CN111323903A - Optical fiber orbital angular momentum mode separation method based on spiral structure - Google Patents
Optical fiber orbital angular momentum mode separation method based on spiral structure Download PDFInfo
- Publication number
- CN111323903A CN111323903A CN202010096061.8A CN202010096061A CN111323903A CN 111323903 A CN111323903 A CN 111323903A CN 202010096061 A CN202010096061 A CN 202010096061A CN 111323903 A CN111323903 A CN 111323903A
- Authority
- CN
- China
- Prior art keywords
- angular momentum
- optical fiber
- orbital angular
- fiber
- mode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 75
- 238000000926 separation method Methods 0.000 title claims abstract description 18
- 239000000835 fiber Substances 0.000 claims abstract description 90
- 230000010287 polarization Effects 0.000 claims abstract description 19
- 238000013461 design Methods 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims description 21
- 238000010438 heat treatment Methods 0.000 claims description 13
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 8
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 4
- 239000001569 carbon dioxide Substances 0.000 claims description 4
- 239000004038 photonic crystal Substances 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 abstract description 13
- 238000010586 diagram Methods 0.000 description 17
- 230000003287 optical effect Effects 0.000 description 9
- 238000005253 cladding Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000004088 simulation Methods 0.000 description 6
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- XOJVVFBFDXDTEG-UHFFFAOYSA-N Norphytane Natural products CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004093 laser heating Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0012—Optical design, e.g. procedures, algorithms, optimisation routines
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
本发明公开了一种基于螺旋结构的光纤轨道角动量模式分离方法,包括如下步骤:根据轨道角动量模式有效分离需要的模式之间的总有效折射率差值的要求,和轨道角动量模式在原始光纤中的纵向有效折射率取值,计算满足轨道角动量模式有效分离需要的在螺旋光纤中新形成的模式之间的角向有效折射率差值;利用在螺旋光纤中新形成的角向有效折射率与螺旋周期长度有关的特性,计算满足上一步骤中计算的角向有效折射率差值需要的特定设计的螺旋周期长度;对原始光纤进行加热,同时控制原始光纤的移动和旋转速度,使之扭转形成螺旋光纤。本发明保证轨道角动量模式在设计的螺旋光纤中的可靠、稳定和复用长距离传输,实现圆偏振方向和轨道角动量阶数的共同复用。
The invention discloses an optical fiber orbital angular momentum mode separation method based on a helical structure. Take the value of the longitudinal effective refractive index in the original fiber, and calculate the angular effective refractive index difference between the newly formed modes in the helical fiber to meet the requirements for effective separation of the orbital angular momentum modes; use the newly formed angular direction in the helical fiber. The characteristic of the effective refractive index in relation to the helical period length, calculate the helical period length of the specific design required to satisfy the angular effective refractive index difference calculated in the previous step; heat the original fiber while controlling the movement and rotation speed of the original fiber , twist it to form a helical fiber. The invention ensures the reliable, stable and multiplexed long-distance transmission of the orbital angular momentum mode in the designed helical fiber, and realizes the common multiplexing of the circular polarization direction and the order of the orbital angular momentum.
Description
技术领域technical field
本发明涉及光通信和光传感技术领域,尤其是一种基于螺旋结构的光纤轨道角动量模式分离方法。The invention relates to the technical fields of optical communication and optical sensing, in particular to a method for separating optical fiber orbital angular momentum modes based on a helical structure.
背景技术Background technique
光学轨道角动量在光通信、光传感和粒子操控等领域应用广泛,支持多种轨道角动量模式稳定复用传输的光纤是实现光学轨道角动量应用的重要光学器件。传统的光纤是通过增大纤芯和包层的折射率差,或者设计特殊结构的光纤的办法来增大属于同一简并模式的HE模式和EH模式(或TE/TM模式)的折射率差,使其实现自旋和轨道角动量同向的轨道角动量模式(基于HE模式构成的轨道角动量)与自旋和轨道角动量同向的轨道角动量模式(基于EH或TE/TM模式构成的轨道角动量)的模式分离。常见的方法有少模、多模、空芯、环芯、多芯和光子晶体光纤等方案。但是以上方法并不能分离具有相同轨道角动量阶数,但自旋方向不同的轨道角动量模式,且需要复杂的光纤设计技术和加工工艺。同时,这类特殊设计的光纤很难与光纤通信和传感系统中的传统光纤实现低损耗的连接。Optical orbital angular momentum is widely used in optical communication, optical sensing and particle manipulation. Optical fibers that support stable multiplexing of multiple orbital angular momentum modes are important optical devices for optical orbital angular momentum applications. The traditional fiber is to increase the refractive index difference between the core and the cladding, or design a special structure of the fiber to increase the refractive index difference between the HE mode and the EH mode (or TE/TM mode) belonging to the same degenerate mode. , so that it can realize the orbital angular momentum mode with the same spin and orbital angular momentum (based on the HE mode) and the orbital angular momentum mode with the same spin and orbital angular momentum (based on the EH or TE/TM mode) of orbital angular momentum). Common methods include few-mode, multi-mode, hollow-core, ring-core, multi-core and photonic crystal fiber schemes. However, the above methods cannot separate orbital angular momentum modes with the same order of orbital angular momentum but different spin directions, and require complex fiber design technology and processing technology. At the same time, it is difficult for such specially designed optical fibers to achieve low-loss connections with traditional optical fibers in optical fiber communication and sensing systems.
国内外的大量的专利和论文讨论了如何设计能稳定传输多种轨道角动量模式的光纤,但都是从增加光传播方向(纵向)的有效折射率的角度来设计的,没有采用螺旋结构的光纤来增大角向有效折射率以实现不同轨道角动量模式在光纤中的可靠、稳定和复用长距离传输的方法。另外,增大传播方向折射率的方法仅能增加具有自旋和轨道角动量方向同向(HE模式角动量)和反向(EH模式角动量)的折射率差,并不能增大具有相同轨道角动量阶数,但不同自旋方向的轨道角动量模式之间的折射率差,实现这类模式的有效分离和复用传输。A large number of patents and papers at home and abroad discuss how to design optical fibers that can stably transmit various orbital angular momentum modes, but they are all designed from the perspective of increasing the effective refractive index in the direction of light propagation (longitudinal), and no helical structure is used. Fiber to increase the angular effective refractive index to achieve reliable, stable and multiplexed long-distance transmission of different orbital angular momentum modes in fiber. In addition, the method of increasing the refractive index in the propagation direction can only increase the refractive index difference with spin and orbital angular momentum in the same direction (HE mode angular momentum) and opposite (EH mode angular momentum), but cannot increase the refractive index difference with the same orbital The angular momentum order, but the refractive index difference between the orbital angular momentum modes of different spin directions, enables efficient separation and multiplexing of such modes.
国内外也有大量的论文讨论了制作螺旋长周期光纤光栅,用于各种轨道角动量产生器,或者圆偏振转换器,及扭转等传感器等应用。但这类轨道角动量产生器大多是通过模式耦合产生高阶模式,然后使属于同一矢量模式HE模式(EH模式或TE/TM模式)的奇模和偶模之间产生π/2的相差以形成轨道角动量模式,没有通过光纤中的螺旋结构增大角向有效折射率以实现不同轨道角动量的模式分离的方法提出。另外螺旋光纤光栅具有在耦合波长附近的模式转换特性,导致参与耦合的模式无法稳定、可靠的传输。There are also a large number of papers at home and abroad discussing the fabrication of helical long-period fiber gratings, which are used in various orbital angular momentum generators, or circular polarization converters, and torsion sensors and other applications. However, most of these orbital angular momentum generators generate higher-order modes through mode coupling, and then generate a phase difference of π/2 between the odd and even modes belonging to the same vector mode HE mode (EH mode or TE/TM mode) to To form orbital angular momentum modes, no method has been proposed to increase the angular effective refractive index through the helical structure in the fiber to achieve mode separation of different orbital angular momentums. In addition, the helical fiber grating has mode conversion characteristics near the coupling wavelength, which leads to the unstable and reliable transmission of the modes participating in the coupling.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题在于,提供一种基于螺旋结构的光纤轨道角动量模式分离方法,能够保证其在设计的螺旋光纤中的可靠、稳定和复用长距离传输,并实现圆偏振方向和轨道角动量阶数的共同复用。The technical problem to be solved by the present invention is to provide an optical fiber orbital angular momentum mode separation method based on a helical structure, which can ensure its reliable, stable and multiplexed long-distance transmission in the designed helical fiber, and realize the circular polarization direction and Common multiplexing of orbital angular momentum orders.
为解决上述技术问题,本发明提供一种基于螺旋结构的光纤轨道角动量模式分离方法,包括如下步骤:In order to solve the above-mentioned technical problems, the present invention provides a method for separating optical fiber orbital angular momentum modes based on a helical structure, comprising the following steps:
(1)根据轨道角动量模式有效分离需要的模式之间的总有效折射率差值的要求,和轨道角动量模式在原始光纤中的纵向有效折射率取值,计算满足轨道角动量模式有效分离需要的在螺旋光纤中新形成的模式之间的角向有效折射率差值,轨道角动量模式在螺旋光纤中的总有效折射率由在原始光纤中的纵向有效折射率和螺旋光纤中新形成的角向有效折射率组成;(1) According to the requirement of the total effective refractive index difference between the modes required for the effective separation of the orbital angular momentum mode, and the value of the longitudinal effective refractive index of the orbital angular momentum mode in the original fiber, the calculation meets the effective separation of the orbital angular momentum mode. The required angular effective refractive index difference between newly formed modes in the helical fiber, the total effective refractive index of the orbital angular momentum modes in the helical fiber is determined by the longitudinal effective refractive index in the original fiber and the newly formed in the helical fiber The angular effective refractive index composition of ;
(2)利用在螺旋光纤中新形成的角向有效折射率与螺旋光纤中的轨道角动量模式的圆偏振状态、轨道角动量阶数、工作波长和螺旋光纤具有的螺旋周期长度有关的特性,计算满足步骤(1)中计算的角向有效折射率差值需要的特定设计的螺旋周期长度;(2) Using the newly formed angular effective refractive index in the helical fiber, which is related to the circular polarization state of the orbital angular momentum mode in the helical fiber, the order of the orbital angular momentum, the working wavelength and the helical period length of the helical fiber, Calculate the helical period length of the specific design that meets the needs of the angular effective refractive index difference calculated in step (1);
(3)对原始光纤进行加热,同时控制原始光纤的移动和旋转速度,使之扭转形成步骤(2)中计算的具有特定设计的螺旋周期长度的螺旋光纤。(3) Heating the original fiber while controlling the movement and rotation speed of the original fiber to twist the original fiber to form a helical fiber with a specifically designed helical period length calculated in step (2).
优选的,步骤(1)中,原始光纤是具有圆对称结构的任意光纤,光纤种类包含单模光纤、少模光纤、多模光纤、空芯光纤、环芯光纤、多芯光纤和光子晶体光纤。Preferably, in step (1), the original optical fiber is any optical fiber with a circularly symmetric structure, and the types of optical fibers include single-mode optical fibers, few-mode optical fibers, multi-mode optical fibers, hollow-core optical fibers, ring-core optical fibers, multi-core optical fibers, and photonic crystal fibers. .
优选的,步骤(2)中,特定设计的螺旋周期长度Λ需满足公式:Preferably, in step (2), the specially designed helical period length Λ needs to satisfy the formula:
Λ=min{Λp,q}Λ=min{Λ p,q }
其中,下标p和q表示原始光纤中的两个轨道角动量模式p和q;min{}表示取最小值运算符号,用于获得任意两个模式分离所需要的最小螺旋周期长度;Λp,q表示分离轨道角动量模式p和q需要的特定设计的螺旋周期长度,具体表示为:Among them, the subscripts p and q represent the two orbital angular momentum modes p and q in the original fiber; min{} represents the minimum value operation symbol, which is used to obtain the minimum helical period length required for the separation of any two modes; Λ p ,q denotes the specially designed helical period length required to separate the orbital angular momentum modes p and q, and is expressed as:
其中,下标p和q表示螺旋光纤中的两个轨道角动量模式p和q;||为取绝对值运算符号;sp和sq分别是两个轨道角动量模式的自旋量子数,取值+1或-1分别表示左旋和右旋圆偏振状态;lp和lq分别是两个轨道角动量模式的轨道角动量阶数,取值为整数;λmin为轨道角动量模式的工作波长范围内的最小波长;Δn为期望获得的轨道角动量模式间的有效折射率差,一般取Δn>1×10-4;分别是两个轨道角动量模式在扭转前原始光纤中的纵向有效折射率,满足条件 Among them, the subscripts p and q represent the two orbital angular momentum modes p and q in the helical fiber; || is the absolute value operation symbol; s p and s q are the spin quantum numbers of the two orbital angular momentum modes, respectively, The value of +1 or -1 represents the left-handed and right-handed circular polarization states, respectively; l p and l q are the order of the orbital angular momentum of the two orbital angular momentum modes, and the value is an integer; λ min is the orbital angular momentum mode of the The minimum wavelength in the working wavelength range; Δn is the effective refractive index difference between the desired orbital angular momentum modes, generally Δn>1×10 -4 ; are the longitudinal effective refractive indices of the two orbital angular momentum modes in the original fiber before twisting, satisfying the condition
优选的,步骤(3)中,加热扭转方法是围绕加热后的原始光纤的中心进行同轴扭转,最终形成特定设计的螺旋周期长度的同轴螺旋结构的螺旋光纤;加热光纤的方式选用氢氧焰或者二氧化碳激光器加热的加热方式。Preferably, in step (3), the heating and twisting method is to perform coaxial twisting around the center of the heated original optical fiber, and finally form a helical optical fiber with a coaxial helical structure of a specific designed helical period length; the method of heating the optical fiber is to use oxyhydrogen The heating method of flame or carbon dioxide laser heating.
本发明的有益效果为:本发明制作方法简单,能在传统光纤加工设备上实现,克服了传统轨道角动量光纤(少模、空芯、环芯、多芯和光子晶体等光纤)需要特别的光纤设计和加工工艺,难以大规模、低成本生产的问题;按照提出的设计制作方法加工后的光纤表面基本没有任何变形和损伤,可以保持原有的传输特性,能和扭转前的原光纤低损耗的连接;通过本发明,还可以解决以往轨道角动量光纤无法分离具有相同轨道角动量阶数,不同圆偏振方向的轨道角动量模式问题,即通过本发明的设计和制作的螺旋结构可实现轨道角动量和圆偏振的复用传输;本发明的应用范围不仅包含螺旋光纤,还包含运用此方法设计的基于螺旋光纤的轨道角动量模式耦合器、变换器、产生器和放大器等器件。The beneficial effects of the present invention are as follows: the manufacturing method of the present invention is simple, can be realized on traditional optical fiber processing equipment, and overcomes the need for special special Optical fiber design and processing technology are difficult to produce on a large scale and at low cost; the surface of the optical fiber processed according to the proposed design and production method has basically no deformation and damage, and the original transmission characteristics can be maintained, and the energy is lower than that of the original optical fiber before twisting. Loss connection; through the present invention, the problem that the conventional orbital angular momentum optical fibers cannot be separated with the same orbital angular momentum order and different circular polarization directions can also be solved, that is, the design and manufacture of the present invention can be realized by the spiral structure. Multiplexed transmission of orbital angular momentum and circular polarization; the application scope of the present invention includes not only helical fibers, but also devices such as orbital angular momentum mode couplers, converters, generators and amplifiers based on helical fibers designed using this method.
附图说明Description of drawings
图1为本发明形成螺旋光纤的结构原理示意图。FIG. 1 is a schematic diagram of the structural principle of forming a helical optical fiber according to the present invention.
图2为本发明制作螺旋光纤的实验原理示意图。FIG. 2 is a schematic diagram of the experimental principle of making a helical optical fiber according to the present invention.
图3为本发明显微镜观测到的基于单模光纤实际制作的螺旋光纤示意图。FIG. 3 is a schematic diagram of a helical optical fiber actually produced based on a single-mode optical fiber observed by the microscope of the present invention.
图4为本发明形成螺旋结构之前的原始单模光纤的模式有效折射率仿真结果示意图。FIG. 4 is a schematic diagram of the simulation result of the mode effective refractive index of the original single-mode optical fiber before the helical structure is formed in the present invention.
图5为本发明形成螺旋结构之后的螺旋单模光纤的模式有效折射率示意图。FIG. 5 is a schematic diagram of the mode effective refractive index of the helical single-mode optical fiber after the helical structure is formed according to the present invention.
图6(a)为本发明分离出来的+1阶的轨道角动量模式和高斯球面波的干涉条纹示意图。FIG. 6( a ) is a schematic diagram of the interference fringes of the +1-order orbital angular momentum mode and Gaussian spherical wave separated by the present invention.
图6(b)为本发明分离出来的-1阶的轨道角动量模式和高斯球面波的干涉条纹示意图。Fig. 6(b) is a schematic diagram of the interference fringes of the -1 order orbital angular momentum mode and Gaussian spherical wave separated by the present invention.
图6(c)为本发明分离出来的+1轨道角动量模式的光斑示意图。FIG. 6( c ) is a schematic diagram of the light spot of the +1 orbital angular momentum mode separated by the present invention.
图6(d)为本发明分离出来的-1轨道角动量模式的光斑示意图。FIG. 6(d) is a schematic diagram of the light spot of the -1 orbital angular momentum mode separated by the present invention.
图7为本发明形成螺旋结构之前的原始四模光纤的模式有效折射率仿真结果示意图。FIG. 7 is a schematic diagram showing the simulation result of the mode effective refractive index of the original four-mode optical fiber before the helical structure is formed in the present invention.
图8为本发明形成螺旋结构之后的螺旋四模光纤的模式有效折射率仿真结果示意图。FIG. 8 is a schematic diagram showing the simulation result of the mode effective refractive index of the helical four-mode optical fiber after the helical structure is formed according to the present invention.
图9(a)为本发明分离出来的+2阶的轨道角动量模式和高斯球面波的干涉条纹示意图。FIG. 9( a ) is a schematic diagram of the interference fringes of the +2-order orbital angular momentum mode and the Gaussian spherical wave separated by the present invention.
图9(b)为本发明分离出来的-2阶的轨道角动量模式和高斯球面波的干涉条纹示意图。FIG. 9(b) is a schematic diagram of the interference fringes of the -2-order orbital angular momentum mode and Gaussian spherical wave separated by the present invention.
图9(c)为本发明分离出来的+2轨道角动量模式的光斑示意图。FIG. 9( c ) is a schematic diagram of the light spot of the +2 orbital angular momentum mode separated by the present invention.
图9(d)为本发明分离出来的-2轨道角动量模式的光斑示意图。FIG. 9(d) is a schematic diagram of the light spot of the -2 orbital angular momentum mode separated by the present invention.
图10为本发明观测并确认模式分离的观测原理示意图。FIG. 10 is a schematic diagram of the observation principle of the present invention for observing and confirming mode separation.
具体实施方式Detailed ways
本发明的技术方案采用同步控制原始光纤的加热、移动和旋转来实现。将加热至熔融状态的原始光纤同步移动和旋转,形成具有特定设计的螺旋周期长度结构的螺旋光纤。形成的特定设计的螺旋周期长度Λ由原始光纤的移动速度v(mm/s-毫米/秒)和旋转速度w(turn/s-转/秒)决定,表示为Λ=v/w(mm/turn-毫米/转)。由于受到加热时的扭转切向作用力,冷却后的螺旋光纤中形成特定设计的螺旋周期长度结构,具有均匀的螺旋状折射率分布特性。在螺旋状折射率分布的影响下,螺旋光纤中的轨道角动量模式的不仅具有普通光纤模式的纵向传播特性,还具有与传播方向相关的角向相位变化特性。这种角向相位沿着传播方向的变化特性,可以用角向折射率表示。角向折射率和纵向有效折射率一起作用,表现为沿着传播方向的相位变化(等效为总传播常数或总有效折射率变化)。形成螺旋光纤的结构原理图如图1所示,图中的螺旋结构仅用于说明结构原理,反映螺旋光纤的折射率变化特性,在实际制作的螺旋光纤中并不能观测到如此物理结构。图中可见,形成螺旋结构的光纤中的光的有效传播方向为螺旋方向,其螺旋方向的传播可以正交分解为沿着纵向的传播和沿着横截面方向角向的传播,因此其传播的总有效折射率包含纵向有效折射率和角向的有效折射率。The technical solution of the present invention is realized by synchronously controlling the heating, movement and rotation of the original optical fiber. The raw fiber heated to the molten state is moved and rotated synchronously to form a helical fiber with a specially designed helical period length structure. The helical period length Λ of the particular design formed is determined by the moving speed v (mm/s-mm/sec) and the rotation speed w (turn/s-turn/sec) of the original fiber, expressed as Λ=v/w (mm/ turn-mm/turn). Due to the torsional tangential force when heated, a specially designed helical period length structure is formed in the cooled helical fiber, which has a uniform helical refractive index distribution. Under the influence of the helical refractive index distribution, the orbital angular momentum mode in the helical fiber not only has the longitudinal propagation characteristics of the ordinary fiber mode, but also has the angular phase change characteristics related to the propagation direction. This angular phase variation along the propagation direction can be represented by the angular refractive index. The angular refractive index and the longitudinal effective refractive index work together and appear as a phase change along the direction of propagation (equivalent to the total propagation constant or total effective refractive index change). The schematic diagram of the structure of the helical fiber is shown in Figure 1. The helical structure in the figure is only used to illustrate the structural principle and reflects the refractive index change characteristics of the helical fiber. Such a physical structure cannot be observed in the actual helical fiber. It can be seen from the figure that the effective propagation direction of the light in the optical fiber forming the helical structure is the helical direction, and the propagation in the helical direction can be orthogonally decomposed into the propagation along the longitudinal direction and the angular propagation along the cross-sectional direction. The total effective refractive index includes the effective refractive index in the longitudinal direction and the effective refractive index in the angular direction.
设轨道角动量模式(l,m)在扭转前的原始光纤中的纵向有效折射率为其中l和m分别表示横截面中角向和径向的阶数。则该轨道角动量模式在扭转后的形成螺旋结构的螺旋光纤中的有效折射率可表示为:Let the longitudinal effective refractive index of the orbital angular momentum mode (l,m) in the original fiber before twisting be where l and m represent the angular and radial orders in the cross section, respectively. Then the effective refractive index of the orbital angular momentum mode in the twisted helical fiber forming the helical structure can be expressed as:
上式中的部分是轨道角动量模式(l,m)在具有螺旋结构的光纤中角向相位沿着传播方向变化的体现,即角向有效折射率。其中s为自旋量子数,s=1和-1分别表示左旋和右旋圆偏振状态;σ为螺旋光纤的扭转方向,σ=1,或者-1分别表示左手或者右手螺旋结构;λ为轨道角动量模式工作周期;Λ为特定设计的螺旋周期长度。in the above formula The part is the embodiment of the orbital angular momentum mode (l,m) in the fiber with the helical structure of the angular phase change along the direction of propagation, that is, the angular effective refractive index. where s is the spin quantum number, s=1 and -1 represent the left-handed and right-handed circular polarization states, respectively; σ is the twist direction of the helical fiber, σ=1, or -1 represents the left-handed or right-handed helical structure, respectively; λ is the orbital Angular momentum mode duty cycle; Λ is the helical cycle length for a specific design.
为有效分离不同轨道角动量模式,一般需要两种模式之间的有效折射率差满足Δn>1×10-4的条件。由于角向有效折射率可等效为纵向有效折射率,而纵向有效折射率差一般只能通过特殊设计的光纤结构或者增大纤芯和包层的折射率差才能实现。因此在本发明中,创新性的提出通过角向有效折射率的变化来实现这个有效折射率差要求,为实现满足任意两个轨道角动量模式p和q分离所需要的有效折射率差,制作的螺旋光纤中的螺旋周期至少应满足:In order to effectively separate different orbital angular momentum modes, the effective refractive index difference between the two modes generally needs to satisfy the condition of Δn>1×10 −4 . Since the angular effective refractive index can be equivalent to the longitudinal effective refractive index, the longitudinal effective refractive index difference can generally only be achieved by a specially designed fiber structure or by increasing the refractive index difference between the core and the cladding. Therefore, in the present invention, it is innovatively proposed to realize the effective refractive index difference requirement through the change of the angular effective refractive index. The helical period in the helical fiber should at least satisfy:
其中,下标p和q表示螺旋光纤中的任意两个轨道角动量模式p和q;||为取绝对值运算符号;sp和sq分别是两个模式的自旋量子数,取值1或-1时分别表示左旋和右旋圆偏振状态;lp和lq分别是两个模式的轨道角动量阶数,取值为整数;λmin为模式的工作波长范围内的最小波长;Δn为期望获得的模式间的有效折射率差,一般取Δn>1×10-4; 分别是两个模式在扭转前的原始光纤中的纵向有效折射率, Among them, the subscripts p and q represent any two orbital angular momentum modes p and q in the helical fiber; || is the absolute value operation symbol; s p and s q are the spin quantum numbers of the two modes, respectively, and the value 1 or -1 represents the left-handed and right-handed circular polarization states, respectively; l p and l q are the orbital angular momentum orders of the two modes, respectively, which are integers; λ min is the minimum wavelength within the operating wavelength range of the mode; Δn is the effective refractive index difference between the desired modes, generally Δn>1×10 -4 ; are the longitudinal effective refractive indices of the two modes in the pristine fiber before twisting, respectively,
当螺旋光纤中存在多个轨道角动量模式时,特定设计的螺旋周期长度Λ需满足公式:When there are multiple orbital angular momentum modes in the helical fiber, the helical period length Λ of a specific design needs to satisfy the formula:
Λ=min{Λp,q}(3)Λ=min{Λp ,q }(3)
其中,下标p和q表示原始光纤中的两个轨道角动量模式p和q;min{}表示最小值运算符号,即在分离任意两个模式所需要的螺旋周期中取最小值。Among them, the subscripts p and q represent the two orbital angular momentum modes p and q in the original fiber; min{} represents the minimum value operation symbol, that is, the minimum value is taken in the helical period required to separate any two modes.
当上述条件满足时,具有相同角动量阶数、不同自旋方向的两种轨道角动量模式,即属于同一个简并模式的自旋和轨道角动量同向的HE模式和自旋和轨道角动量反向的EH模式之间的有效折射率差可达到2×10-4以上,可实现有效的模式分离。同时,相同自旋方向,不同角动量方向的两种轨道角动量模式之间的有效折射率差可达到1×10-4以上,也能实现有效的模式分离。对于其他任意不同的轨道角动量模式,由于其存在不同的自旋方向或者轨道角动量阶数,因此任意两种轨道角动量模式之间的有效折射率差至少可达到1×10-4以上,能实现其在设计的螺旋光纤中的有效分离,满足不同模式在光纤中长距离稳定、可靠和复用传输的需求。When the above conditions are satisfied, there are two orbital angular momentum modes with the same angular momentum order and different spin directions, that is, the HE mode and the spin and orbital angles belonging to the same degenerate mode with the same spin and orbital angular momentum in the same direction The effective refractive index difference between EH modes with reversed momentum can reach more than 2×10 -4 , which can achieve effective mode separation. At the same time, the effective refractive index difference between the two orbital angular momentum modes in the same spin direction and different angular momentum directions can reach more than 1×10 -4 , which can also achieve effective mode separation. For any other different orbital angular momentum modes, due to the existence of different spin directions or orbital angular momentum orders, the effective refractive index difference between any two orbital angular momentum modes can reach at least 1×10 -4 or more, It can realize its effective separation in the designed helical fiber, and meet the requirements of long-distance stable, reliable and multiplexing transmission of different modes in the fiber.
当周期Λ满足螺旋光纤光栅中的某些模式之间在特定波长区间的谐振条件时,将会产生这些模式之间在特定波长的耦合能量交换,即实现轨道角动量模式转换。如要保证这些模式在特定波长的可靠、有效地长距离传输,应避免使用这类周期。When the period Λ satisfies the resonance condition between some modes in the helical fiber grating in a specific wavelength range, the coupling energy exchange between these modes at a specific wavelength will occur, that is, the orbital angular momentum mode conversion will be realized. Such periods should be avoided to ensure reliable and efficient long-distance transmission of these modes at specific wavelengths.
本发明的实现步骤如下:将准备加工的光纤固定在固定器和旋转器之间,固定器和旋转器分别固定在两个平移台上。制作时,首先通过二氧化碳激光器或者氢氧焰对光纤进行加热,当光纤加热到熔融状态时,通过同步控制平移台的移动和旋转器的旋转,同步控制螺旋光纤的移动速度和旋转速度。形成螺旋结构的周期Λ由移动速度v(mm/s-毫米/秒)和旋转速度w(turn/s-转/秒)决定,表示为Λ=v/w(mm/turn-毫米/转)。在制作时,需要同时控制移动和旋转的速度,使得形成的螺旋结构的周期满足上式(3)。The implementation steps of the present invention are as follows: the optical fiber to be processed is fixed between the holder and the rotator, and the holder and the rotator are respectively fixed on two translation stages. During production, the fiber is first heated by a carbon dioxide laser or a hydrogen-oxygen flame. When the fiber is heated to a molten state, the moving speed and rotation speed of the helical fiber are synchronously controlled by synchronously controlling the movement of the translation stage and the rotation of the rotator. The period Λ of the helical structure is determined by the moving speed v (mm/s-mm/sec) and the rotation speed w (turn/s-revolution/sec), expressed as Λ=v/w (mm/turn-mm/revolution) . During production, it is necessary to control the speed of movement and rotation at the same time, so that the period of the formed helical structure satisfies the above formula (3).
实施例1:以单模光纤为例,实现1阶轨道角动量在包层中的分离传输。Example 1: Taking a single-mode fiber as an example, the separated transmission of the first-order orbital angular momentum in the cladding is realized.
采用图2结构对原始单模光纤(Fujikura Inc,)进行加热扭转。图中为保证加热区的均匀性,采用蓝宝石管(Sapphire tube)形成加热区,用光开关(Shutter)控制二氧化碳激光器(CO2 laser)的通断。被加工原始光纤(Optical fiber)一头固定(Clamp),并用重物(Weight)保持加工中的原始光纤的拉直,另一头固定装入旋转器(Rotator)。宽光源(ASE)和光谱分析仪(OSA)用于观测制作中的螺旋光纤特性,如损耗特性等。当原始光纤加热到一定温度时,移动台(Stage)和旋转台(Rotator)在计算机(Computer)中控制软件控制下,同步工作,实现同时移动和旋转。形成螺旋结构的周期Λ由移动速度v(mm/s-毫米/秒)和旋转速度w(turn/s-转/秒)决定,表示为Λ=v/w(mm/turn-毫米/转)。图3为显微镜观测的基于单模光纤(Fujikura Inc,)实际制作的螺旋光纤。由图可见,加热扭转后的光纤直径形变约为1-3um,几乎不会改变原来单模光纤的传输特性,形成的螺旋光纤可以和原光纤实现低损耗的连接。形成螺旋结构前后的单模光纤(Fujikura Inc,)中的不同模式有效折射率如图4和图5所示。图4为形成螺旋结构之前的原始单模光纤(Fujikura Inc,)的模式有效折射率仿真结果。图中光纤纤芯和包层的半径分别为4.1um和62.5um,折射率分别为1.4580和1.4536,图中的有效折射率结果采用有限元方法仿真计算得到。由图可见,HE23、TE03和TM03模式(模式下标分别顺序表示模式的角向和径向的阶数)的有效折射率差极小,会在原始光纤里简并,难以分离独立传播。图5为形成螺旋结构之后的螺旋单模光纤(Fujikura Inc,)的模式有效折射率,图中光纤纤芯和包层的半径分别为4.1um和62.5um,折射率分别为1.4580和1.4536,螺旋半径为1cm,图中结果采用有限元方法仿真计算得到。由图可见在1450nm到1650nm波长范围内的不同的轨道角动量模式HE23 +、HE23 -和TE/TM03 +/-(上标中的正负符号分别表示不同的圆偏振,+表示左旋圆偏振状态,-表示右旋圆偏振状态),不同轨道角动量模式之间的有效折射率差约为至少3×10-4,完全满足轨道角动量模式有效分离的要求。The original single-mode fiber (Fujikura Inc, ) for heating and twisting. In the figure, in order to ensure the uniformity of the heating area, a sapphire tube is used to form the heating area, and an optical switch (Shutter) is used to control the on-off of the carbon dioxide laser (CO 2 laser). One end of the processed original optical fiber (Optical fiber) is fixed (Clamp), and a weight (Weight) is used to keep the processed original optical fiber straight, and the other end is fixed into a rotator (Rotator). A broad light source (ASE) and an optical spectrum analyzer (OSA) were used to observe the properties of the helical fiber in production, such as loss characteristics. When the original optical fiber is heated to a certain temperature, the mobile stage (Stage) and the rotary stage (Rotator) work synchronously under the control of the control software in the computer (Computer) to achieve simultaneous movement and rotation. The period Λ of the helical structure is determined by the moving speed v (mm/s-mm/sec) and the rotation speed w (turn/s-revolution/sec), expressed as Λ=v/w (mm/turn-mm/revolution) . Figure 3 is a microscope observation based on a single-mode fiber (Fujikura Inc, ) actually fabricated helical fibers. It can be seen from the figure that the diameter deformation of the fiber after heating and twisting is about 1-3um, which hardly changes the transmission characteristics of the original single-mode fiber, and the formed helical fiber can achieve low-loss connection with the original fiber. Single-mode fiber before and after formation of the helical structure (Fujikura Inc, ) in different modes of effective refractive index are shown in Fig. 4 and Fig. 5. Figure 4 shows the original single-mode fiber (Fujikura Inc, ) mode effective refractive index simulation results. In the figure, the radii of the fiber core and cladding are 4.1um and 62.5um, respectively, and the refractive indices are 1.4580 and 1.4536, respectively. The effective refractive index results in the figure are calculated by the finite element method. It can be seen from the figure that the effective refractive index difference of the HE 23 , TE 03 and TM 03 modes (the mode subscripts represent the angular and radial orders of the modes respectively) is extremely small, which will be degenerate in the original fiber and difficult to separate and independent. spread. Figure 5 is a helical single-mode optical fiber (Fujikura Inc, ), the radii of the fiber core and cladding in the figure are 4.1um and 62.5um, the refractive indices are 1.4580 and 1.4536, respectively, and the helix radius is 1cm. The results in the figure are calculated by the finite element method. It can be seen from the figure that the different orbital angular momentum modes HE 23 + , HE 23 - and TE/TM 03 +/- in the wavelength range from 1450nm to 1650nm (the positive and negative symbols in the superscript represent different circular polarizations, + represents left-handed Circular polarization state, - denotes right-handed circular polarization state), the effective refractive index difference between different orbital angular momentum modes is about at least 3×10 -4 , which fully meets the requirement of effective separation of orbital angular momentum modes.
通过图10结构,观测不同轨道角动量模式在形成螺旋结构中的光纤的传输状况。调谐激光器(Tunable Laser)输出对应观测波长的光,经过耦合器(Coupler)耦合后,一路输入到模式转换器(Mode converter)中得到对应的轨道角动量模式,经过形成螺旋结构的光纤传输后和另一路输出的高斯球面波参考信号干涉,通过CCD观测干涉条纹,其中的偏振片(PC)和衰减器(Attenuator)用于调节干涉条纹的清晰度。当没有高斯球面波参考信号加入时,显示为对应轨道角动量模式的环形光斑,观测到的结果如图6(c)、(d)所示;当高斯球面波参考信号加入后,显示为螺旋状干涉条纹,观测到的结果如图6(a)、(b)所示。其中图6(a)、(c)分别显示+1阶轨道角动量模式的干涉后条纹和干涉前光斑;图6(b)、(d)分别显示-1阶轨道角动量模式的干涉条纹和干涉前光斑。Through the structure of FIG. 10 , the transmission conditions of the optical fibers forming the helical structure with different orbital angular momentum modes are observed. The Tunable Laser outputs the light corresponding to the observed wavelength, and after being coupled by the Coupler, it is input to the Mode Converter all the way to obtain the corresponding orbital angular momentum mode. The Gaussian spherical wave output from the other channel interferes with the reference signal, and the interference fringes are observed by CCD, and the polarizer (PC) and the attenuator (Attenuator) are used to adjust the clarity of the interference fringes. When no Gaussian spherical wave reference signal is added, it is displayed as a ring spot corresponding to the orbital angular momentum mode, and the observed results are shown in Figure 6(c), (d); when the Gaussian spherical wave reference signal is added, it is displayed as a spiral shape interference fringes, and the observed results are shown in Fig. 6(a), (b). Figures 6(a) and (c) show the interference fringes and pre-interference spots of the +1-order orbital angular momentum mode, respectively; Figures 6(b) and (d) show the interference fringes and the -1-order orbital angular momentum mode, respectively. Spot before interference.
实施例2:以四模光纤为例,实现2阶轨道角动量在纤芯中的分离传输。Example 2: Taking a four-mode fiber as an example, the separated transmission of the second-order orbital angular momentum in the fiber core is realized.
采用图2结构对原始四模光纤(长飞公司,阶跃型四模光纤)进行加热扭转,加热扭转的实现方式和单模光纤一致。形成螺旋结构前后的四模光纤(长飞公司,阶跃型四模光纤)中的不同模式有效折射率如图7和图8所示。图7为形成螺旋结构之前的原始四模光纤(长飞公司,阶跃型四模光纤)的模式有效折射率仿真结果。图中光纤纤芯和包层的半径分别为9.5um和62.5um,折射率分别为1.4499和1.444,图中的有效折射率结果采用有限元方法仿真计算得到。由图可见,HE31和EH11(模式下标分别顺序表示模式的角向和径向的阶数)模式的有效折射率差极小,会在光纤里形成简并模式,难以分离独立传播。图8为形成螺旋结构之后的螺旋四模光纤(长飞公司,阶跃型四模光纤)的模式有效折射率仿真结果。图中光纤纤芯和包层的半径分别为9.5um和62.5um,折射率分别为1.4499和1.444,螺旋半径为1cm,图中的有效折射率结果采用有限元方法仿真计算得到。由图可见在1450nm到1650nm波长范围内不同的轨道角动量模式HE31 +、HE31 -、EH11 +和EH11 -(上标中的正负符号分别表示不同的圆偏振,+表示HE模式左旋圆偏振状态和EH模式右旋圆偏振状态,-表示HE模式右旋圆偏振状态和EH模式左旋圆偏振状态),不同轨道角动量模式之间的折射率差约为至少3×10-4,完全满足轨道角动量模式有效分离的要求。通过图10结构,观测不同轨道角动量模式在形成螺旋结构中的光纤的传输状况。当没有高斯球面波参考信号加入时,显示为对应轨道角动量模式的环形光斑,观测到的结果如图9(c)、(d)所示;当高斯球面波参考信号加入后,显示为螺旋状干涉条纹,观测到的结果如图9(a)、(b)所示。其中图9(a)、(c)分别显示+2阶轨道角动量模式的干涉后条纹和干涉前光斑;图9(b)、(d)分别显示-2阶轨道角动量模式的干涉条纹和干涉前光斑。The original four-mode optical fiber (YOFC, step-type four-mode optical fiber) is heated and twisted using the structure shown in Figure 2, and the heating and twisting method is the same as that of the single-mode optical fiber. The effective refractive indices of different modes in the four-mode fiber (YOFC, step-type four-mode fiber) before and after forming the helical structure are shown in Figures 7 and 8. Fig. 7 shows the simulation results of the mode effective refractive index of the original four-mode fiber (YOFC, step-type four-mode fiber) before the helical structure is formed. In the figure, the radii of the fiber core and cladding are 9.5um and 62.5um, respectively, and the refractive indices are 1.4499 and 1.444, respectively. The effective refractive index results in the figure are calculated by the finite element method. It can be seen from the figure that the effective refractive index difference of the modes HE 31 and EH 11 (the mode subscripts indicate the angular and radial orders of the modes respectively) is extremely small, which will form a degenerate mode in the fiber, which is difficult to separate and propagate independently. FIG. 8 is the simulation result of the mode effective refractive index of the helical four-mode fiber (YOFC, step-type four-mode fiber) after the helical structure is formed. In the figure, the radii of the fiber core and cladding are 9.5um and 62.5um respectively, the refractive indices are 1.4499 and 1.444, respectively, and the helix radius is 1cm. The effective refractive index results in the figure are calculated by the finite element method. It can be seen from the figure that the different orbital angular momentum modes HE 31 + , HE 31 - , EH 11 + and EH 11 - in the wavelength range from 1450nm to 1650nm (the positive and negative symbols in the superscript represent different circular polarizations, respectively, + represents the HE mode Left-handed circular polarization state and EH mode right-handed circular polarization state, - means HE-mode right-handed circular polarization state and EH mode left-handed circular polarization state), and the refractive index difference between different orbital angular momentum modes is about at least 3×10 -4 , which fully meets the requirements for effective separation of orbital angular momentum modes. Through the structure of FIG. 10 , the transmission conditions of the optical fibers forming the helical structure with different orbital angular momentum modes are observed. When no Gaussian spherical wave reference signal is added, it is displayed as a ring spot corresponding to the orbital angular momentum mode, and the observed results are shown in Figure 9(c), (d); when the Gaussian spherical wave reference signal is added, it is displayed as a spiral shape interference fringes, and the observed results are shown in Fig. 9(a), (b). Figures 9(a) and (c) show the interference fringes and pre-interference spots of the +2-order orbital angular momentum mode, respectively; Figures 9(b) and (d) show the interference fringes and the -2-order orbital angular momentum mode, respectively. Spot before interference.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010096061.8A CN111323903B (en) | 2020-02-17 | 2020-02-17 | Optical fiber orbital angular momentum mode separation method based on spiral structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010096061.8A CN111323903B (en) | 2020-02-17 | 2020-02-17 | Optical fiber orbital angular momentum mode separation method based on spiral structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111323903A true CN111323903A (en) | 2020-06-23 |
CN111323903B CN111323903B (en) | 2021-09-28 |
Family
ID=71168900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010096061.8A Active CN111323903B (en) | 2020-02-17 | 2020-02-17 | Optical fiber orbital angular momentum mode separation method based on spiral structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111323903B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112504310A (en) * | 2020-11-27 | 2021-03-16 | 华南师范大学 | Preparation method of spiral multi-core ytterbium-doped microstructure optical fiber sensor |
CN113296188A (en) * | 2021-04-29 | 2021-08-24 | 上海交通大学 | Method for realizing orbital angular momentum filter on photonic integrated chip |
CN113484953A (en) * | 2021-07-05 | 2021-10-08 | 朱国轩 | Efficiency-adjustable all-fiber mode converter |
WO2022160453A1 (en) * | 2021-01-28 | 2022-08-04 | 深圳大学 | Spiral fiber grating and preparation method therefor, and all-fiber orbital angular momentum beam generator |
CN115296771A (en) * | 2022-10-01 | 2022-11-04 | 深圳市子恒通讯设备有限公司 | Optical system of all-fiber mode converter |
WO2023092484A1 (en) * | 2021-11-23 | 2023-06-01 | 深圳大学 | Method for preparing helical refractive-index-change-type fiber grating for all-fiber orbital angular momentum beam generator |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101902276A (en) * | 2010-06-24 | 2010-12-01 | 北京理工大学 | A Free Space Laser Communication System Based on Beam Orbital Angular Momentum |
CN203259698U (en) * | 2013-05-08 | 2013-10-30 | 沈阳亨通光通信有限公司 | Special branch optical cable |
WO2016111862A1 (en) * | 2015-01-08 | 2016-07-14 | Nec Laboratories America, Inc. | Method and apparatus for photoacoustic tomography using orbital angular momentum(oam) |
CN105784111A (en) * | 2016-04-11 | 2016-07-20 | 西南交通大学 | Spiral light beam orbital angular momentum spectrum detection device and method |
CN106533574A (en) * | 2016-12-26 | 2017-03-22 | 华中科技大学 | Demodulation device and method for terahertz vortex beam orbit angular momentum state |
CN106908949A (en) * | 2017-03-14 | 2017-06-30 | 东北大学 | Device, the system and method for stable orbit angular momentum light beam are produced in a kind of optical fiber |
CN107462948A (en) * | 2017-07-17 | 2017-12-12 | 东北大学 | Annular fiber with unsymmetrical grating and its in the aborning application of orbital angular momentum |
CN108107509A (en) * | 2017-11-13 | 2018-06-01 | 暨南大学 | A kind of high-order swirl pattern production method and device based on less fundamental mode optical fibre |
CN208780919U (en) * | 2018-10-16 | 2019-04-23 | 哈尔滨理工大学 | A high-efficiency Brillouin amplification device for high-dimensional orbital angular momentum beams |
CN209132535U (en) * | 2018-11-28 | 2019-07-19 | 深圳大学 | Polarization-Independent Orbital Momentum Modulator and Orbital Momentum Beam Generator |
CN110556691A (en) * | 2019-07-30 | 2019-12-10 | 华南理工大学 | Short linear cavity orbital angular momentum mode single-frequency fiber laser |
US20200050959A1 (en) * | 2018-08-07 | 2020-02-13 | Nxgen Partners Ip, Llc | Universal quantum computer, communication, qkd security and quantum networks using oam qu-dits with dlp |
CN110794515A (en) * | 2019-12-02 | 2020-02-14 | 北京邮电大学 | Gouy phase shift-based optical fiber mode separation method and apparatus |
-
2020
- 2020-02-17 CN CN202010096061.8A patent/CN111323903B/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101902276A (en) * | 2010-06-24 | 2010-12-01 | 北京理工大学 | A Free Space Laser Communication System Based on Beam Orbital Angular Momentum |
CN203259698U (en) * | 2013-05-08 | 2013-10-30 | 沈阳亨通光通信有限公司 | Special branch optical cable |
WO2016111862A1 (en) * | 2015-01-08 | 2016-07-14 | Nec Laboratories America, Inc. | Method and apparatus for photoacoustic tomography using orbital angular momentum(oam) |
CN105784111A (en) * | 2016-04-11 | 2016-07-20 | 西南交通大学 | Spiral light beam orbital angular momentum spectrum detection device and method |
CN106533574A (en) * | 2016-12-26 | 2017-03-22 | 华中科技大学 | Demodulation device and method for terahertz vortex beam orbit angular momentum state |
CN106908949A (en) * | 2017-03-14 | 2017-06-30 | 东北大学 | Device, the system and method for stable orbit angular momentum light beam are produced in a kind of optical fiber |
CN107462948A (en) * | 2017-07-17 | 2017-12-12 | 东北大学 | Annular fiber with unsymmetrical grating and its in the aborning application of orbital angular momentum |
CN108107509A (en) * | 2017-11-13 | 2018-06-01 | 暨南大学 | A kind of high-order swirl pattern production method and device based on less fundamental mode optical fibre |
US20200050959A1 (en) * | 2018-08-07 | 2020-02-13 | Nxgen Partners Ip, Llc | Universal quantum computer, communication, qkd security and quantum networks using oam qu-dits with dlp |
CN208780919U (en) * | 2018-10-16 | 2019-04-23 | 哈尔滨理工大学 | A high-efficiency Brillouin amplification device for high-dimensional orbital angular momentum beams |
CN209132535U (en) * | 2018-11-28 | 2019-07-19 | 深圳大学 | Polarization-Independent Orbital Momentum Modulator and Orbital Momentum Beam Generator |
CN110556691A (en) * | 2019-07-30 | 2019-12-10 | 华南理工大学 | Short linear cavity orbital angular momentum mode single-frequency fiber laser |
CN110794515A (en) * | 2019-12-02 | 2020-02-14 | 北京邮电大学 | Gouy phase shift-based optical fiber mode separation method and apparatus |
Non-Patent Citations (7)
Title |
---|
G.K.L.WONG 等: "《Excitation of Orbital Angular Momentum Resonances in Helically Twisted Photonic Crystal Fiber》", 《SCIENCE》 * |
ZHAO HUA 等: "《All-fiber second-order orbital angular momentum generator based on a single-helix helical fiber grating》", 《OPTICS LETTERS》 * |
ZHAO HUA 等: "《All-fiber stable orbital angular momentum 》", 《OPTICS EXPRESS》 * |
ZHIYONG BAI 等: "《Orbital angular momentum generator based on hollow-core photonic bandgap fiber grating》", 《APPLIED PHYSICS EXPRESS》 * |
陈云: "《高阶轨道角动量模场传输光纤的设计研究》", 《中国优秀硕士学位论文全文数据库 基础科学辑》 * |
魏薇 等: "《三种涡旋光光子晶体光纤的设计》", 《光学学报》 * |
黄桂勇: "《改进环光纤结构中轨道角动量模式特性研究》", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112504310A (en) * | 2020-11-27 | 2021-03-16 | 华南师范大学 | Preparation method of spiral multi-core ytterbium-doped microstructure optical fiber sensor |
WO2022160453A1 (en) * | 2021-01-28 | 2022-08-04 | 深圳大学 | Spiral fiber grating and preparation method therefor, and all-fiber orbital angular momentum beam generator |
CN113296188A (en) * | 2021-04-29 | 2021-08-24 | 上海交通大学 | Method for realizing orbital angular momentum filter on photonic integrated chip |
CN113484953A (en) * | 2021-07-05 | 2021-10-08 | 朱国轩 | Efficiency-adjustable all-fiber mode converter |
WO2023092484A1 (en) * | 2021-11-23 | 2023-06-01 | 深圳大学 | Method for preparing helical refractive-index-change-type fiber grating for all-fiber orbital angular momentum beam generator |
CN115296771A (en) * | 2022-10-01 | 2022-11-04 | 深圳市子恒通讯设备有限公司 | Optical system of all-fiber mode converter |
Also Published As
Publication number | Publication date |
---|---|
CN111323903B (en) | 2021-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111323903A (en) | Optical fiber orbital angular momentum mode separation method based on spiral structure | |
Ward et al. | Contributed review: Optical micro-and nanofiber pulling rig | |
Ramachandran et al. | Optical vortices in fiber | |
Song et al. | High performance fused-type mode-selective coupler using elliptical core two-mode fiber at 1550 nm | |
CN105022117B (en) | A kind of long-period fiber grating mould field converter based on twin-core fiber | |
Yao et al. | Tunable orbital angular momentum generation using all-fiber fused coupler | |
Ivanov | Wavelength shift and split of cladding mode resonances in microbend long-period fiber gratings under torsion | |
Zhang et al. | Generation of the first-order OAM modes in ring fibers by exerting pressure technology | |
Sumetsky et al. | Demonstration of a multi-turn microfiber coil resonator | |
Guo et al. | Ultra-low-loss all-fiber orbital angular momentum mode-division multiplexer based on cascaded fused-biconical mode selective couplers | |
Chiang et al. | Analysis of an ultrashort PCF-based polarization splitter | |
CN112505823B (en) | Optical fiber type tunable broadband mode converter and preparation method thereof | |
Raynal et al. | Polarization sensitive multi-hollow-core antiresonant fiber | |
Mondal et al. | Design of highly birefringent dispersion compensating spiral photonic crystal fiber | |
JPH11248957A (en) | Field distribution converting optical fiber and laser diode module using field distribution converting optical fiber | |
WO1988009943A1 (en) | Asymmetric fibre optic couplers and their fabrication | |
CN112068240A (en) | A kind of long-period chirped fiber grating and preparation method thereof | |
CN111308608B (en) | Fiber integrated Gaussian mode field beam splitting/combining device | |
CN109581590A (en) | A kind of LP01 mode-LPmn mode full fiber type mode converter | |
Kakarantzas et al. | Directional coupling in a twin core photonic crystal fiber using heat treatment | |
Chen et al. | An in-fiber integrated multifunctional mode converter | |
CN114035264A (en) | A kind of dispersion compensation microstructure fiber | |
Liu et al. | Fabrication of surface nanoscale axial photonics structures with electric arc discharge | |
CN114563840B (en) | Ultra-wideband flat all-fiber circular polarizer and manufacturing method thereof | |
Deng et al. | Low loss silicon microring resonator as comb filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |