (zh) 2019-12-09 2019-12-09 基于小波神经网络的多无人机射频信号识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911250399.8A CN111339816B (zh) 2019-12-09 2019-12-09 基于小波神经网络的多无人机射频信号识别方法

Publications (2)

Publication Number Publication Date
CN111339816A CN111339816A (zh) 2020-06-26
CN111339816B true CN111339816B (zh) 2022-12-27

Family

ID=71185386

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911250399.8A Active CN111339816B (zh) 2019-12-09 2019-12-09 基于小波神经网络的多无人机射频信号识别方法

Country Status (1)

Country Link
CN (1) CN111339816B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113095175B (zh) * 2021-03-30 2024-06-04 成都航空职业技术学院 一种基于数传电台射频特征的低空无人机识别方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108663717A (zh) * 2018-04-08 2018-10-16 青岛科技大学 无人机信号识别方法和系统

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108663717A (zh) * 2018-04-08 2018-10-16 青岛科技大学 无人机信号识别方法和系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A UAV Detection Algorithm Based on an Artificial Neural Network;HAO ZHANG 等;《IEEE Access》;20181231;第6卷;第24721-24724页 *
城市地铁盾构隧道病害快速检测与工程实践[M];黄宏伟著;《上海科学技术出版社》;20190131;第178页 *
基于非负矩阵分解的电磁超声系统优化研究;韩德来等;《军械工程学院学报》;20131015(第05期);全文 *

Also Published As

Publication number Publication date
CN111339816A (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
CN108280395B (zh) 一种对低小慢无人机飞控信号的高效识别方法
Basak et al. Combined RF-based drone detection and classification
CN110133599B (zh) 基于长短时记忆模型的智能雷达辐射源信号分类方法
Ozturk et al. RF-based low-SNR classification of UAVs using convolutional neural networks
Chen et al. Interrupted-sampling repeater jamming suppression based on stacked bidirectional gated recurrent unit network and infinite training
CN109901130B (zh) 一种基于Radon变换和改进2DPCA的旋翼无人机检测与识别方法
Cain et al. Convolutional neural networks for radar emitter classification
Sazdić-Jotić et al. Single and multiple drones detection and identification using RF based deep learning algorithm
CN109614930A (zh) 一种基于深度学习的无人机频谱探测方法
Li et al. Radar signal recognition algorithm based on entropy theory
KR20190019713A (ko) 무인 항공기 음향 식별을 위한 서포트 벡터 머신에 기반한 음향 특징 추출 및 분류 방법 그리고 시스템
CN106656303B (zh) 一种基于星载天线捕获跟踪指向系统的信号检测方法
Lv et al. Drone presence detection by the drone’s RF communication
CN109061632A (zh) 一种无人机识别方法
CN111339816B (zh) 基于小波神经网络的多无人机射频信号识别方法
CN117233706B (zh) 一种基于多层通道注意力机制的雷达有源干扰识别方法
CN112327286B (zh) 低复杂度下日常活动分类方法、装置、设备及存储介质
CN113608193A (zh) 一种基于UNet的雷达多目标距离和速度估计方法
Iqbal et al. Indoor motion classification using passive RF sensing incorporating deep learning
CN108199757A (zh) 一种利用信道状态信息对民用小型无人机进行实时入侵检测的方法
CN109669170B (zh) 一种降低无人机信号探测系统误警率的方法
CN115902804A (zh) 一种无人机集群类型识别方法和系统
CN108663717A (zh) 无人机信号识别方法和系统
Ezuma UAV detection and classification using radar, radio frequency and machine learning techniques
Kaushik et al. Entropy based detection approach for Micro-UAV and classification using machine learning

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant