CN111325666B - Airborne laser point cloud processing method based on variable resolution voxel grid - Google Patents
Airborne laser point cloud processing method based on variable resolution voxel grid Download PDFInfo
- Publication number
- CN111325666B CN111325666B CN202010085191.1A CN202010085191A CN111325666B CN 111325666 B CN111325666 B CN 111325666B CN 202010085191 A CN202010085191 A CN 202010085191A CN 111325666 B CN111325666 B CN 111325666B
- Authority
- CN
- China
- Prior art keywords
- point cloud
- point
- resolution
- variable
- compression
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003672 processing method Methods 0.000 title claims abstract description 8
- 238000007906 compression Methods 0.000 claims abstract description 38
- 230000006835 compression Effects 0.000 claims abstract description 38
- 230000011218 segmentation Effects 0.000 claims abstract description 12
- 238000012545 processing Methods 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 18
- 238000013144 data compression Methods 0.000 claims description 9
- 238000004364 calculation method Methods 0.000 claims description 5
- 230000009466 transformation Effects 0.000 claims description 5
- 230000009977 dual effect Effects 0.000 claims description 4
- 238000010606 normalization Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 claims description 2
- 230000000903 blocking effect Effects 0.000 claims 2
- 238000005070 sampling Methods 0.000 claims 2
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000005192 partition Methods 0.000 claims 1
- 239000004576 sand Substances 0.000 claims 1
- 238000000638 solvent extraction Methods 0.000 claims 1
- 230000001131 transforming effect Effects 0.000 claims 1
- 238000013145 classification model Methods 0.000 abstract description 2
- 238000007781 pre-processing Methods 0.000 description 5
- 238000011160 research Methods 0.000 description 4
- 238000007792 addition Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4092—Image resolution transcoding, e.g. by using client-server architectures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4038—Image mosaicing, e.g. composing plane images from plane sub-images
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computational Linguistics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Evolutionary Biology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Processing Or Creating Images (AREA)
Abstract
本发明涉及基于变分辨率体素格网的机载激光点云处理方法及应用。首先,本发明的变分辨率点云压缩算法能够将原始激光点云压缩为变分辨率点云,基于该变分辨率点云规则格网化得到的变分辨率体素格网既能覆盖较大的平面范围又能保证中心区具有较高的分辨率,从而能够同时满足不同地形场景的处理对体素格网的平面覆盖范围以及分辨率的不同要求。其次,为了能够处理更大尺寸的体素格网以及采用更大的基础网络结构,本发明基于子流型稀疏卷积搭建了编码‑解码结构的三维语义分割网络。该网络具有较高的数据处理速度以及较小的显存占用。变分辨率体素格网能够灵活的应对不同地形场景,有效提升点云分类模型的鲁棒性。
The invention relates to an airborne laser point cloud processing method and application based on a variable-resolution voxel grid. First, the variable-resolution point cloud compression algorithm of the present invention can compress the original laser point cloud into a variable-resolution point cloud, and the variable-resolution voxel grid obtained based on the regular grid of the variable-resolution point cloud can cover a relatively large area. The large plane range can also ensure that the central area has a high resolution, so that it can simultaneously meet the different requirements for the plane coverage and resolution of the voxel grid in the processing of different terrain scenes. Secondly, in order to be able to handle a larger size voxel grid and adopt a larger basic network structure, the present invention builds a three-dimensional semantic segmentation network with an encoding-decoding structure based on sub-flow sparse convolution. The network has high data processing speed and small memory usage. The variable-resolution voxel grid can flexibly respond to different terrain scenarios and effectively improve the robustness of the point cloud classification model.
Description
技术领域technical field
本发明涉及遥感测绘领域,尤其是一种机载激光点云数据处理方法。The invention relates to the field of remote sensing surveying and mapping, in particular to an airborne laser point cloud data processing method.
背景技术Background technique
三维地理数据作为智慧地球的重要组成部分,其快速获取技术以及数据后处理手段一直是摄影测量与遥感领域的研究重点。激光扫描技术作为一种实时、快速的主动式的测量手段,可以全天时、全天候的获取被测目标的高精度的三维点云及附属物理属性,同时能够透过植被间隙获取被遮挡区域的三维信息。点云数据压缩方法研究一直是近二十年来的重要研究课题,有许多经典、有效的预处理算法被用于实现道点云数据预处理中,如投影变换、体素划分等。依据点云预处理后数据维度的不同可以分为两类:①基于体素格网的方法,将三维模型规则化为体素格网,例如将三维模型规则化为30×30×30大小的体素格网(Wu,2015),或将其规则化为32×32×32的体素格网(Maturana,2015)。为了更好的对体术数据进行数据索引,可以将八叉树引入,构建一种基于八叉树的体素格网(Riegler,2017;Wang,2017);②基于图像的方法,主要将三维模型渲染成一系列二维视图或是将其转换成几何特征图或全景图,例如多角度视图(Su,2015;Qi,2016;Shi,2015)、几何特征图(Sinha,2016;Nannan Qin,2018)。但是综合现有的研究方法,点云数据预处理仍然处于探索阶段,这主要是因为点云的多样(不同点云空间分布,比如说密度不均)、场景的复杂(扫描的数据地物种类繁多:如房屋、密林,人工地物等)以及严重遮挡导致。As an important part of smart earth, 3D geographic data, its rapid acquisition technology and data post-processing methods have always been the focus of research in the field of photogrammetry and remote sensing. As a real-time and fast active measurement method, laser scanning technology can obtain high-precision 3D point clouds and attached physical properties of the measured target all day, all day, and obtain the occluded area through vegetation gaps. three-dimensional information. Research on point cloud data compression methods has been an important research topic in the past two decades. There are many classic and effective preprocessing algorithms used to realize point cloud data preprocessing, such as projection transformation and voxel division. According to the difference of the data dimensions after point cloud preprocessing, it can be divided into two categories: (1) The method based on voxel grid, which regularizes the 3D model into a voxel grid, for example, regularizes the 3D model into a size of 30×30×30. A voxel grid (Wu, 2015), or regularized to a 32×32×32 voxel grid (Maturana, 2015). In order to better index the physical data, octrees can be introduced to construct a voxel grid based on octrees (Riegler, 2017; Wang, 2017); (2) The image-based method mainly integrates three-dimensional Models are rendered into a series of 2D views or converted into geometric feature maps or panoramas, such as multi-angle views (Su, 2015; Qi, 2016; Shi, 2015), geometric feature maps (Sinha, 2016; Nannan Qin, 2018) ). However, based on the existing research methods, point cloud data preprocessing is still in the exploratory stage, mainly because of the diversity of point clouds (different point cloud spatial distribution, such as uneven density), the complexity of the scene (types of scanned data and objects) Many: such as houses, dense forests, artificial ground, etc.) and severe occlusion.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种机载激光点云中数据处理的方法,该方法实现了基于变分辨率的点云压缩,减小数据占用的地理空间的同时保证点云信息描述的不变性,为后续点云分类提供了良好的预处理数据。The purpose of the present invention is to provide a method for data processing in an airborne laser point cloud, which realizes point cloud compression based on variable resolution, reduces the geographic space occupied by data, and ensures the invariance of point cloud information description, It provides good preprocessing data for subsequent point cloud classification.
本发明的技术方案是,基于变分辨率体素格网的机载激光点云处理方法,包括如下步骤:The technical solution of the present invention is that an airborne laser point cloud processing method based on a variable resolution voxel grid includes the following steps:
步骤1,点云输入与分块:读入原始点云数据,利用滑动窗口方法对点云进行分块,分块的大小为w×h,滑动的步长为s,w=h;Step 1, point cloud input and block: read the original point cloud data, use the sliding window method to block the point cloud, the block size is w×h, the sliding step size is s, w=h;
步骤2,基于等比变换的压缩策略:将每个分块划分为压缩区域和内部区域,记分块中心点为Pc,分块的最大外接圆的半径记为R1,其中内部区域是指以Pc为圆心、半径为R3的圆形区域,剩下为压缩区域;对压缩区域的点云,采用从外到内的等比例线性压缩方法,即仅对点的水平坐标进行压缩,对高程坐标采取保持原值的方式;对内部区域不进行压缩,内部区域的点的三维坐标采取保持原值的处理方式;Step 2: Compression strategy based on proportional transformation: Divide each block into a compressed area and an inner area, the center point of the divided block is P c , and the radius of the largest circumcircle of the block is denoted as R 1 , where the inner area refers to The circular area with P c as the center and radius R 3 , the rest is the compressed area; for the point cloud in the compressed area, the proportional linear compression method from the outside to the inside is used, that is, only the horizontal coordinates of the points are compressed, The elevation coordinates are kept in the original value; the internal area is not compressed, and the three-dimensional coordinates of the points in the inner area are processed in the original value;
步骤3,针对每个分块,进行点云压缩区域数据压缩:根据上述压缩策略,对压缩区域的点云进行数据压缩;Step 3, for each block, perform point cloud compression area data compression: according to the above compression strategy, perform data compression on the point cloud in the compression area;
给定压缩区域内任一原始点为Pi(Xi,Yi,Zi),压缩后的点为P′i(X′i,Y′i,Z′i)点Pi和点P′i之间的连线与内部区域边界圆的相交点为Ps(Xs,Ys,Zs),外部原始边界圆的半径为R1,外部压缩后边界圆的半径为R2,内部区域边界圆的半径为R3,内部区域边界圆的中心点为Pc(Xc,Yc,Zc),其中,R2=0.5×R1;同时,令点Pi与点Pc之间的连线与水平线间的夹角为α,则根据相似三角形的几何关系得到如下公式:Any original point in the given compressed region is Pi (X i , Y i , Z i ), and the compressed points are P′ i (X′ i , Y′ i , Z′ i ) point P i and point P The intersection point between the line between ' i and the inner area boundary circle is P s (X s , Y s , Z s ), the radius of the outer original boundary circle is R 1 , and the radius of the outer compressed boundary circle is R 2 , The radius of the inner region boundary circle is R 3 , and the center point of the inner region boundary circle is P c (X c , Y c , Z c ), where, R 2 =0.5×R 1 ; at the same time, let the angle between the connecting line between point Pi and point P c and the horizontal line be α, then the following formula can be obtained according to the geometric relationship of similar triangles:
线性压缩的等比例关系如下:The proportional relationship of linear compression is as follows:
其中,代表点Pi和Pc之间的水平距离,其计算公式如下:in, represents the horizontal distance between points P i and P c , and its calculation formula is as follows:
为点Ps和点P′i之间的水平距离,计算方式与的计算方式一样; is the horizontal distance between point P s and point P′ i , calculated in the same way as is calculated in the same way;
将上述公式合并得:Combining the above formulas gives:
对其进行变换可得:Transform it to get:
此外,also,
Xs=R3×cosα+Xc X s =R 3 ×cosα+X c
将上述公式进行结合,最后得到:Combining the above formulas, we finally get:
同理,得如下Y′i的计算公式:In the same way, the following formula for calculating Y′ i is obtained:
由于只对平面坐标进行了压缩变化,所以压缩前后激光点的高程坐标不变,即:Since only the plane coordinates are compressed and changed, the elevation coordinates of the laser point before and after compression remain unchanged, namely:
Z′i=Zi Z′ i =Z i
之后,将压缩得到的变分辨率点云规则格网化即得到与其对偶的变分辨率的规则体素格网。After that, the compressed variable-resolution point cloud is converted into a regular grid to obtain its dual variable-resolution regular voxel grid.
进一步的,步骤1的具体实现方式如下,Further, the specific implementation of step 1 is as follows:
假设点云在水平方向上占用的地理空间分别为X,Y,滑动的步长为s,截取窗口的大小为w×h,整块数据的水平坐标最小值分别为x0,y0,得到的分块集合为P,则分块步骤如下:Assuming that the geographic space occupied by the point cloud in the horizontal direction is X, Y respectively, the sliding step is s, the size of the interception window is w×h, and the minimum horizontal coordinates of the whole piece of data are x 0 , y 0 respectively, we get The block set is P, the block steps are as follows:
(1)对X方向,按照步长s进行横向滑动,取固定窗口的点云,其中窗口的左上角和右下角的坐标分别为(x0+n×s,y0),(x0+n×s+w,y0+h),n∈{0,1,2,…},直到对X方向中所有点分块,将分块后的数据放入P中;(1) In the X direction, slide horizontally according to the step size s, and take the point cloud of the fixed window, where the coordinates of the upper left corner and the lower right corner of the window are (x 0 +n×s, y 0 ), (x 0 + n×s+w, y 0 +h), n∈{0,1,2,…}, until all points in the X direction are divided into blocks, and the divided data is put into P;
(2)对Y方向,按照步长s进行纵向滑动,取固定窗口的点云,其中窗口的左上角和右下角的坐标分别为(x0,y0+n×s),(x0+w,y0+n×s+h),n∈{0,1,2,…},直到对Y方向中所有点分块,将分块后的数据放入P中。(2) For the Y direction, slide longitudinally according to the step size s, and take the point cloud of the fixed window, where the coordinates of the upper left corner and the lower right corner of the window are (x 0 , y 0 +n×s), (x 0 + w, y 0 +n×s+h), n∈{0,1,2,…}, until all points in the Y direction are divided into blocks, and the divided data is put into P.
本发明还提供一种上述技术方案所述的基于变分辨率体素格网的机载激光点云处理方法在点云分类上的应用,还包括如下步骤,The present invention also provides an application of the airborne laser point cloud processing method based on the variable resolution voxel grid described in the above technical solution in point cloud classification, further comprising the following steps:
步骤4,将压缩得到的变分辨率点云进行规则格网化即可得到与其对偶的变分辨率的规则体素格网,将三维网格化点云输入到预先训练好的基于子流型稀疏卷积的编码-解码结构语义分割网络,得到每个分类的点云分类的结果;Step 4: Perform regular gridization on the compressed variable-resolution point cloud to obtain its dual variable-resolution regular voxel grid, and input the three-dimensional gridded point cloud into the pre-trained sub-flow pattern-based Sparse convolutional encoding-decoding structural semantic segmentation network to obtain the results of point cloud classification for each classification;
步骤5,将分类后的分块点云进行合并。Step 5: Merge the classified segmented point clouds.
进一步的,步骤4中基于子流型稀疏卷积的编码-解码结构语义分割网络的网络结构如下,Further, the network structure of the encoding-decoding structure semantic segmentation network based on sub-stream sparse convolution in step 4 is as follows:
基于子流型稀疏卷积的编码-解码结构语义分割网络由一个编码层部件、一个解码层部件组成;其中,编码层部件由5组卷积层组成,这5组卷积层输出的特征图个数分别为32、64、96、128以及160,每组卷积层都由两个结构相同的卷积层以及一个降采样卷积层组成,每个卷积层前面都有一个批归一化和ReLU层;解码层部件的结构与编码层部件的结构对称,因此解码层部件也包含5组卷积层,这5组卷积层输出的特征图个数分别为160、128、96,64以及32;每组卷积层都由一个用于上采样的反卷积层和两个结构相同的卷积层组成;同时,编码层部件的卷积层输出的特征通过跳跃连接结构与解码层部件对应卷积层的输出特征进行通道合并;最后,解码层部件的输出被传递给一个softmax层进行逐体素分类。The encoding-decoding structure semantic segmentation network based on sub-stream sparse convolution consists of an encoding layer component and a decoding layer component; the encoding layer component is composed of 5 groups of convolutional layers, and the feature maps output by these 5 groups of convolutional layers The numbers are 32, 64, 96, 128, and 160, respectively. Each group of convolutional layers consists of two convolutional layers with the same structure and a downsampling convolutional layer. Each convolutional layer is preceded by a batch normalization. The structure of the decoding layer component is symmetrical with the structure of the encoding layer component, so the decoding layer component also includes 5 groups of convolutional layers, and the number of feature maps output by these 5 groups of convolutional layers is 160, 128, 96 respectively, 64 and 32; each group of convolutional layers consists of a deconvolutional layer for upsampling and two convolutional layers with the same structure; at the same time, the features output by the convolutional layer of the encoding layer component are connected by skip connection structure and decoding. The layer component performs channel merging corresponding to the output features of the convolutional layer; finally, the output of the decoding layer component is passed to a softmax layer for voxel-wise classification.
本发明直接利图像分类中现有成熟的语义分割网络框架,同时可避免不同类的点在二维投影图中掺杂重叠等问题。首先,本发明的变分辨率点云压缩算法能够将原始激光点云压缩为变分辨率点云,基于该变分辨率点云规则格网化得到的变分辨率体素格网既能覆盖较大的平面范围又能保证中心区具有较高的分辨率,从而能够同时满足不同地形场景的处理对体素格网的平面覆盖范围以及分辨率的不同要求。其次,为了能够处理更大尺寸的体素格网以及采用更大的基础网络结构,本发明基于子流型稀疏卷积搭建了编码-解码结构的三维语义分割网络。该网络具有较高的数据处理速度以及较小的显存占用。变分辨率体素格网能够灵活的应对不同地形场景,有效提升点云分类模型的鲁棒性。The invention directly utilizes the existing mature semantic segmentation network framework in image classification, and at the same time can avoid problems such as doping and overlapping of different types of points in the two-dimensional projection map. First, the variable-resolution point cloud compression algorithm of the present invention can compress the original laser point cloud into a variable-resolution point cloud, and the variable-resolution voxel grid obtained based on the regular grid of the variable-resolution point cloud can cover a relatively large area. The large plane range can also ensure that the central area has a high resolution, so that it can simultaneously meet the different requirements for the plane coverage and resolution of the voxel grid in the processing of different terrain scenes. Secondly, in order to be able to deal with a larger size voxel grid and adopt a larger basic network structure, the present invention builds a three-dimensional semantic segmentation network with an encoding-decoding structure based on sub-flow sparse convolution. The network has high data processing speed and small memory usage. The variable-resolution voxel grid can flexibly respond to different terrain scenarios and effectively improve the robustness of the point cloud classification model.
附图说明Description of drawings
图1为本发明的压缩区内点坐标的变换示意图。FIG. 1 is a schematic diagram of transformation of point coordinates in a compressed area of the present invention.
图2为本发明机载激光点云数据压缩结果。(a)、(b)、(c)均为变分辨率压缩的示例图FIG. 2 is the result of airborne laser point cloud data compression according to the present invention. (a), (b), (c) are examples of variable resolution compression
图3为本发明基于UNet-like的子流型稀疏卷积的编码-解码结构的语义分割网络。FIG. 3 is a semantic segmentation network based on the encoding-decoding structure of UNet-like sub-stream type sparse convolution according to the present invention.
图4为本发明机载激光点云数据分类结果。FIG. 4 is the classification result of the airborne laser point cloud data of the present invention.
具体实施方式Detailed ways
下面结合附图对本发明提供方法作进一步的说明。The method provided by the present invention will be further described below with reference to the accompanying drawings.
本发明实施例提供一种机载激光点云数据压缩方法,具体包括以下步骤:An embodiment of the present invention provides an airborne laser point cloud data compression method, which specifically includes the following steps:
步骤1,点云输入与分块:读入原始点云数据,利用滑动窗口方法对点云进行分块。基于滑动窗口对输入点云进行分块的目的是将原始范围过大的数据分为覆盖足够空间信息的目标处理单元。Step 1, point cloud input and block: read the original point cloud data, and use the sliding window method to block the point cloud. The purpose of segmenting the input point cloud based on the sliding window is to divide the data whose original range is too large into target processing units that cover enough spatial information.
读入原始机载激光点云数据,利用滑动窗口算法点云分块。假设点云在水平方向上占用的地理空间分别为X,Y,滑动的步长为s,截取窗口的大小为w×h,整块数据的水平坐标最小值分别为x0,y0,得到的分块集合为P,则分块步骤如下:Read in the original airborne laser point cloud data, and use the sliding window algorithm to divide the point cloud into blocks. Assuming that the geographic space occupied by the point cloud in the horizontal direction is X, Y respectively, the sliding step is s, the size of the interception window is w×h, and the minimum horizontal coordinates of the whole piece of data are x 0 , y 0 respectively, we get The block set is P, the block steps are as follows:
(3)对X方向,按照步长s进行横向滑动,取固定窗口的点云,其中窗口的左上角和右下角的坐标分别为(x0+n×s,y0),(x0+n×s+w,y0+h),n∈{0,1,2,…},直到对X方向中所有点分块,将分块后的数据放入P中。(3) In the X direction, slide horizontally according to the step size s, and take the point cloud of the fixed window, where the coordinates of the upper left corner and the lower right corner of the window are (x 0 +n×s, y 0 ), (x 0 + n×s+w, y 0 +h), n∈{0,1,2,…}, until all points in the X direction are divided into blocks, and the divided data is put into P.
(4)对Y方向,按照步长s进行纵向滑动,取固定窗口的点云,其中窗口的左上角和右下角的坐标分别为(x0,y0+n×s),(x0+w,y0+n×s+h),n∈{0,1,2,…},直到对Y方向中所有点分块,将分块后的数据放入P中。(4) For the Y direction, slide longitudinally according to the step size s, and take the point cloud of the fixed window, where the coordinates of the upper left corner and the lower right corner of the window are (x 0 , y 0 +n×s), (x 0 + w, y 0 +n×s+h), n∈{0,1,2,…}, until all points in the Y direction are divided into blocks, and the divided data is put into P.
在本发明中,w=h。In the present invention, w=h.
步骤2,基于等比变换的压缩策略:将每个分块划分为压缩区域和内部区域,对压缩区域的点云,采用从外到内的等比例线性压缩方法,即仅对点的水平坐标进行压缩,对高程坐标采取保持原值的方式;对内部区域的点的三维坐标采取保持原值的处理方式。Step 2: Compression strategy based on proportional transformation: Divide each block into a compression area and an inner area. For the point cloud in the compressed area, a proportional linear compression method from the outside to the inside is used, that is, only the horizontal coordinates of the points are used. Compression is performed, and the original value is maintained for the elevation coordinates; the original value is maintained for the three-dimensional coordinates of the points in the inner area.
同一块点云数据一般具有相同的密度。点云压缩将外部代表空间上下文信息的点云压缩到一定范围内,通过提高这部分点云的密度而保持这部分点云所表示的空间内容不变,但是压缩的强度不能太高,否则会造成点与点之间距离过近,从而导致表述信息缺失,如植被压缩成竖直的直线,建筑物被压缩成水平的直线等。所以考虑到如下情况,需要对输入点云的压缩区域进行合适的压缩率设定,保证点的空间分布在压缩的同时,信息损失情况减小到最小。The same piece of point cloud data generally has the same density. Point cloud compression compresses the external point cloud representing spatial context information to a certain range, and keeps the spatial content represented by this part of the point cloud unchanged by increasing the density of this part of the point cloud, but the compression strength cannot be too high, otherwise it will The distance between points is too close, resulting in the loss of presentation information, such as vegetation being compressed into a vertical straight line, buildings being compressed into a horizontal straight line, etc. Therefore, considering the following situation, it is necessary to set an appropriate compression ratio for the compression area of the input point cloud to ensure that the spatial distribution of points is compressed and the information loss is minimized.
本算法采用线性压缩方法,即对压缩区域的点云,采用从外到内的等比例线性压缩方法。考虑到机载激光点云的特殊性,不同地物目标的差异性主要由点的高程决定,因此本算法在进行压缩的时候,仅对点的水平坐标进行压缩,对高程坐标采取保持原值的方式。处理后的点云既可以减小地理层面上的占用空间,同时保证了各个地物内容在高程上的一致性。为了保证中心区域的点云分辨率不变,对内部区域的点的三维坐标采取保持原值的处理方式。This algorithm adopts the linear compression method, that is, the point cloud in the compressed area adopts the proportional linear compression method from the outside to the inside. Considering the particularity of the airborne laser point cloud, the difference between different objects is mainly determined by the elevation of the point. Therefore, when compressing, this algorithm only compresses the horizontal coordinate of the point, and maintains the original value for the elevation coordinate. The way. The processed point cloud can not only reduce the occupied space at the geographic level, but also ensure the consistency of the content of each feature in elevation. In order to ensure that the resolution of the point cloud in the central area remains unchanged, the three-dimensional coordinates of the points in the inner area are processed in a way of keeping the original values.
步骤3,点云压缩区域数据压缩:根据上述压缩策略,对压缩区域的点云进行数据压缩。Step 3, data compression in the point cloud compression area: according to the above compression strategy, data compression is performed on the point cloud in the compression area.
给定压缩区域内任一原始点为Pi(Xi,Yi,Zi),压缩后的点为P′i(X′i,Y′i,Z′i),点Pi和点P′i之间的连线与与内部不压缩边界圆的相交点为Ps(Xs,Ys,Zs),外部原始边界圆的半径为R1,外部压缩后边界圆的半径为R2,内部区域边界圆的半径为R3,内部区域边界圆的中心点为Pc(Xc,Yc,Zc)。其中,R2=0.5×R1同时,令点Pi与点Pc之间的连线与水平线间的夹角为α,则根据图1所示的相似三角形的几何关系可得如下公式:Any original point in the given compressed region is Pi (X i ,Y i ,Z i ), the compressed point is P′ i (X′ i ,Y′ i ,Z′ i ) , the point Pi and the point The intersection point between the line between P′ i and the inner uncompressed boundary circle is P s (X s , Y s , Z s ), the radius of the outer original boundary circle is R 1 , and the radius of the outer compressed boundary circle is R 2 , the radius of the inner region boundary circle is R 3 , and the center point of the inner region boundary circle is P c (X c , Y c , Z c ). in, R 2 =0.5×R 1 At the same time, let the angle between the line connecting point P i and point P c and the horizontal line be α, then according to the geometric relationship of similar triangles shown in Figure 1, the following formula can be obtained:
线性压缩的等比例关系如下:The proportional relationship of linear compression is as follows:
其中,代表点Pi和Pc之间的水平距离,其计算公式如下:in, represents the horizontal distance between points P i and P c , and its calculation formula is as follows:
为点Ps和点P′i之间的水平距离,计算方式与的计算方式一样。 is the horizontal distance between point P s and point P′ i , calculated in the same way as are calculated in the same way.
将上述公式合并可得:Combining the above formulas gives:
对其进行变换可得:Transform it to get:
此外,根据图1所示的几何关系,可得如下公式:In addition, according to the geometric relationship shown in Figure 1, the following formula can be obtained:
Xs=R3×cosα+Xc X s =R 3 ×cosα+X c
将上述公式进行结合,最后可得到:Combining the above formulas, we finally get:
同理,可得如下Y′i的计算公式:Similarly, the following formula for calculating Y′ i can be obtained:
由于只对平面坐标进行了压缩变化,所以压缩前后激光点的高程坐标不变,即:Since only the plane coordinates are compressed and changed, the elevation coordinates of the laser point before and after compression remain unchanged, namely:
Z′i=Zi Z′ i =Z i
通过以上压缩算法,将在R1-R2范围内的点压缩到R2-R3中。Through the above compression algorithm, the points in the range of R 1 -R 2 are compressed into R 2 -R 3 .
步骤4,将压缩得到的变分辨率点云进行规则格网化即可得到与其对偶的变分辨率的规则体素格网。将三维网格化的点云输入基于子流型稀疏卷积的编码-解码结构语义分割网络,得到点云分类的结果;Step 4: Perform regular gridization on the compressed variable resolution point cloud to obtain its dual variable resolution regular voxel grid. The 3D gridded point cloud is input into the encoding-decoding structure semantic segmentation network based on sub-flow sparse convolution, and the result of point cloud classification is obtained;
在获得压缩的点云后,将数据输入到预先训练好的基于UNet-like的子流型稀疏卷积的编码-解码结构的语义分割网络中。该网络可以对输入的数据进行特征学习以及自动分类,保证了分类结果的正确性。After obtaining the compressed point cloud, the data is fed into a pre-trained semantic segmentation network based on a UNet-like sub-stream-type sparse convolutional encoder-decoder structure. The network can perform feature learning and automatic classification on the input data to ensure the correctness of the classification results.
其中,UNet-like网络由一个编码层部件、一个解码层部件组成。其中,编码层部件由5组卷积层组成,这5组卷积层输出的特征图个数分别为32、64、96、128以及160,每组卷积层都由两个结构相同的卷积层以及一个降采样卷积层组成。每个卷积层前面都有一个批归一化和ReLU层。解码层部件的结构与编码层部件的结构对称,因此解码层部件也包含5组卷积层,这5组卷积层输出的特征图个数分别为160、128、96,64以及32。每组卷积层都由一个用于上采样的反卷积层和两个结构相同的卷积层组成。同时,编码层部件的卷积层输出的特征还会通过跳跃连接结构与解码层部件对应卷积层的输出特征进行通道合并。最后,解码层部件的输出会被传递给一个softmax层进行逐体素分类。Among them, the UNet-like network consists of an encoding layer component and a decoding layer component. Among them, the coding layer component consists of 5 groups of convolutional layers. The number of feature maps output by these 5 groups of convolutional layers is 32, 64, 96, 128 and 160 respectively. Each group of convolutional layers consists of two volumes with the same structure. It consists of a convolutional layer and a downsampling convolutional layer. Each convolutional layer is preceded by a batch normalization and ReLU layer. The structure of the decoding layer component is symmetrical with that of the encoding layer component, so the decoding layer component also includes 5 groups of convolutional layers, and the number of feature maps output by these 5 groups of convolutional layers are 160, 128, 96, 64 and 32 respectively. Each set of convolutional layers consists of a deconvolutional layer for upsampling and two convolutional layers with the same structure. At the same time, the output features of the convolutional layer of the encoding layer component will also be channel merged with the output features of the corresponding convolutional layer of the decoding layer component through the skip connection structure. Finally, the output of the decoding layer component is passed to a softmax layer for voxel-wise classification.
步骤5,将分类后的子块点云进行合并,每块子点云只取中间不压缩的分类结果;Step 5, merge the classified sub-block point clouds, and each sub-point cloud only takes the middle uncompressed classification result;
将通过步骤4得到的子块点云分类结果进行合并,每块子点云只取中间不压缩的分类结果,最后拼接成整块点云。The sub-block point cloud classification results obtained in step 4 are merged, and each sub-point cloud only takes the middle uncompressed classification result, and finally splices into a whole point cloud.
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。The specific embodiments described herein are merely illustrative of the spirit of the invention. Those skilled in the art to which the present invention pertains can make various modifications or additions to the described specific embodiments or substitute in similar manners, but will not deviate from the spirit of the present invention or go beyond the definitions of the appended claims range.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010085191.1A CN111325666B (en) | 2020-02-10 | 2020-02-10 | Airborne laser point cloud processing method based on variable resolution voxel grid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010085191.1A CN111325666B (en) | 2020-02-10 | 2020-02-10 | Airborne laser point cloud processing method based on variable resolution voxel grid |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111325666A CN111325666A (en) | 2020-06-23 |
CN111325666B true CN111325666B (en) | 2021-11-02 |
Family
ID=71167336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010085191.1A Active CN111325666B (en) | 2020-02-10 | 2020-02-10 | Airborne laser point cloud processing method based on variable resolution voxel grid |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111325666B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111598803B (en) * | 2020-05-12 | 2023-05-09 | 武汉慧点云图信息技术有限公司 | Point cloud filtering method based on variable-resolution voxel grid and sparse convolution |
CN112597989B (en) * | 2020-12-18 | 2021-09-14 | 中国科学院上海微系统与信息技术研究所 | Millimeter wave three-dimensional holographic image concealed article detection method and system |
WO2022213376A1 (en) * | 2021-04-09 | 2022-10-13 | 深圳市大疆创新科技有限公司 | Obstacle detection method and apparatus, and movable platform and storage medium |
CN113870271A (en) * | 2021-09-29 | 2021-12-31 | 北京有竹居网络技术有限公司 | 3D point cloud compression method, device, equipment and storage medium |
CN116797704B (en) * | 2023-08-24 | 2024-01-23 | 山东云海国创云计算装备产业创新中心有限公司 | Point cloud data processing method, system, device, electronic equipment and storage medium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102419794A (en) * | 2011-10-31 | 2012-04-18 | 武汉大学 | Rapid filtering method for airborne laser point cloud data |
CN102663237A (en) * | 2012-03-21 | 2012-09-12 | 武汉大学 | Point cloud data automatic filtering method based on grid segmentation and moving least square |
CN105182359A (en) * | 2015-07-31 | 2015-12-23 | 武汉大学 | Satellite-borne Lidar hyperchaotic compressed sensing high-spatial-resolution imaging method |
CN110570429A (en) * | 2019-08-30 | 2019-12-13 | 华南理工大学 | A Lightweight Real-Time Semantic Segmentation Method Based on 3D Point Cloud |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10796457B2 (en) * | 2018-06-26 | 2020-10-06 | Intel Corporation | Image-based compression of LIDAR sensor data with point re-ordering |
-
2020
- 2020-02-10 CN CN202010085191.1A patent/CN111325666B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102419794A (en) * | 2011-10-31 | 2012-04-18 | 武汉大学 | Rapid filtering method for airborne laser point cloud data |
CN102663237A (en) * | 2012-03-21 | 2012-09-12 | 武汉大学 | Point cloud data automatic filtering method based on grid segmentation and moving least square |
CN105182359A (en) * | 2015-07-31 | 2015-12-23 | 武汉大学 | Satellite-borne Lidar hyperchaotic compressed sensing high-spatial-resolution imaging method |
CN110570429A (en) * | 2019-08-30 | 2019-12-13 | 华南理工大学 | A Lightweight Real-Time Semantic Segmentation Method Based on 3D Point Cloud |
Non-Patent Citations (12)
Title |
---|
"Deep fusion of multi-view and multimodal representation of ALS point cloud for 3D terrain scene recognition";Nannan Qin et al.;《ISPRS Journal of Photogrammetry and Remote Sensing》;20180326;第205-212页 * |
"Deep-Learning-Based Classification for DTM Extraction from ALS Point Cloud";Xiangyun Hu et al.;《remote sensing》;20160905;第1-16页 * |
"DEM Extraction from ALS Point Clouds in Forest Areas via Graph Convolution Network";Jinming Zhang et al.;《remote sensing》;20200103;第1-18页 * |
"Fast and Accurate Plane Segmentation of Airborne LiDAR Point Cloud Using Cross-Line Elements";Teng Wu et al.;《remote sensing》;20160505;第1-26页 * |
"Learning Dual Multi-Scale Manifold Ranking for Semantic Segmentation of High-Resolution Images";Mi Zhang et al.;《remote sensing》;20170519;第1-30页 * |
"Semi-Global Filtering of Airborne LiDAR Data for Fast Extraction of Digital Terrain Models";Xiangyun Hu et al.;《remote sensing》;20150824;第10996-11015页 * |
"一种结合了栅格化和特征判断的点云压缩方法";胡志胜等;《辽宁工程技术大学学报(自然科学版)》;20150831;第34卷(第8期);第958-962页 * |
"保留路面特征的车载激光点云非均匀压缩方法";刘如飞等;《遥感信息》;20170228;第32卷(第1期);第100-103页 * |
"大数据量机载LiDAR点云的快速区域分割处理";罗胜等;《测绘科学技术学报》;20181231;第35卷(第5期);第491-496页 * |
"机载激光点云与影像数据融合方法的研究";隆华平等;《地理空间信息》;20180228;第16卷(第2期);第14-15页 * |
"顾及矢量特征的机载LiDAR点云数据压缩方法";杨玲等;《地理与地理信息科学》;20090731;第25卷(第4期);第25-29页 * |
Grzegorz Józ'ków et al.."Compression strategies for LiDAR waveform cube".《ISPRS Journal of Photogrammetry and Remote Sensing》.2014,第1-13页. * |
Also Published As
Publication number | Publication date |
---|---|
CN111325666A (en) | 2020-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111325666B (en) | Airborne laser point cloud processing method based on variable resolution voxel grid | |
Sun et al. | Neural 3d reconstruction in the wild | |
Weder et al. | Routedfusion: Learning real-time depth map fusion | |
CN114332366B (en) | Digital urban single house point cloud elevation 3D feature extraction method | |
CN110009727A (en) | A kind of indoor threedimensional model automatic reconfiguration method and system with structure semantics | |
CN109993839A (en) | An Adaptive Point Cloud Striping Method | |
US20080238919A1 (en) | System and method for rendering of texel imagery | |
CN116543117B (en) | A high-precision three-dimensional modeling method for large scenes from drone images | |
CN111950658B (en) | Deep learning-based LiDAR point cloud and optical image priori coupling classification method | |
CN117115359B (en) | Multi-view power grid three-dimensional space data reconstruction method based on depth map fusion | |
Liu et al. | High-quality textured 3D shape reconstruction with cascaded fully convolutional networks | |
CN112163990A (en) | Significance prediction method and system for 360-degree image | |
Gu et al. | Ue4-nerf: Neural radiance field for real-time rendering of large-scale scene | |
CN113538501A (en) | Building edge refinement method for low-altitude image DSM generation | |
Cui et al. | Letsgo: Large-scale garage modeling and rendering via lidar-assisted gaussian primitives | |
CN113345072A (en) | Multi-view remote sensing topographic image point cloud reconstruction method and system | |
CN114241208A (en) | Local and global deep contrastive feature learning network construction method for inter-image change detection | |
CN118135363A (en) | New view angle synthesis method based on point characteristics and nerve radiation field | |
Lv et al. | Fast digital orthophoto generation: A comparative study of explicit and implicit methods | |
CN119006719B (en) | Method for constructing a large basic model for low-altitude UAV hyperspectral remote sensing | |
CN114663298B (en) | Disparity map inpainting method and system based on semi-supervised deep learning | |
CN115761137A (en) | High-precision curved surface reconstruction method and device based on mutual fusion of normal vector and point cloud data | |
CN115546760A (en) | Point cloud sequence data processing method and device, computer equipment and storage medium | |
CN113920433B (en) | Method and device for analyzing surface material of object | |
CN118628760A (en) | A deep learning line feature extraction method integrated with nDSM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |