CN111338205B - Self-adaptive PID controller based on control deviation change partition and control method - Google Patents
Self-adaptive PID controller based on control deviation change partition and control method Download PDFInfo
- Publication number
- CN111338205B CN111338205B CN202010159580.4A CN202010159580A CN111338205B CN 111338205 B CN111338205 B CN 111338205B CN 202010159580 A CN202010159580 A CN 202010159580A CN 111338205 B CN111338205 B CN 111338205B
- Authority
- CN
- China
- Prior art keywords
- control
- deviation
- control deviation
- area
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 230000008859 change Effects 0.000 title claims abstract description 17
- 238000005192 partition Methods 0.000 title claims abstract description 17
- 230000009467 reduction Effects 0.000 claims description 33
- 230000003044 adaptive effect Effects 0.000 claims description 17
- 230000000694 effects Effects 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 9
- 230000003247 decreasing effect Effects 0.000 claims description 6
- 238000013316 zoning Methods 0.000 claims 2
- 238000011217 control strategy Methods 0.000 abstract description 4
- 230000033228 biological regulation Effects 0.000 abstract description 3
- 230000001276 controlling effect Effects 0.000 abstract 3
- 230000007547 defect Effects 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 230000009471 action Effects 0.000 description 4
- 230000006641 stabilisation Effects 0.000 description 4
- 238000011105 stabilization Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B11/00—Automatic controllers
- G05B11/01—Automatic controllers electric
- G05B11/36—Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
- G05B11/42—Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种基于控制偏差变化分区的自适应PID控制器及控制方法,属于PID控制技术领域。The invention relates to an adaptive PID controller and a control method based on control deviation change partitions, belonging to the technical field of PID control.
背景技术Background technique
在工业生产过程中,由于PID控制系统具有结构简单、调试方便、适应性强等技术特点,PID控制成为自动控制系统中最常用的控制方式之一。常规PID控制器工作原理是根据控制偏差(控制偏差等于被控量PV与设定值SP的偏差)动态调整控制器的输出,改变系统控制状态,减小被控制偏差,最终使系统的被控量趋近于设定值,即系统的控制偏差为零或接近于零,控制系统保持稳定。当一个稳定的控制系统被外部因素引起扰动后,系统的控制偏差如图1所示。对于常规PID控制系统,只要系统的控制偏差不等于0,或者系统控制偏差绝对值大于设置的控制死区δ(即|e|>δ),系统就会不停的进行控制调整,这种调整方式一般调节时间较长,控制效果相当较差。In the industrial production process, due to the technical characteristics of the PID control system such as simple structure, convenient debugging, and strong adaptability, PID control has become one of the most commonly used control methods in automatic control systems. The working principle of the conventional PID controller is to dynamically adjust the output of the controller according to the control deviation (the control deviation is equal to the deviation between the controlled variable PV and the set value SP), change the system control state, reduce the controlled deviation, and finally make the system controlled The quantity tends to the set value, that is, the control deviation of the system is zero or close to zero, and the control system remains stable. When a stable control system is disturbed by external factors, the control deviation of the system is shown in Figure 1. For conventional PID control systems, as long as the control deviation of the system is not equal to 0, or the absolute value of the system control deviation is greater than the set control dead zone δ (i.e. |e|>δ), the system will continue to perform control adjustments. Generally, the adjustment time is longer, and the control effect is quite poor.
常规PID控制在自动控制领域已得到了广泛应用,但是,由于常规PID调节系统对控制偏差不进行分类,只要偏差存在就进行调节,导致控制精度不够细致,稳定时间长。Conventional PID control has been widely used in the field of automatic control. However, because the conventional PID regulation system does not classify the control deviation, it will adjust as long as the deviation exists, resulting in insufficient control accuracy and long stabilization time.
发明内容Contents of the invention
为了解决上述问题,本发明提出了一种基于控制偏差变化分区的自适应PID控制器及控制方法,能够大大缩短控制系统的稳定时间,提高系统的稳定性。In order to solve the above problems, the present invention proposes an adaptive PID controller and a control method based on control deviation change zones, which can greatly shorten the stabilization time of the control system and improve the stability of the system.
本发明解决其技术问题采取的技术方案是:The technical scheme that the present invention solves its technical problem to take is:
一方面,本发明实施例提供的一种基于控制偏差变化分区的自适应PID控制器,包括:On the one hand, an adaptive PID controller based on control deviation change partition provided by an embodiment of the present invention includes:
ADD模块,用于控制偏差的计算;ADD module, used for calculation of control deviation;
H/L模块,用于控制偏差高低限幅,保持控制偏差在一定的控制范围内;The H/L module is used to control the high and low limit of the deviation, and keep the control deviation within a certain control range;
CMP模块,用于控制偏差分类比较计算;CMP module, used for control deviation classification comparison calculation;
PID模块,用于调节PID控制输出;PID module, used to adjust PID control output;
T1模块,T2模块和T3模块,用于数值切换,完成PID模块控制参数动态调整设置。T1 module, T2 module and T3 module are used for numerical switching and complete the dynamic adjustment setting of the control parameters of the PID module.
作为本实施例一种可能的实现方式,当控制偏差处于控制偏差增大偏离区时,CMP模块Y1输出为0,Y2输出为1;当控制偏差处于控制偏差减小调整区时,CMP模块Y1输出为0,Y2输出为0;当控制偏差处于控制偏差减小自回归区时,CMP模块Y1输出为1,Y2输出为0。As a possible implementation of this embodiment, when the control deviation is in the control deviation increase deviation area, the output of the CMP module Y1 is 0, and the output of Y2 is 1; when the control deviation is in the control deviation reduction adjustment area, the CMP module Y1 The output is 0, and the output of Y2 is 0; when the control deviation is in the control deviation reducing autoregressive area, the output of CMP module Y1 is 1, and the output of Y2 is 0.
作为本实施例一种可能的实现方式,所述控制偏差增大偏离区是指控制偏差的绝对值偏离目标值且向增大方向变化区间;所述控制偏差减小调整区是指控制偏差的绝对值向减小方向变化区间,即被控量向目标值靠近,但控制偏差绝对值大于设定值;所述控制偏差自回归区是指控制偏差的绝对值向减小方向变化,同时控制偏差绝对值不大于设定值的区间。As a possible implementation of this embodiment, the control deviation increase deviation area refers to the interval where the absolute value of the control deviation deviates from the target value and changes in the direction of increase; the control deviation reduction adjustment area refers to the range of the control deviation The absolute value changes in the decreasing direction, that is, the controlled quantity is close to the target value, but the absolute value of the control deviation is greater than the set value; The interval in which the absolute value of the deviation is not greater than the set value.
作为本实施例一种可能的实现方式,PID模块处于跟踪方式时输出保持不变;As a possible implementation of this embodiment, the output of the PID module remains unchanged when it is in the tracking mode;
PID模块处于控制调节方式时输出根据控制偏差及控制参数动态调整。When the PID module is in the control adjustment mode, the output is dynamically adjusted according to the control deviation and control parameters.
另一方面,本发明实施例提供的一种基于控制偏差变化分区的自适应PID控制方法,包括以下步骤:On the other hand, an adaptive PID control method based on control deviation change partition provided by an embodiment of the present invention includes the following steps:
将控制偏差进行分区,分为控制偏差增大偏离区、控制偏差减小调整区和控制偏差自回归区;The control deviation is divided into divisions, which are divided into control deviation increase deviation area, control deviation reduction adjustment area and control deviation auto-regression area;
动态调整PID控制器的控制状态。Dynamically adjust the control state of the PID controller.
作为本实施例一种可能的实现方式,所述将控制偏差进行分区的过程为:针对控制偏差处于的不同阶段,即根据控制偏差偏离目标值的大小和方向,将控制偏差分为控制偏差增大偏离区、控制偏差减小调整区和控制偏差自回归区。As a possible implementation of this embodiment, the process of dividing the control deviation into partitions is: according to the different stages of the control deviation, that is, according to the magnitude and direction of the control deviation deviation from the target value, the control deviation is divided into control deviation increase Large deviation area, control deviation reduction adjustment area and control deviation auto-regression area.
作为本实施例一种可能的实现方式,所述控制偏差增大偏离区是指控制偏差的绝对值偏离目标值且向增大方向变化区间;所述控制偏差减小调整区是指控制偏差的绝对值向减小方向变化区间,即被控量向目标值靠近,但控制偏差绝对值大于设定值;所述控制偏差自回归区是指控制偏差的绝对值向减小方向变化,同时控制偏差绝对值不大于设定值的区间。As a possible implementation of this embodiment, the control deviation increase deviation area refers to the interval where the absolute value of the control deviation deviates from the target value and changes in the direction of increase; the control deviation reduction adjustment area refers to the range of the control deviation The absolute value changes in the decreasing direction, that is, the controlled quantity is close to the target value, but the absolute value of the control deviation is greater than the set value; The interval in which the absolute value of the deviation is not greater than the set value.
作为本实施例一种可能的实现方式,所述动态调整PID控制器的控制状态的过程包括以下步骤:As a possible implementation of this embodiment, the process of dynamically adjusting the control state of the PID controller includes the following steps:
当控制偏差处于控制偏差增大偏离区时,PID控制器根据控制偏差及控制参数进行动态调整输出值;When the control deviation is in the control deviation increase deviation area, the PID controller dynamically adjusts the output value according to the control deviation and control parameters;
当控制偏差处于控制偏差减小调整区时,PID控制器根据控制偏差及控制参数动态调整输出值,但当PID控制器控制作用弱于控制偏差增大偏离区的控制作用,控制参数自动调整。When the control deviation is in the control deviation reduction adjustment area, the PID controller dynamically adjusts the output value according to the control deviation and control parameters, but when the control effect of the PID controller is weaker than that in the control deviation increase deviation area, the control parameters are automatically adjusted.
当控制偏差处于控制偏差减小自回归区时,PID控制器处于跟踪方式,输出值保持不变。When the control deviation is in the auto-regressive area of control deviation reduction, the PID controller is in the tracking mode, and the output value remains unchanged.
作为本实施例一种可能的实现方式,当控制偏差处于控制偏差减小调整区时,如果PID控制器控制作用弱于控制偏差增大偏离区的控制作用,则自动调整控制参数。As a possible implementation of this embodiment, when the control deviation is in the control deviation reduction adjustment area, if the control action of the PID controller is weaker than the control action of the control deviation increase deviation area, the control parameters are automatically adjusted.
本发明实施例的技术方案可以具有的有益效果如下:The beneficial effects that the technical solutions of the embodiments of the present invention may have are as follows:
本发明实施例的技术方案根据控制偏差分区实现不同阶段采用不同的控制策略,克服了常规PID中固定控制参数、固定调节规律的不足,根据控制偏差的不同阶段特点,自动调整控制策略,在工程应用中可大大缩短自动控制系统调节时间,提升了自动控制水平。The technical solution of the embodiment of the present invention adopts different control strategies in different stages according to the control deviation partition, overcomes the shortcomings of fixed control parameters and fixed adjustment rules in conventional PID, and automatically adjusts the control strategy according to the characteristics of different stages of control deviation. In the application, the adjustment time of the automatic control system can be greatly shortened, and the automatic control level is improved.
针对控制偏差处于的不同阶段进行分类,本发明根据控制偏差处于的不同阶段,动态调整PID控制器的控制状态,可大大缩短控制系统的稳定时间,提高系统的稳定性。The different stages of the control deviation are classified, and the present invention dynamically adjusts the control state of the PID controller according to the different stages of the control deviation, which can greatly shorten the stabilization time of the control system and improve the stability of the system.
附图说明:Description of drawings:
图1是一种常规PID控制系统的控制偏差示意图;Fig. 1 is a control deviation schematic diagram of a conventional PID control system;
图2是根据一示例性实施例示出的一种基于控制偏差变化分区的自适应PID控制器的结构图。Fig. 2 is a structural diagram of an adaptive PID controller based on control deviation change zones according to an exemplary embodiment.
具体实施方式Detailed ways
下面结合附图与实施例对本发明做进一步说明:Below in conjunction with accompanying drawing and embodiment the present invention will be further described:
为能清楚说明本方案的技术特点,下面通过具体实施方式,并结合其附图,对本发明进行详细阐述。下文的公开提供了许多不同的实施例或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。此外,本发明可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。应当注意,在附图中所图示的部件不一定按比例绘制。本发明省略了对公知组件和处理技术及工艺的描述以避免不必要地限制本发明。In order to clearly illustrate the technical features of this solution, the present invention will be described in detail below through specific implementation modes and in conjunction with the accompanying drawings. The following disclosure provides many different embodiments or examples for implementing different structures of the present invention. To simplify the disclosure of the present invention, components and arrangements of specific examples are described below. Furthermore, the present invention may repeat reference numerals and/or letters in different instances. This repetition is for the purpose of simplicity and clarity and does not in itself indicate a relationship between the various embodiments and/or arrangements discussed. It should be noted that components illustrated in the figures are not necessarily drawn to scale. Descriptions of well-known components and processing techniques and processes are omitted herein to avoid unnecessarily limiting the present invention.
图2是根据一示例性实施例示出的一种基于控制偏差变化分区的自适应PID控制器的结构图。如图2所述,本发明实施例提供的一种基于控制偏差变化分区的自适应PID控制器,包括:Fig. 2 is a structural diagram of an adaptive PID controller based on control deviation change zones according to an exemplary embodiment. As shown in Figure 2, an adaptive PID controller based on control deviation change partition provided by an embodiment of the present invention includes:
ADD模块,用于计算控制偏差e,e=PV-SP,PV为被控量,SP为目标值;ADD module is used to calculate the control deviation e, e=PV-SP, PV is the controlled quantity, and SP is the target value;
H/L模块,用于控制偏差高低限幅,保持控制偏差在一定的控制范围内;The H/L module is used to control the high and low limit of the deviation, and keep the control deviation within a certain control range;
CMP模块,用于控制偏差分类比较计算,当控制偏差处于控制偏差增大偏离区时,CMP模块Y1输出为0,Y2输出为1;当控制偏差处于控制偏差减小调整区时,CMP模块Y1输出为0,Y2输出为0;当控制偏差处于控制偏差减小自回归区时,CMP模块Y1输出为1,Y2输出为0;CMP module is used for control deviation classification comparison calculation. When the control deviation is in the control deviation increase deviation area, the CMP module Y1 output is 0, and the Y2 output is 1; when the control deviation is in the control deviation reduction adjustment area, the CMP module Y1 The output is 0, and the output of Y2 is 0; when the control deviation is in the control deviation reduction autoregressive area, the output of CMP module Y1 is 1, and the output of Y2 is 0;
PID模块,用于调节PID控制输出;PID模块即PID控制调节器,其中E为控制偏差输入端,TR为PID控制器跟踪值输入端,OUT为PID控制器的输出端,Yout为控制器的输出值,K、Ti、Td为控制器比例系数、积分时间及微分时间输入端。TS为PID控制器跟踪/控制功能切换开关,TS=1时,PID控制器处于跟踪方式,即OUT=TR,控制器输出保持不变;TS=0时,PID控制器处于控制调节方式,控制器输出OUT根据控制偏差及控制参数动态调整;The PID module is used to adjust the PID control output; the PID module is the PID control regulator, where E is the input terminal of the control deviation, TR is the input terminal of the tracking value of the PID controller, OUT is the output terminal of the PID controller, and Yout is the input terminal of the controller Output value, K, Ti, Td are controller proportional coefficient, integral time and differential time input. TS is the PID controller tracking/control function switching switch. When TS=1, the PID controller is in the tracking mode, that is, OUT=TR, and the controller output remains unchanged; when TS=0, the PID controller is in the control adjustment mode, and the control The controller output OUT is dynamically adjusted according to the control deviation and control parameters;
T1模块,T2模块和T3模块,用于数值切换,完成PID模块控制参数动态调整设置。T1 module, T2 module and T3 module are used for numerical switching and complete the dynamic adjustment setting of the control parameters of the PID module.
作为本实施例一种可能的实现方式,所述控制偏差增大偏离区是指控制偏差的绝对值偏离目标值且向增大方向变化区间;所述控制偏差减小调整区是指控制偏差的绝对值向减小方向变化区间,即被控量向目标值靠近,但控制偏差绝对值大于设定值;所述控制偏差自回归区是指控制偏差的绝对值向减小方向变化,同时控制偏差绝对值不大于设定值的区间。As a possible implementation of this embodiment, the control deviation increase deviation area refers to the interval where the absolute value of the control deviation deviates from the target value and changes in the direction of increase; the control deviation reduction adjustment area refers to the range of the control deviation The absolute value changes in the decreasing direction, that is, the controlled quantity is close to the target value, but the absolute value of the control deviation is greater than the set value; The interval in which the absolute value of the deviation is not greater than the set value.
另一方面,本发明实施例提供的一种基于控制偏差变化分区的自适应PID控制方法,包括以下步骤:On the other hand, an adaptive PID control method based on control deviation change partition provided by an embodiment of the present invention includes the following steps:
将控制偏差进行分区,分为控制偏差增大偏离区、控制偏差减小调整区和控制偏差自回归区;The control deviation is divided into divisions, which are divided into control deviation increase deviation area, control deviation reduction adjustment area and control deviation auto-regression area;
动态调整PID控制器的控制状态。Dynamically adjust the control state of the PID controller.
作为本实施例一种可能的实现方式,所述将控制偏差进行分区的过程为:针对控制偏差处于的不同阶段,即根据控制偏差偏离目标值的大小和方向,将控制偏差分为控制偏差增大偏离区、控制偏差减小调整区和控制偏差自回归区。As a possible implementation of this embodiment, the process of dividing the control deviation into partitions is: according to the different stages of the control deviation, that is, according to the magnitude and direction of the control deviation deviation from the target value, the control deviation is divided into control deviation increase Large deviation area, control deviation reduction adjustment area and control deviation auto-regression area.
作为本实施例一种可能的实现方式,所述控制偏差增大偏离区是指控制偏差的绝对值偏离目标值且向增大方向变化区间;所述控制偏差减小调整区是指控制偏差的绝对值向减小方向变化区间,即被控量向目标值靠近,但控制偏差绝对值大于设定值;所述控制偏差自回归区是指控制偏差的绝对值向减小方向变化,同时控制偏差绝对值不大于设定值的区间。As a possible implementation of this embodiment, the control deviation increase deviation area refers to the interval where the absolute value of the control deviation deviates from the target value and changes in the direction of increase; the control deviation reduction adjustment area refers to the range of the control deviation The absolute value changes in the decreasing direction, that is, the controlled quantity is close to the target value, but the absolute value of the control deviation is greater than the set value; The interval in which the absolute value of the deviation is not greater than the set value.
作为本实施例一种可能的实现方式,所述动态调整PID控制器的控制状态的过程包括以下步骤:As a possible implementation of this embodiment, the process of dynamically adjusting the control state of the PID controller includes the following steps:
当控制偏差处于控制偏差增大偏离区时,PID控制器根据控制偏差及控制参数进行动态调整输出值;When the control deviation is in the control deviation increase deviation area, the PID controller dynamically adjusts the output value according to the control deviation and control parameters;
当控制偏差处于控制偏差减小调整区时,PID控制器根据控制偏差及控制参数动态调整输出值,但当PID控制器控制作用弱于控制偏差增大偏离区的控制作用,控制参数自动调整。When the control deviation is in the control deviation reduction adjustment area, the PID controller dynamically adjusts the output value according to the control deviation and control parameters, but when the control effect of the PID controller is weaker than that in the control deviation increase deviation area, the control parameters are automatically adjusted.
当控制偏差处于控制偏差减小自回归区时,PID控制器处于跟踪方式,输出值保持不变。When the control deviation is in the auto-regressive area of control deviation reduction, the PID controller is in the tracking mode, and the output value remains unchanged.
作为本实施例一种可能的实现方式,当控制偏差处于控制偏差减小调整区时,如果PID控制器控制作用弱于控制偏差增大偏离区的控制作用,则自动调整控制参数。As a possible implementation of this embodiment, when the control deviation is in the control deviation reduction adjustment area, if the control action of the PID controller is weaker than the control action of the control deviation increase deviation area, the control parameters are automatically adjusted.
针对图1所示控制偏差情况,本发明的解决方案具体如下。For the control deviation situation shown in FIG. 1 , the solution of the present invention is specifically as follows.
如图1所示,对于常规PID控制系统,只要系统的控制偏差不等于0,或者系统控制偏差绝对值e大于设置的控制死区(目标值)δ(即|e|>δ),系统就会不停的进行控制调整,这种调整方式一般调节时间较长,控制效果相当较差。As shown in Figure 1, for a conventional PID control system, as long as the control deviation of the system is not equal to 0, or the absolute value e of the system control deviation is greater than the set control dead zone (target value) δ (ie |e|>δ), the system will The control and adjustment will be carried out continuously. This adjustment method generally takes a long time to adjust, and the control effect is quite poor.
本发明针对控制偏差处于的不同阶段进行分类,根据控制偏差处于的不同阶段,动态调整PID控制器的控制状态,可大大缩短控制系统的稳定时间,提高系统的稳定性。The invention classifies the different stages of the control deviation, and dynamically adjusts the control state of the PID controller according to the different stages of the control deviation, which can greatly shorten the stabilization time of the control system and improve the stability of the system.
一、控制偏差分类。1. Classification of control deviations.
根据控制偏差偏离目标值的大小和方向,将图1中控制偏差分为控制偏差增大偏离区、控制偏差减小调整区、控制偏差自回归区。According to the size and direction of the control deviation deviation from the target value, the control deviation in Figure 1 is divided into the control deviation increase deviation area, the control deviation decrease adjustment area, and the control deviation auto-regression area.
控制偏差增大偏离区指控制偏差的绝对值向增大方向变化区间,即被控制量偏离目标值,如图1中0-t1、t3-t4、t6-t7阶段;The control deviation increase deviation area refers to the range where the absolute value of the control deviation changes in the direction of increase, that is, the controlled quantity deviates from the target value, as shown in the 0-t1, t3-t4, t6-t7 stages in Figure 1;
控制偏差减小调整区指控制偏差的绝对值向减小方向变化区间,即被控量向目标值靠近,但是控制偏差绝对值大于某一设定值C,如图1中t1-t2、t4-t5、t7-t8阶段;The control deviation reduction adjustment area refers to the range where the absolute value of the control deviation changes in the direction of reduction, that is, the controlled quantity is close to the target value, but the absolute value of the control deviation is greater than a certain set value C, as shown in Figure 1 t1-t2, t4 -t5, t7-t8 stages;
控制偏差自回归区指控制偏差的绝对值向减小方向变化同时控制偏差绝对值不大于某一设定值C的区间,如图1中t2-t3、t5-t6、t8-t9阶段。The control deviation autoregressive area refers to the interval where the absolute value of the control deviation changes to the direction of reduction and the absolute value of the control deviation is not greater than a certain set value C, as shown in the t2-t3, t5-t6, t8-t9 stages in Figure 1.
二、基于控制偏差变化分区的自适应PID控制过程2. Adaptive PID control process based on control deviation change partition
当控制偏差处于控制偏差增大偏离区时,如图1中0-t1、t3-t4、t6-t7阶段,且|e|>δ时,PID控制器处于控制调节方式,控制器输出OUT根据控制偏差及控制参数动态调整,此时控制器的比例系数记为K1、积分时间记为Ti1、微分时间记为Td1。When the control deviation is in the control deviation increase deviation area, as shown in Figure 1 in the 0-t1, t3-t4, t6-t7 stages, and |e|>δ, the PID controller is in the control adjustment mode, and the controller output OUT according to The control deviation and control parameters are dynamically adjusted. At this time, the proportional coefficient of the controller is recorded as K1, the integral time is recorded as Ti1, and the differential time is recorded as Td1.
当控制偏差处于控制偏差减小调整区时,即如图1中t1-t2、t4-t5、t7-t8阶段时,且|e|>C,控制器输出OUT根据控制偏差及控制参数动态调整,但PID控制器控制作用弱于控制偏差增大偏离区的控制作用,控制参数自动调整,此时控制器的比例系数K2=(0.4-0.6)K1;积分时间记为Ti2=(1.4-1.8)Ti1、微分时间记为Td2=(0.3-0.5)Td1,具体可根据控制系统实际情况进行调整。When the control deviation is in the control deviation reduction adjustment area, that is, in the t1-t2, t4-t5, t7-t8 stages as shown in Figure 1, and |e|>C, the controller output OUT is dynamically adjusted according to the control deviation and control parameters , but the control effect of the PID controller is weaker than the control effect of the control deviation increasing deviation area, and the control parameters are automatically adjusted. At this time, the proportional coefficient of the controller K2=(0.4-0.6)K1; the integral time is recorded as Ti2=(1.4-1.8 )Ti1 and differential time are recorded as Td2=(0.3-0.5)Td1, which can be adjusted according to the actual situation of the control system.
当控制偏差处于控制偏差减小自回归区时,如图1中t2-t3、t5-t6、t8-t9阶段时,且|e|=<C,PID控制器处于跟踪方式,OUT=TR,控制器输出保持不变。When the control deviation is in the autoregressive area of control deviation reduction, as shown in the t2-t3, t5-t6, t8-t9 stages in Figure 1, and |e|=<C, the PID controller is in the tracking mode, OUT=TR, The controller output remains unchanged.
以上所述只是本发明的优选实施方式,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也被视作为本发明的保护范围。The above description is only a preferred embodiment of the present invention. For those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications are also considered as the present invention. protection scope of the invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010159580.4A CN111338205B (en) | 2020-03-09 | 2020-03-09 | Self-adaptive PID controller based on control deviation change partition and control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010159580.4A CN111338205B (en) | 2020-03-09 | 2020-03-09 | Self-adaptive PID controller based on control deviation change partition and control method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111338205A CN111338205A (en) | 2020-06-26 |
CN111338205B true CN111338205B (en) | 2023-04-18 |
Family
ID=71186066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010159580.4A Active CN111338205B (en) | 2020-03-09 | 2020-03-09 | Self-adaptive PID controller based on control deviation change partition and control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111338205B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114647186B (en) * | 2022-03-23 | 2023-08-01 | 无锡百泰克生物技术有限公司 | Control method and control device for rapid constant temperature of PCR detector and PCR detector |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105739300A (en) * | 2016-01-13 | 2016-07-06 | 天津中科智能识别产业技术研究院有限公司 | Novel PID control method applied to emergency command unmanned aerial vehicle attitude control |
CN106125546A (en) * | 2016-07-29 | 2016-11-16 | 重庆钢铁集团电子有限责任公司 | A kind of PID control method of the variation tendency applying controlled volume |
CN108121214A (en) * | 2016-11-28 | 2018-06-05 | 北京金风科创风电设备有限公司 | Yaw strategy simulation method and system for wind turbine generator |
CN108206532A (en) * | 2018-01-05 | 2018-06-26 | 华南理工大学 | The Auto-disturbance-rejection Control of Multi-end flexible direct current transmission system DC voltage deviation |
CN108767894A (en) * | 2018-04-28 | 2018-11-06 | 国网山东省电力公司电力科学研究院 | Unit integrated control method and system based on Grid control deviation |
CN109564146A (en) * | 2016-08-15 | 2019-04-02 | 威尔泰克联合股份有限公司 | Portable air sampler |
CN110048460A (en) * | 2019-05-15 | 2019-07-23 | 南京工程学院 | A kind of BESS participates in the intelligent comprehensive control method of primary frequency regulation of power network |
CN110380450A (en) * | 2019-08-13 | 2019-10-25 | 南方电网科学研究院有限责任公司 | Photovoltaic control method, device, equipment and computer readable storage medium |
-
2020
- 2020-03-09 CN CN202010159580.4A patent/CN111338205B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105739300A (en) * | 2016-01-13 | 2016-07-06 | 天津中科智能识别产业技术研究院有限公司 | Novel PID control method applied to emergency command unmanned aerial vehicle attitude control |
CN106125546A (en) * | 2016-07-29 | 2016-11-16 | 重庆钢铁集团电子有限责任公司 | A kind of PID control method of the variation tendency applying controlled volume |
CN109564146A (en) * | 2016-08-15 | 2019-04-02 | 威尔泰克联合股份有限公司 | Portable air sampler |
CN108121214A (en) * | 2016-11-28 | 2018-06-05 | 北京金风科创风电设备有限公司 | Yaw strategy simulation method and system for wind turbine generator |
CN108206532A (en) * | 2018-01-05 | 2018-06-26 | 华南理工大学 | The Auto-disturbance-rejection Control of Multi-end flexible direct current transmission system DC voltage deviation |
CN108767894A (en) * | 2018-04-28 | 2018-11-06 | 国网山东省电力公司电力科学研究院 | Unit integrated control method and system based on Grid control deviation |
CN110048460A (en) * | 2019-05-15 | 2019-07-23 | 南京工程学院 | A kind of BESS participates in the intelligent comprehensive control method of primary frequency regulation of power network |
CN110380450A (en) * | 2019-08-13 | 2019-10-25 | 南方电网科学研究院有限责任公司 | Photovoltaic control method, device, equipment and computer readable storage medium |
Non-Patent Citations (6)
Title |
---|
A PID controller with dynamic set-point weighting;Chanchal Dey,等;《IEEE International Conference on Industrial Technology》;20061231;第1071-1076页 * |
Self-tuning Fuzzy PID Controller for Integrating Processes;Dharmana.Simhachalam,等;《2014 International Conference on Control, Instrumentation, Energy & Communication》;20141231;第51-55页 * |
宁夏电网自动发电控制优化策略的研究;刘刚,朱建军,严兵;《宁夏电力》;20151231(第1期);第19-22页 * |
机网协调模式下一次调频逻辑优化设计;韩英昆,等;《山东电力技术》;20131231(第4期);第64-67页 * |
模糊滑模控制在AUV控制中的应用;夏庆锋,刘健;《微计算机信息》;20101231;第26卷(第4-1期);第26-28页 * |
高速高精度平面并联机器人模糊自调整PID控制方法的研究;孙立宁,等;《机器人》;20031130;第25卷(第6期);第512-515页 * |
Also Published As
Publication number | Publication date |
---|---|
CN111338205A (en) | 2020-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104252135B (en) | The Intelligent Integration method of PID control system anti-windup saturation and Reducing overshoot | |
CN105674060B (en) | A kind of compressed air system pressure flow jointly controls energy saver and method | |
CN104122531A (en) | Self-adaptive radar antenna position oscillation treating method | |
CN105135409B (en) | Supercritical unit boiler master controller control method based on primary frequency modulation action amplitude | |
CN107490958B (en) | A fuzzy adaptive control method for a five-degree-of-freedom hybrid robot | |
CN111462925A (en) | Nuclear reactor power adjusting method and system based on operation data | |
CN111338205B (en) | Self-adaptive PID controller based on control deviation change partition and control method | |
CN113253779A (en) | Heat pump temperature control system based on particle swarm fuzzy PID algorithm | |
CN113440884B (en) | Tower set temperature self-adaptive adjusting method, system and storage medium | |
CN104753439A (en) | PID (piping and instrument diagram) intelligent speed regulating method of electric motor | |
CN103105777A (en) | Neural network self-adaptation control algorithm applied to tapered double-screw extruder | |
CN101885969B (en) | Gas collector pressure control method | |
CN115729132A (en) | Intelligent control method for single-system air conditioner | |
CN104730925B (en) | A kind of input saturation PI control methods | |
CN110107416A (en) | Air conditioner load pre-control method | |
CN101364082A (en) | Human-like PID Intelligent Control Method for Industrial Process | |
CN110595153A (en) | A Control Method of Air Feed Amount During Automatic Load Change of Air Separation Unit | |
CN104950666A (en) | Method capable of increasing PID (proportion integration differentiation) control speed and precision | |
CN110617152A (en) | Throttle control system based on fuzzy PID control | |
CN108762064B (en) | Speed smoothing method of servo driver | |
CN105627529A (en) | Air conditioner control system and method based on variable speed integral PID type iterative learning algorithm | |
CN110879526B (en) | A fractional-order controller and a method for parameter tuning of the fractional-order controller | |
CN108762085A (en) | A kind of quick point-to-point motion control method of robust | |
CN102176176A (en) | Sliding-pressure operation unit optimizing control method in automatic gain control (AGC) mode | |
CN114020073A (en) | Heating furnace PID upper and lower limit self-adaption based control method and system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |