CN111321221A - Compositions, microarrays and computer systems for predicting recurrence risk after local resection of rectal cancer - Google Patents
Compositions, microarrays and computer systems for predicting recurrence risk after local resection of rectal cancer Download PDFInfo
- Publication number
- CN111321221A CN111321221A CN201811534784.0A CN201811534784A CN111321221A CN 111321221 A CN111321221 A CN 111321221A CN 201811534784 A CN201811534784 A CN 201811534784A CN 111321221 A CN111321221 A CN 111321221A
- Authority
- CN
- China
- Prior art keywords
- rectal cancer
- recurrence
- risk
- predicting
- local
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 208000015634 Rectal Neoplasms Diseases 0.000 title claims abstract description 60
- 206010038038 rectal cancer Diseases 0.000 title claims abstract description 60
- 201000001275 rectum cancer Diseases 0.000 title claims abstract description 60
- 238000002493 microarray Methods 0.000 title claims abstract description 39
- 238000002271 resection Methods 0.000 title claims abstract description 21
- 239000000203 mixture Substances 0.000 title claims abstract description 18
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 45
- 238000011156 evaluation Methods 0.000 claims abstract description 10
- 108091034117 Oligonucleotide Proteins 0.000 claims description 27
- 238000001514 detection method Methods 0.000 claims description 20
- 238000012360 testing method Methods 0.000 claims description 18
- 101000955101 Homo sapiens WD repeat-containing protein 43 Proteins 0.000 claims description 14
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 claims description 14
- 102100027087 28S ribosomal protein S18c, mitochondrial Human genes 0.000 claims description 13
- 102100029829 28S ribosomal protein S29, mitochondrial Human genes 0.000 claims description 13
- 101000694321 Homo sapiens 28S ribosomal protein S18c, mitochondrial Proteins 0.000 claims description 13
- 101000727490 Homo sapiens 28S ribosomal protein S29, mitochondrial Proteins 0.000 claims description 13
- 101000844774 Homo sapiens Disks large-associated protein 3 Proteins 0.000 claims description 13
- 101000771012 Homo sapiens Protein CMSS1 Proteins 0.000 claims description 13
- 101001060862 Homo sapiens Ras-related protein Rab-31 Proteins 0.000 claims description 13
- 102100029154 Protein CMSS1 Human genes 0.000 claims description 13
- 102100027838 Ras-related protein Rab-31 Human genes 0.000 claims description 13
- 102100038960 WD repeat-containing protein 43 Human genes 0.000 claims description 13
- 230000002068 genetic effect Effects 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 11
- 102100027738 Heterogeneous nuclear ribonucleoprotein H Human genes 0.000 claims description 10
- 101001081149 Homo sapiens Heterogeneous nuclear ribonucleoprotein H Proteins 0.000 claims description 10
- 102100022089 Acyl-[acyl-carrier-protein] hydrolase Human genes 0.000 claims description 9
- 101000824278 Homo sapiens Acyl-[acyl-carrier-protein] hydrolase Proteins 0.000 claims description 9
- 101000824954 Homo sapiens Sorting nexin-2 Proteins 0.000 claims description 9
- 101000809797 Homo sapiens Thymidylate synthase Proteins 0.000 claims description 9
- 102100022378 Sorting nexin-2 Human genes 0.000 claims description 9
- 102100038618 Thymidylate synthase Human genes 0.000 claims description 9
- 238000004422 calculation algorithm Methods 0.000 claims description 7
- -1 CIDECP Proteins 0.000 claims description 6
- 108700026162 Fanconi Anemia Complementation Group L protein Proteins 0.000 claims description 6
- 102000052930 Fanconi Anemia Complementation Group L protein Human genes 0.000 claims description 6
- 101100119754 Homo sapiens FANCL gene Proteins 0.000 claims description 6
- 238000004891 communication Methods 0.000 claims description 5
- 108091036078 conserved sequence Proteins 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 3
- 125000000524 functional group Chemical group 0.000 claims description 3
- 230000002980 postoperative effect Effects 0.000 abstract description 23
- 238000001356 surgical procedure Methods 0.000 abstract description 7
- 238000011160 research Methods 0.000 abstract description 4
- 239000003550 marker Substances 0.000 abstract description 3
- 238000013210 evaluation model Methods 0.000 abstract description 2
- 238000003759 clinical diagnosis Methods 0.000 abstract 1
- 239000000523 sample Substances 0.000 description 29
- 238000000034 method Methods 0.000 description 19
- 206010009944 Colon cancer Diseases 0.000 description 13
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 13
- 230000014509 gene expression Effects 0.000 description 10
- 230000035945 sensitivity Effects 0.000 description 9
- 210000004369 blood Anatomy 0.000 description 8
- 239000008280 blood Substances 0.000 description 8
- 238000009396 hybridization Methods 0.000 description 8
- 239000002299 complementary DNA Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000012216 screening Methods 0.000 description 5
- 238000007637 random forest analysis Methods 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 3
- 238000002123 RNA extraction Methods 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000010839 reverse transcription Methods 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- 238000000018 DNA microarray Methods 0.000 description 2
- 206010027476 Metastases Diseases 0.000 description 2
- 238000013381 RNA quantification Methods 0.000 description 2
- 102000012060 Septin 9 Human genes 0.000 description 2
- 108050002584 Septin 9 Proteins 0.000 description 2
- 239000000090 biomarker Substances 0.000 description 2
- 238000009534 blood test Methods 0.000 description 2
- 231100000504 carcinogenesis Toxicity 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 238000013499 data model Methods 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 231100000517 death Toxicity 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 230000003100 immobilizing effect Effects 0.000 description 2
- 230000009401 metastasis Effects 0.000 description 2
- 230000008506 pathogenesis Effects 0.000 description 2
- 210000005259 peripheral blood Anatomy 0.000 description 2
- 239000011886 peripheral blood Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000012502 risk assessment Methods 0.000 description 2
- 238000000527 sonication Methods 0.000 description 2
- 101150000874 11 gene Proteins 0.000 description 1
- 101150096316 5 gene Proteins 0.000 description 1
- 101150101112 7 gene Proteins 0.000 description 1
- 102100025475 Carcinoembryonic antigen-related cell adhesion molecule 5 Human genes 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 206010061819 Disease recurrence Diseases 0.000 description 1
- 108010014173 Factor X Proteins 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 208000007660 Residual Neoplasm Diseases 0.000 description 1
- 206010039897 Sedation Diseases 0.000 description 1
- 238000011226 adjuvant chemotherapy Methods 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 230000007321 biological mechanism Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 238000002052 colonoscopy Methods 0.000 description 1
- 238000002790 cross-validation Methods 0.000 description 1
- 238000013523 data management Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 235000020805 dietary restrictions Nutrition 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002550 fecal effect Effects 0.000 description 1
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 1
- 208000013210 hematogenous Diseases 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 238000011022 operating instruction Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000036280 sedation Effects 0.000 description 1
- 238000002579 sigmoidoscopy Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/118—Prognosis of disease development
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Hospice & Palliative Care (AREA)
- Biophysics (AREA)
- Oncology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
技术领域technical field
本发明涉及生物医学领域,具体涉及预测直肠癌局部切除手术后复发风险的组合物、微阵列和计算机系统。The invention relates to the field of biomedicine, in particular to a composition, a microarray and a computer system for predicting the risk of recurrence after local excision of rectal cancer.
背景技术Background technique
结直肠癌(colorectalcancer,CRC)是起源于结直肠黏膜上皮的恶性肿瘤,是全球第三大常见恶性肿瘤,也是全球癌症死亡率最高的第四大常见原因。我国每年结直肠癌新发病例超过25万,死亡病例约14万,新发和死亡病例均占全世界同期结直肠癌病例的20%。鉴于直肠位置偏低,其可移除的癌前病变不彻底,疾病复发风险极高。因此,建立有效的直肠癌风险评估方法降低我国直肠癌的发病率和死亡率是刻不容缓解决的重大临床问题。Colorectal cancer (CRC) is a malignant tumor originating from the colorectal mucosal epithelium. It is the third most common malignant tumor in the world and the fourth most common cause of cancer mortality in the world. In my country, there are more than 250,000 new cases of colorectal cancer and about 140,000 deaths each year. Both new cases and deaths account for 20% of the world's colorectal cancer cases during the same period. Given the low position of the rectum, its removable precancerous lesions are incomplete and the risk of disease recurrence is extremely high. Therefore, establishing an effective rectal cancer risk assessment method to reduce the morbidity and mortality of rectal cancer in my country is a major clinical problem that cannot be solved without delay.
中早期结直肠癌患者通常是采用手术切除病灶,从而有效控制肿瘤的进一步发展和扩散。结直肠癌往往术后两年发生血行转移而复发,而旨在消灭体内微小残留病变的术后辅助化疗可以降低复发率,提高患者的长期生存率。因此,术后患者需要密切关注肿瘤的转移复发,及时采取有效的诊疗方案防治疾病进展。常见的直肠癌诊断方法包括:粪便隐血试验、直肠指诊、直肠镜、乙状结肠镜、纤维结肠镜、影像学检查以及CEA癌胚抗原的检测。这些筛查手段都有各自的局限性,检测灵敏度低或者不易频繁检测等等。鉴于当前高通量检测技术的快速发展,基于血液生物标记物的检测的研究也是层出不穷。首先,体外血液检查是安全的和微创的。其次,不需要饮食限制,结肠清洁或镇静。第三,样品采集和处理程序可能更容易和更方便。此外,没有微生物群落可能降解生物标志物或妨碍分析。因此,可以通过外周血检测及时预测直肠癌的复发风险,提高检测的准确性,从而挽救生命。In patients with early-stage colorectal cancer, surgical resection is usually performed to effectively control the further development and spread of the tumor. Colorectal cancer often recurs due to hematogenous metastasis two years after surgery, and postoperative adjuvant chemotherapy aimed at eliminating minimal residual disease in the body can reduce the recurrence rate and improve the long-term survival rate of patients. Therefore, postoperative patients need to pay close attention to tumor metastasis and recurrence, and take effective diagnosis and treatment plans in time to prevent disease progression. Common diagnostic methods for rectal cancer include: fecal occult blood test, digital rectal examination, proctoscopy, sigmoidoscopy, colonoscopy, imaging examination and the detection of CEA carcinoembryonic antigen. These screening methods have their own limitations, such as low detection sensitivity or not easy to detect frequently. In view of the rapid development of current high-throughput detection technology, research on blood biomarker-based detection is also emerging. First, extracorporeal blood tests are safe and minimally invasive. Second, no dietary restrictions, colon cleansing or sedation are required. Third, sample collection and processing procedures may be easier and more convenient. Furthermore, there is no microbial community that could degrade biomarkers or hinder analysis. Therefore, the risk of recurrence of rectal cancer can be predicted in time through peripheral blood detection, and the accuracy of detection can be improved, thereby saving lives.
针对结直肠癌的筛查、诊断技术方法,研究最多的是septin9甲基化的研究。研究证实,septin9筛查出结直肠癌的敏感性约70%,特异性在90%左右。然而,DNA微阵列技术可以同时量化数千个基因的表达,并且可以比单个基因标记更好地探究导致直肠肿瘤发生和进展的复杂生物学机理。使用DNA微阵列技术鉴定用于CRC检测的基于血液的基因表达特征的报道层出不穷。Han及其同事报道了5基因的结直肠癌表达特征,检测敏感性为88%,特异性为64%;Marshall等人则发表了结直肠癌7基因表达特征,检测灵敏度为72%,特异性为70%。Rosenthal等人还报告了一组202个结直肠癌表达相关基因,其检测敏感性为90%,特异性为88%。For the screening and diagnosis of colorectal cancer, the most studied is the study of septin9 methylation. Studies have confirmed that the sensitivity of septin9 for screening colorectal cancer is about 70%, and the specificity is about 90%. However, DNA microarray technology can simultaneously quantify the expression of thousands of genes and can better probe the complex biological mechanisms that lead to rectal tumorigenesis and progression than individual gene markers. There are numerous reports using DNA microarray technology to identify blood-based gene expression signatures for CRC detection. Han and colleagues reported a 5-gene expression signature in colorectal cancer with a detection sensitivity of 88% and a specificity of 64%; Marshall et al. published a 7-gene expression signature in colorectal cancer with a detection sensitivity of 72% and a specificity of 64%. 70%. Rosenthal et al also reported a panel of 202 colorectal cancer expression-related genes with a detection sensitivity of 90% and specificity of 88%.
然而,目前结直肠癌的研究报道主要以欧美人群数据为基础,亚洲人群或者中国人群的报道数据并不详实。However, the current research reports on colorectal cancer are mainly based on data from European and American populations, and the reported data on Asian populations or Chinese populations are not detailed.
发明内容SUMMARY OF THE INVENTION
鉴于上述现状,本发明针对中国人群中直肠癌患者进行相关直肠癌术后复发标记基因的筛选,建立相应的术后复发评估模型,并进一步定制出中国直肠癌患者人群特有的术后复发检测的方案。至少基于此完成了本发明。具体地,本发明包括以下内容。In view of the above situation, the present invention conducts screening of relevant rectal cancer postoperative recurrence marker genes for rectal cancer patients in the Chinese population, establishes a corresponding postoperative recurrence evaluation model, and further customizes a specific postoperative recurrence detection method for the Chinese rectal cancer patient population. Program. The present invention has been completed based on at least this. Specifically, the present invention includes the following.
本发明的第一方面,提供一种用于预测直肠癌局部切除手术后复发风险的组合物,其包括特异性结合至选自由WDR43、RAB31、FASN、TYMS、SNX2、DAP3、MRPS18C、FANCL、CIDECP、HNRNPH1和CMSS1组成的组中的基因的部分连续序列的寡核苷酸。In a first aspect of the present invention, there is provided a composition for predicting the risk of recurrence after local resection of rectal cancer, comprising a composition that specifically binds to a compound selected from the group consisting of WDR43, RAB31, FASN, TYMS, SNX2, DAP3, MRPS18C, FANCL, CIDECP Oligonucleotides of partially contiguous sequences of genes in the group consisting of , HNRNPH1 and CMSS1.
在某些实施方案中,本发明的连续序列为对应基因的保守序列。In certain embodiments, the contiguous sequence of the present invention is a conserved sequence of the corresponding gene.
在某些实施方案中,本发明的寡核苷酸被设计为能够将其一末端固定结合至基材,且至少部分序列能够特异性结合至选自由WDR43、RAB31、FASN、TYMS、SNX2、DAP3、MRPS18C、FANCL、CIDECP、HNRNPH1和CMSS1组成的组中的基因的部分连续序列,从而能够在样品中捕获所需的基因。In certain embodiments, the oligonucleotides of the present invention are designed to be capable of immobilizing one end of the oligonucleotide to bind to a substrate, and at least a portion of the sequence can specifically bind to a sequence selected from the group consisting of WDR43, RAB31, FASN, TYMS, SNX2, DAP3 Partially contiguous sequences of genes in the group consisting of , MRPS18C, FANCL, CIDECP, HNRNPH1, and CMSS1, enabling the capture of the desired gene in the sample.
本发明的第二方面,提供一种用于预测直肠癌局部切除手术后复发风险的微阵列,其包括本发明的组合物和基材,所述基材的表面具有多个相互独立设置的多个位点。In a second aspect of the present invention, there is provided a microarray for predicting the risk of recurrence after local excision of rectal cancer, which comprises the composition of the present invention and a substrate, the surface of the substrate has a plurality of site.
优选地,各位点分别具有能够与所述寡核苷酸结合的反应性官能团;或者各位点分别结合所述寡核苷酸中的一种。Preferably, each site has a reactive functional group capable of binding to the oligonucleotide; or each site binds to one of the oligonucleotides, respectively.
优选地,各位点以相临位点之间的间隔在0.1-20μm范围内的方式规则排列,各位点的面积小于1μm2。Preferably, each site is regularly arranged in such a manner that the interval between adjacent sites is in the range of 0.1-20 μm, and the area of each site is less than 1 μm 2 .
优选地,所述寡核苷酸包括多个靶区域的重复序列,且所述寡核苷酸的序列长度为50-500nt。Preferably, the oligonucleotide comprises repeating sequences of multiple target regions, and the sequence length of the oligonucleotide is 50-500 nt.
本发明的第三方面,提供一种用于预测直肠癌局部切除手术后复发风险的计算机系统,其包括:A third aspect of the present invention provides a computer system for predicting the risk of recurrence after local resection of rectal cancer, comprising:
a.用于接收对象数据的输入装置,其中所述对象数据包括来自本发明的微阵列的基因检测数据;a. An input device for receiving subject data, wherein the subject data includes genetic testing data from the microarray of the present invention;
b.具有数据库的存储器,其用于存储至少所述基因检测数据;b. a memory with a database for storing at least the genetic testing data;
c.处理器,其与存储器进行通信,且被配置为:c. A processor in communication with the memory and configured to:
利用所述基因检测数据通过算法模型计算评估值F(x);和Calculate an evaluation value F(x) through an algorithmic model using the genetic testing data; and
d.配置为根据所述评估值F(x)判定的结果发送通知的输出装置。d. An output device configured to send a notification according to the result of the judgment of the evaluation value F(x).
优选地,所述算法模型为:Preferably, the algorithm model is:
F(x)=29.3341-0.7416*WDR43+0.9450*RAB31+2.9083*FASN-0.5904*TYMS-3.0449*SNX2-2.5533*DAP3+3.7309*pt+1.9524*MRPS18C+1.0107*FANCL-6.5343*CIDECP-1.1939*HNRNPH1+0.1941*CMSS1。F(x)=29.3341-0.7416*WDR43+0.9450*RAB31+2.9083*FASN-0.5904*TYMS-3.0449*SNX2-2.5533*DAP3+3.7309*pt+1.9524*MRPS18C+1.0107*FANCL-6.5343*NPCIDECP9*1.19 +0.1941*CMSS1.
优选地,所述处理器进一步被配置为:通过下式得到P(x)值,且将所得P(x)值与参考值0.37进行比较,当P(x)高于0.37时判定直肠癌局部切除手术后复发风险高,当P(x)低于或等于0.37判定直肠癌局部切除手术后复发风险低。Preferably, the processor is further configured to: obtain the P(x) value by the following formula, and compare the obtained P(x) value with a reference value of 0.37, and determine the local rectal cancer when P(x) is higher than 0.37 The risk of recurrence after resection was high, and the risk of recurrence after local resection of rectal cancer was determined to be low when P(x) was less than or equal to 0.37.
本发明的组合物、微阵列以及计算机系统针对中国直肠癌患者人群特有的术后复发而研制,可用于中国人群直肠癌患者的临床样本进行模型验证。结果证实,本发明的直肠癌术后复发的微阵列结合术后复发评估模型进行直肠癌的术后复发的评估,其术后复发评估的敏感性为78%,特异性为100%。The composition, the microarray and the computer system of the present invention are developed for the specific postoperative recurrence of the Chinese rectal cancer patient population, and can be used for model validation of the clinical samples of the Chinese rectal cancer patient population. The results confirmed that the microarray for postoperative recurrence of rectal cancer of the present invention combined with the postoperative recurrence assessment model to evaluate postoperative recurrence of rectal cancer, the sensitivity of postoperative recurrence assessment was 78%, and the specificity was 100%.
附图说明Description of drawings
图1随机森林法分析结果图。Figure 1. The results of random forest analysis.
具体实施方式Detailed ways
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。Various exemplary embodiments of the present invention will now be described in detail, which detailed description should not be construed as a limitation of the invention, but rather as a more detailed description of certain aspects, features, and embodiments of the invention.
应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为具体公开了该范围的上限和下限以及它们之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。It should be understood that the terms described in the present invention are only used to describe particular embodiments, and are not used to limit the present invention. Additionally, for numerical ranges in the present disclosure, it should be understood that the upper and lower limits of the range, and every intervening value therebetween, are specifically disclosed. Every smaller range between any stated value or intervening value in a stated range and any other stated value or intervening value in that stated range is also encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included or excluded in the range.
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。除非另有说明,否则“%”为基于重量的百分数。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention relates. Although only the preferred methods and materials are described herein, any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention. All documents mentioned in this specification are incorporated by reference for the purpose of disclosing and describing the methods and/or materials in connection with which the documents are referred. In the event of conflict with any incorporated document, the content of this specification controls. "%" is a percentage by weight unless otherwise stated.
本发明是在对中国人直肠癌患者人群进行深入研究的结果基础上完成。在研究中,对于入组人群进行了严格的筛选,所有入组人群均为直肠癌II期以后患者,实验组人群为已知的术后复发的人群,对照组入组人群为术后基本无复发迹象的患者。实验组为68例直肠癌II期术后复发血液样本,对照组为68例直肠癌术后未复发患者的血液样本。提取RNA并进行微阵列芯片(Affymetrix Gene Chips HG-U133Plus 2.0)检测。选取跟直肠癌发病机理相关的500基因进行随机森林法分析并建立术后复发评估模型;通过留一交叉验证(LOOCV)方法验证该模型的准确性,最终发现11个基因在出术后复发与与直肠癌术后未复发人群中表现出一定的表达差异;并利用实验组和对照组各9例患者做盲法测试,检测数据模型的适用性和测试的准确性。最后,定制本发明的技术方案。The present invention is completed on the basis of the results of in-depth research on the Chinese rectal cancer patient population. In the study, strict screening was carried out for the enrolled population. All enrolled populations were patients with rectal cancer after stage II. The experimental group consisted of known postoperative recurrences, and the control group consisted of patients who had basically no postoperative recurrence. Patients with signs of recurrence. The experimental group consisted of blood samples from 68 patients with postoperative recurrence of stage II rectal cancer, and the control group consisted of blood samples from 68 patients with no recurrence of rectal cancer after surgery. RNA was extracted and detected by microarray chip (Affymetrix Gene Chips HG-U133Plus 2.0). 500 genes related to the pathogenesis of rectal cancer were selected for random forest analysis and a postoperative recurrence assessment model was established; the accuracy of the model was verified by leave-one-out cross-validation (LOOCV) method, and finally 11 genes were found to be associated with postoperative recurrence and postoperative recurrence. There is a certain difference in expression between rectal cancer and non-recurrence of rectal cancer after surgery; 9 patients in the experimental group and the control group were used to do a blind test to test the applicability of the data model and the accuracy of the test. Finally, the technical solution of the present invention is customized.
[用于预测直肠癌局部切除手术后复发风险的组合物][Composition for predicting recurrence risk after local excision of rectal cancer]
本发明的第一方面,提供一种用于预测直肠癌局部切除手术后复发风险的组合物,其包括特异性结合至选自由WDR43、RAB31、FASN、TYMS、SNX2、DAP3、MRPS18C、FANCL、CIDECP、HNRNPH1和CMSS1组成的组中的基因的部分连续序列的寡核苷酸。In a first aspect of the present invention, there is provided a composition for predicting the risk of recurrence after local resection of rectal cancer, comprising a composition that specifically binds to a compound selected from the group consisting of WDR43, RAB31, FASN, TYMS, SNX2, DAP3, MRPS18C, FANCL, CIDECP Oligonucleotides of partially contiguous sequences of genes in the group consisting of , HNRNPH1 and CMSS1.
本发明的组合物中,WDR43、RAB31、FASN、TYMS、SNX2、DAP3、MRPS18C、FANCL、CIDECP、HNRNPH1和CMSS1分别称作靶基因。本发明可通过更少数量的靶基因来预测直肠癌局部切除手术后复发风险,并且效果更好。本发明可使用上述至少一种靶基因,为了提高预测结果的准确性,本发明优选使用多种靶基因,更优选使用全部上述靶基因。In the composition of the present invention, WDR43, RAB31, FASN, TYMS, SNX2, DAP3, MRPS18C, FANCL, CIDECP, HNRNPH1 and CMSS1 are respectively referred to as target genes. The invention can predict the recurrence risk of rectal cancer after local excision operation through a smaller number of target genes, and the effect is better. The present invention can use at least one of the above-mentioned target genes. In order to improve the accuracy of the prediction results, the present invention preferably uses a plurality of target genes, and more preferably uses all the above-mentioned target genes.
一般而言,与同一靶基因特异性结合的寡核苷酸为至少为一种,优选为多种。例如,与WDR43这一靶基因特异性结合的寡核苷酸可以是特异性结合至该基因不同连续序列的多种寡核苷酸。此处的连续序列优选为基因的保守序列。这些基因的保守序列在本领域内是已知的,且可通过一般知识而容易地确定。In general, there are at least one, preferably multiple, oligonucleotides that specifically bind to the same target gene. For example, the oligonucleotides that specifically bind to the target gene WDR43 may be multiple oligonucleotides that specifically bind to different contiguous sequences of the gene. The contiguous sequence here is preferably the conserved sequence of the gene. Conserved sequences for these genes are known in the art and can be readily determined with general knowledge.
在某些实施方案中,本发明的寡核苷酸被设计为能够将其一末端固定结合至基材,且至少部分序列能够特异性结合至选自由WDR43、RAB31、FASN、TYMS、SNX2、DAP3、MRPS18C、FANCL、CIDECP、HNRNPH1和CMSS1组成的组中的基因的部分连续序列,从而能够在样品中捕获所需的基因。此时寡核苷酸用于捕获靶基因。此类寡核苷酸的序列长度一般为50-500nt,例如,60-400nt、70-300nt。还优选地,本发明的寡核苷酸包括多个(例如,5-15个)靶区域的重复序列,更优选地,在重复序列之间包括连接序列。在某一实施方案中,寡核苷酸包括10个重复序列,且相临重复序列之间具有长度为5-50个核苷酸的连接序列。In certain embodiments, the oligonucleotides of the present invention are designed to be capable of immobilizing one end of the oligonucleotide to bind to a substrate, and at least a portion of the sequence can specifically bind to a sequence selected from the group consisting of WDR43, RAB31, FASN, TYMS, SNX2, DAP3 Partially contiguous sequences of genes in the group consisting of , MRPS18C, FANCL, CIDECP, HNRNPH1, and CMSS1, enabling the capture of the desired gene in the sample. At this point the oligonucleotides are used to capture the target gene. The sequence length of such oligonucleotides is generally 50-500 nt, eg, 60-400 nt, 70-300 nt. Also preferably, the oligonucleotides of the invention comprise multiple (eg, 5-15) repeats of the target region, more preferably, linker sequences between the repeats. In a certain embodiment, the oligonucleotide comprises 10 repeats with a linker sequence of 5-50 nucleotides in length between adjacent repeats.
[用于预测直肠癌局部切除手术后复发风险的微阵列][Microarray for predicting recurrence risk after local excision of rectal cancer]
本发明的第二方面,提供一种用于预测直肠癌局部切除手术后复发风险的微阵列,也可称作“基因芯片”或“微阵列芯片”,是一种微型化的、高通量的基因检测和分析技术,其主要原理是将固相支持物表面的寡核苷酸或探针与荧光预标记的样品核酸杂交,通过检测并分析杂交信号得到样本的检测结果。The second aspect of the present invention provides a microarray for predicting the risk of recurrence after local excision of rectal cancer, which can also be called "gene chip" or "microarray chip", which is a miniaturized, high-throughput The main principle of the gene detection and analysis technology is to hybridize the oligonucleotide or probe on the surface of the solid support with the fluorescently pre-labeled sample nucleic acid, and obtain the detection result of the sample by detecting and analyzing the hybridization signal.
本发明的微阵列包括第一方面所述的组合物和基材,关于组合物已在上述进行了详细说明,在此不再赘述。下面说明基材。The microarray of the present invention includes the composition and the substrate described in the first aspect. The composition has been described in detail above, and will not be repeated here. The base material will be described below.
本发明的基材由通常使用的材料制成优选为板状。在基材的表面具有多个独立设置的位点。在某些实施方案中,各位点分别具有能够与寡核苷酸结合的反应性官能团,例如醛基。在某些实施方案中,本发明的各位点分别结合本发明所述的寡核苷酸中的一种,更优选地,一个位点结合一个寡核苷酸。本发明的微阵列中,各位点以相临位点之间的间隔在0.1-20μm范围内的方式规则排列,各位点的面积小于1μm2。The base material of the present invention is preferably formed of a generally used material and preferably has a plate shape. There are multiple independently arranged sites on the surface of the substrate. In certain embodiments, each site each has a reactive functional group, such as an aldehyde group, capable of binding to an oligonucleotide. In certain embodiments, each site of the present invention binds to one of the oligonucleotides described in the present invention, more preferably, one site binds to one oligonucleotide. In the microarray of the present invention, each site is regularly arranged in such a manner that the interval between adjacent sites is in the range of 0.1-20 μm, and the area of each site is less than 1 μm 2 .
本发明的微阵列的制备可采用已知方法进行。在示例性方法中,其包括设计并合成相关基因的特异探针,通过基因芯片点样仪将溶解并稀释好的探针喷点固化于公知市售的醛基化基片上,制备用于直肠癌局部切除手术后复发风险的微列阵。The preparation of the microarrays of the present invention can be carried out using known methods. In an exemplary method, it includes designing and synthesizing specific probes for related genes, and spraying the dissolved and diluted probes on a well-known commercially available aldehyde substrate by a gene chip spotter to solidify them for rectal application. Microarrays for recurrence risk after local excision of cancer.
本发明的微列阵在基因位点检测的速度、目标基因的中低表达水平检测的可靠性等诸多方面都具有很大的优势,且已具有完整成熟的质控流程和分析手段,快速简便且具有高度的准确性和灵敏性。因此,基于微列阵检测技术的直肠癌局部切除手术后复发风险预测方法有很好的临床应用前景。The microarray of the present invention has great advantages in many aspects such as the speed of gene locus detection, the reliability of the detection of medium and low expression levels of target genes, etc., and has a complete and mature quality control process and analysis means, which is fast and convenient And has a high degree of accuracy and sensitivity. Therefore, the risk prediction method for recurrence of rectal cancer after local excision of rectal cancer based on microarray detection technology has a good clinical application prospect.
在使用预测直肠癌局部切除手术后复发风险的微阵列时,一般包括以下步骤:(1)提取待检样品总RNA,并反转录为待杂交产物的步骤;(2)在适于反应的条件下使所述待杂交产物与微列阵反应的步骤;(3)检测杂交信号获得基因检测数据的步骤。When using a microarray for predicting the risk of recurrence after local excision of rectal cancer, the following steps are generally included: (1) extracting the total RNA of the sample to be tested, and reverse transcribing it into the product to be hybridized; (2) in a suitable reaction The step of reacting the product to be hybridized with the microarray under the conditions; (3) the step of detecting the hybridization signal to obtain gene detection data.
[计算机系统][computer system]
本发明的第四方面,提供一种用于预测直肠癌局部切除手术后复发风险的计算机系统,其包括:A fourth aspect of the present invention provides a computer system for predicting the risk of recurrence after local resection of rectal cancer, comprising:
a.用于接收对象数据的输入装置,其中所述对象数据包括来自本发明的微阵列的基因检测数据;a. An input device for receiving subject data, wherein the subject data includes genetic testing data from the microarray of the present invention;
b.具有数据库的存储器,其用于存储至少所述基因检测数据;b. a memory with a database for storing at least the genetic testing data;
c.处理器,其与存储器进行通信,且被配置为:c. A processor in communication with the memory and configured to:
利用所述基因检测数据通过算法模型计算评估值F(x);和Calculate an evaluation value F(x) through an algorithmic model using the genetic testing data; and
d.配置为根据所述评估值F(x)判定的结果发送通知的输出装置。d. An output device configured to send a notification according to the result of the judgment of the evaluation value F(x).
本发明的计算机系统中,优选地,所述算法模型为:In the computer system of the present invention, preferably, the algorithm model is:
F(x)=29.3341-0.7416*WDR43+0.9450*RAB31+2.9083*FASN-0.5904*TYMS-3.0449*SNX2-2.5533*DAP3+3.7309*pt+1.9524*MRPS18C+1.0107*FANCL-6.5343*CIDECP-1.1939*HNRNPH1+0.1941*CMSS1。F(x)=29.3341-0.7416*WDR43+0.9450*RAB31+2.9083*FASN-0.5904*TYMS-3.0449*SNX2-2.5533*DAP3+3.7309*pt+1.9524*MRPS18C+1.0107*FANCL-6.5343*NPCIDECP9*1.19 +0.1941*CMSS1.
进一步地,通过下式得到的P(x)值,当P(x)高于0.37时判定直肠癌局部切除手术后复发风险高,当P(x)低于或等于0.37判定直肠癌局部切除手术后复发风险低。Further, according to the P(x) value obtained by the following formula, when P(x) is higher than 0.37, it is determined that the risk of recurrence after local resection of rectal cancer is high, and when P(x) is lower than or equal to 0.37, it is determined that local resection of rectal cancer is performed. The risk of later recurrence is low.
本发明的计算机系统中,用于接收对象数据的输入装置包括任何形式的输入装置。本发明中,对象数据至少包括来自本发明的微阵列或基于该微阵列获得的基因检测数据。这些数据包括各靶基因的相对表达水平等。In the computer system of the present invention, the input device for receiving object data includes any form of input device. In the present invention, the object data includes at least the genetic detection data obtained from the microarray of the present invention or based on the microarray. These data include relative expression levels of each target gene, etc.
本发明的计算机系统中,具有数据库的存储器用于存储至少上述基因检测数据。存储器本身为本领域内通常使用的产品。优选地,存储器可与输入装置、输出装置或处理器通信,从而实现数据在不同部件之间的有效交换。在某些实施方案中,存储器中的数据库可为一个或多个。在具有多个数据库的情况下,各数据库的数据可进行相互作用或交换,或者可分别与处理器进行相互作用或通信,从而确保评估的有效进行。优选地,存储器具有数据管理构件,从而有效地管理各类不同数据,提高数据利用效率。In the computer system of the present invention, a memory having a database is used to store at least the above-mentioned genetic testing data. The memory itself is a commonly used product in the field. Preferably, the memory is in communication with the input device, the output device or the processor to enable efficient exchange of data between the different components. In certain embodiments, the database in memory may be one or more. In the case of multiple databases, the data of each database can interact or exchange, or can interact or communicate with the processor separately, so as to ensure the effective performance of the evaluation. Preferably, the memory has a data management component, so as to effectively manage various types of data and improve data utilization efficiency.
本发明的计算机系统中,处理器至少与存储器进行通信,且其被配置为:利用基因检测数据通过算法模型计算敏感性指数。不同的算法模型对于实现本发明的目的即极其重要。不同的算法得到不同的结果,有时甚至不能得到结果。本发明在大量深入研究的基础上,发现上述算法得到的评估值在预测直肠癌局部切除手术后复发风险方面具有预料不到的灵敏度和准确性。In the computer system of the present invention, the processor is in communication with at least the memory, and is configured to calculate the sensitivity index through the algorithm model using the genetic testing data. Different algorithm models are extremely important to achieve the purpose of the present invention. Different algorithms get different results, sometimes not even at all. On the basis of a large number of in-depth studies, the present invention finds that the evaluation value obtained by the above algorithm has unexpected sensitivity and accuracy in predicting the risk of recurrence after local excision of rectal cancer.
实施例1Example 1
一、样本的采集1. Collection of samples
每一个病人均采用PAXgene专用RNA血液样本采集管采集血液样本,样本采集后立即进行RNA的提取,保证RNA不被降解,以保证样本质量。Each patient uses PAXgene special RNA blood sample collection tube to collect blood samples. RNA extraction is performed immediately after sample collection to ensure that RNA is not degraded and to ensure sample quality.
二、RNA的提取2. RNA extraction
1.每一个病人的血液样本,取2.5mL的外周血样本进行RNA的提取,提取试剂盒为MagMAXTM(附有 Blood RNA管)。严格按照试剂盒使用说明书进行操作;1. For each patient's blood sample, take 2.5mL of peripheral blood sample for RNA extraction. The extraction kit is MagMAX TM (with Blood RNA tubes). Strictly follow the kit instructions for operation;
2.RNA质量鉴定:用Nanodrop OD 260nm进行RNA纯度的鉴定,要求OD260/280=2.0~2.2;2. RNA quality identification: use Nanodrop OD 260nm to identify RNA purity, requiring OD260/280=2.0~2.2;
3.RNA定量:使用RNA 6000Nano Lab Chip试剂盒在Agilent 2100Bioanalyzer检测仪器上进行RNA定量,整个操作过程完全按照试剂盒操作说明进行操作。3. RNA quantification: RNA quantification was performed on the Agilent 2100 Bioanalyzer detection instrument using the RNA 6000 Nano Lab Chip kit. The entire operation process was completely operated in accordance with the kit's operating instructions.
三、微阵列芯片杂交3. Microarray chip hybridization
1.RNA反转录:50ng RNA采用反转录试剂盒(SuperScriptTMIV ReverseTranscriptase,Invitrogen)进行RNA的反转录,得到cDNA,整个过程完全按照试剂盒说明书进行操作;1. RNA reverse transcription: 50ng RNA was reverse transcribed using a reverse transcription kit (SuperScript ™ IV ReverseTranscriptase, Invitrogen) to obtain cDNA, and the entire process was completely operated in accordance with the kit instructions;
2.cDNA纯化:反转录产物经QIAquick PCR纯化试剂盒进行纯化。2. cDNA purification: The reverse transcription product was purified by QIAquick PCR purification kit.
3.cDNA超声打断:将cDNA调整浓度至10ng/μL,使用Covaris超声打断仪按照该程序进行超声打断::150bp,340s.Peak Power 75,Duty Factor10,Cycle 200,Setpoint 20℃。整个过程完全按照Covaris超声打断仪使用说明书进行操作。3. Sonication of cDNA: Adjust the concentration of cDNA to 10ng/μL, and use the Covaris Sonicator to perform sonication according to this procedure: 150bp, 340s. Peak Power 75, Duty Factor10, Cycle 200, Setpoint 20°C. The whole process is completely in accordance with the instruction manual of the Covaris ultrasonic interrupter.
4.杂交前cDNA准备与微阵列芯片杂交:按照微阵列芯片(GeneChip U133plus2)说明书进行cDNA的杂交前的生物素标记,并严格按照说明书的操作规范进行芯片杂交。4. Preparation of cDNA before hybridization Hybridization with microarray chip: Biotin labeling of cDNA before hybridization is performed according to the instructions of the microarray chip (GeneChip U133plus2), and chip hybridization is performed in strict accordance with the operating specifications of the instructions.
5.结果观察:微阵列芯片杂交结束后,使用GeneChip Scanner3000进行结果的观察。5. Observation of results: After the hybridization of the microarray chip, GeneChip Scanner3000 was used to observe the results.
四、数据分析流程Fourth, the data analysis process
1.样本赋值:对每个患者的临床信息进行数字转化,患者临床信息与数字的转换关系如下表所示。1. Sample assignment: digitally convert the clinical information of each patient. The conversion relationship between patient clinical information and numbers is shown in the following table.
表1-临床信息与数值转换对应表Table 1 - Correspondence table of clinical information and numerical conversion
2.数据分析:选取跟直肠癌发病机理相关的500基因,将这500基因的表达结果进行随机森林法分析,分析结果见图1。结果显示11个基因(WDR43、RAB31、FASN、TYMS、SNX2、DAP3、MRPS18C、FANCL、CIDECP、HNRNPH1、CMSS1)在实验组与对照组两组不同的患者中表现出不同的表达模式。2. Data analysis: 500 genes related to the pathogenesis of rectal cancer were selected, and the expression results of these 500 genes were analyzed by random forest method. The analysis results are shown in Figure 1. The results showed that 11 genes (WDR43, RAB31, FASN, TYMS, SNX2, DAP3, MRPS18C, FANCL, CIDECP, HNRNPH1, CMSS1) showed different expression patterns in different patients in the experimental group and the control group.
3.风险评估方程式建立:根据随机森林法的分析结果,建立术后复发评估模型:F(x)=29.3341-0.7416*WDR43+0.9450*RAB31+2.9083*FASN-0.5904*TYMS-3.0449*SNX2-2.5533*DAP3+3.7309*pt+1.9524*MRPS18C+1.0107*FANCL-6.5343*CIDECP-1.1939*HNRNPH1+0.1941*CMSS1。3. Establishment of risk assessment equation: According to the analysis results of random forest method, establish postoperative recurrence assessment model: F(x)=29.3341-0.7416*WDR43+0.9450*RAB31+2.9083*FASN-0.5904*TYMS-3.0449*SNX2-2.5533 *DAP3+3.7309*pt+1.9524*MRPS18C+1.0107*FANCL-6.5343*CIDECP-1.1939*HNRNPH1+0.1941*CMSS1.
4.Cutoff值设定:P(x)=1/(1+exp(-F(x))),综合分析53例样本的数据结果,设置合适的cutoff值,P(x)>0.37认为术后直肠癌复发风险较高。4. Cutoff value setting: P(x)=1/(1+exp(-F(x))), comprehensively analyze the data results of 53 samples, set an appropriate cutoff value, P(x)>0.37 is considered a surgical procedure Posterior rectal cancer has a higher risk of recurrence.
5.分别利用5例术后复发患者(样本6-10)和5例术后无复发迹象的患者(样本1-5)做盲法测试,来测试数据模型的适用性和测试的准确性。结果如表1所示。5. 5 patients with postoperative recurrence (samples 6-10) and 5 patients with no signs of recurrence after surgery (samples 1-5) were used for blind testing to test the applicability of the data model and the accuracy of the test. The results are shown in Table 1.
表1Table 1
实施例2Example 2
针对实施例1中的11种基因分别设计探针,其序列如SEQ ID NO:1-33所示,并通过基因芯片点样仪将溶解并稀释好的探针喷点固化于公知市售的醛基化基片上,制备用于直肠癌局部切除手术后复发风险的微列阵。微阵列的具体制备由博奥生物有限公司完成。Probes were designed for each of the 11 genes in Example 1, the sequences of which are shown in SEQ ID NOs: 1-33, and the dissolved and diluted probes were sprayed and solidified on well-known commercially available probes by a gene chip spotter. On aldehydeylated substrates, microarrays were prepared for the risk of recurrence after local resection of rectal cancer. The specific preparation of the microarray was completed by Boao Biological Co., Ltd.
表2-探针信息Table 2 - Probe Information
本实施例用18例临床样本来测试微阵列芯片的适用性。具体结果参见表3和表4。In this example, 18 clinical samples were used to test the applicability of the microarray chip. The specific results are shown in Table 3 and Table 4.
表3-9例直肠癌术后未复发样本的11基因微阵列芯片应用结果Table 3-11-gene microarray application results of 9 cases of rectal cancer that did not recur after surgery
表4-9例直肠癌术后复发样本的11基因微阵列芯片应用结果Table 4-9 Application results of 11-gene microarray chip in 9 cases of postoperative recurrence of rectal cancer
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见得的。本申请说明书和实施例仅是示例性的。It will be apparent to those skilled in the art that various modifications and variations can be made in the specific embodiments of the present invention without departing from the scope or spirit of the invention. Other embodiments will be apparent to those skilled in the art from the description of the present invention. The description and examples of the present application are only exemplary.
SEQUENCE LISTINGSEQUENCE LISTING
<110> 中国医学科学院肿瘤医院<110> Cancer Hospital, Chinese Academy of Medical Sciences
元码基因科技(北京)股份有限公司Yuancode Gene Technology (Beijing) Co., Ltd.
<120> 用于预测直肠癌局部切除手术后复发风险的组合物、微阵列和计算机系统<120> Compositions, microarrays and computer systems for predicting recurrence risk after local resection of rectal cancer
<130> BHBP180164<130> BHBP180164
<160> 33<160> 33
<170> PatentIn version 3.3<170> PatentIn version 3.3
<210> 1<210> 1
<211> 75<211> 75
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 1<400> 1
acaagggacc ttatttaggt tgcgcaggcg cccgctggcc atttcgtctt agccacgcag 60acaagggacc ttatttaggt tgcgcaggcg cccgctggcc atttcgtctt agccacgcag 60
aagtcgcgtg tctag 75aagtcgcgtg tctag 75
<210> 2<210> 2
<211> 75<211> 75
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 2<400> 2
gtgagtcgcg gtgggtcctc gcttgcagtt cagcgaccac gtttgtttcg acgccggacc 60gtgagtcgcg gtgggtcctc gcttgcagtt cagcgaccac gtttgtttcg acgccggacc 60
gcgtaagaga cgatg 75gcgtaagaga cgatg 75
<210> 3<210> 3
<211> 77<211> 77
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 3<400> 3
cgacgccgga ccgcgtaaga gacgatgatg ttgggcacgg aaggtggaga gggattcgtg 60cgacgccgga ccgcgtaaga gacgatgatg ttgggcacgg aaggtggaga gggattcgtg 60
gtgaaggtcc ggggctt 77gtgaaggtcc ggggctt 77
<210> 4<210> 4
<211> 80<211> 80
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 4<400> 4
tgagcgaaga tggcggccga gagggaacct cctccgctgg gggacgggaa gcccaccgac 60tgagcgaaga tggcggccga gagggaacct cctccgctgg gggacgggaa gcccaccgac 60
tttgaggatc tggaggacgg 80tttgaggatc tggaggacgg 80
<210> 5<210> 5
<211> 79<211> 79
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 5<400> 5
agaccgcgtc gctgcgggtg ctgcgctgcg tagctgccgc gcgtctcacc tttcccctgc 60agaccgcgtc gctgcgggtg ctgcgctgcg tagctgccgc gcgtctcacc tttcccctgc 60
cccgacttgt ccctcccca 79cccgacttgt ccctcccca 79
<210> 6<210> 6
<211> 74<211> 74
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 6<400> 6
ctcaggagag cagcctgcgg cccgcgggtg ccgacctaat cctcagaggg gccagaaccg 60ctcaggagag cagcctgcgg cccgcgggtg ccgacctaat cctcagaggg gccagaaccg 60
aaccgagcat tgca 74aaccgagcat tgca 74
<210> 7<210> 7
<211> 75<211> 75
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 7<400> 7
agggtgtggt ggccgtcctg ctgaccaaga agtccctggc ccggcgggtg tacgccacca 60agggtgtggt ggccgtcctg ctgaccaaga agtccctggc ccggcgggtg tacgccacca 60
tcctgaacgc cggca 75tcctgaacgc cggca 75
<210> 8<210> 8
<211> 76<211> 76
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 8<400> 8
atggcatcac ccgagccctg tgcgccaccc gccaggagcc gctgctcatc ggctccacca 60atggcatcac ccgagccctg tgcgccaccc gccaggagcc gctgctcatc ggctccacca 60
agtccaacat ggggca 76agtccaacat ggggca 76
<210> 9<210> 9
<211> 76<211> 76
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 9<400> 9
tcccagcgct gttggatggg cggctgcagg tggtggacca gcccctgccc gtccgtggcg 60tcccagcgct gttggatggg cggctgcagg tggtggacca gcccctgccc gtccgtggcg 60
caacgtgggc atcaac 76caacgtgggc atcaac 76
<210> 10<210> 10
<211> 75<211> 75
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 10<400> 10
atgagagcca gccctttgat ggaattacag gtctttattt cttatctgga gcagtacatg 60atgagagcca gccctttgat ggaattacag gtctttattt cttatctgga gcagtacatg 60
accggttact taatg 75accggttact taatg 75
<210> 11<210> 11
<211> 76<211> 76
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 11<400> 11
catttacagt taccgatgaa cctgtctata ttgacttaac tttgtcagaa aacaaagaag 60catttacagt taccgatgaa cctgtctata ttgacttaac tttgtcagaa aacaaagaag 60
agcctgtcaa gttggc 76agcctgtcaa gttggc 76
<210> 12<210> 12
<211> 74<211> 74
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 12<400> 12
ggaaaggcaa gaagtcaaca ccaaaaccca tccctattct agctgctggt ttttgctcag 60ggaaaggcaa gaagtcaaca ccaaaaccca tccctattct agctgctggt ttttgctcag 60
acaaaatgtc attg 74acaaaatgtc attg 74
<210> 13<210> 13
<211> 76<211> 76
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 13<400> 13
aattcctgac ctcaagtgat ctgcccacct tgacctccca aagtgctggg attacagtgc 60aattcctgac ctcaagtgat ctgcccacct tgacctccca aagtgctggg attacagtgc 60
aaggatgatg ctgaaa 76aaggatgatg ctgaaa 76
<210> 14<210> 14
<211> 76<211> 76
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 14<400> 14
tggaattcag catgtcaaaa ttcacagctg gctgggcaca gtggctcatg cctgtaatcc 60tggaattcag catgtcaaaa ttcacagctg gctgggcaca gtggctcatg cctgtaatcc 60
cagcactttg gaagcc 76cagcactttg gaagcc 76
<210> 15<210> 15
<211> 77<211> 77
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 15<400> 15
caggagtttg caaccagcct gggcaacatg gtgaaaacct gtctctacta aaaatacaaa 60caggagtttg caaccagcct gggcaacatg gtgaaaacct gtctctacta aaaatacaaa 60
aattagccgg gcacggt 77aattagccgg gcacggt 77
<210> 16<210> 16
<211> 76<211> 76
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 16<400> 16
ctgccagggc ttatattagg gggtgattct taaaggacat taggattggt gctcagaaat 60ctgccagggc ttatattagg gggtgattct taaaggacat taggattggt gctcagaaat 60
ggttaatcat gctgtg 76ggttaatcat gctgtg 76
<210> 17<210> 17
<211> 74<211> 74
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 17<400> 17
tgctagccag ggccagctgg taccttcttt gccatgagca ttcaagggac ggctaacctt 60tgctagccag ggccagctgg taccttcttt gccatgagca ttcaagggac ggctaacctt 60
tattgacaat ctat 74tattgacaat ctat 74
<210> 18<210> 18
<211> 76<211> 76
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 18<400> 18
atcgcaaaag tcaggaaaga ggttgtgagc tgattggatt aaagacctgg cacttcagta 60atcgcaaaag tcaggaaaga ggttgtgagc tgattggatt aaagacctgg cacttcagta 60
actcagcacg cttcca 76actcagcacg cttcca 76
<210> 19<210> 19
<211> 75<211> 75
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 19<400> 19
attgaaaaac ctcacctact ctcgcgggtc ctcagcgttc tcctgcggaa cctttgaacg 60attgaaaaac ctcacctact ctcgcgggtc ctcagcgttc tcctgcggaa cctttgaacg 60
gggtactcga gccca 75gggtactcga gccca 75
<210> 20<210> 20
<211> 75<211> 75
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 20<400> 20
aatataagta tgcctggtta agatatcttc cctttgtaga aatgttacat tgggatggat 60aatataagta tgcctggtta agatatcttc cctttgtaga aatgttacat tgggatggat 60
agtggtgctg tcaca 75agtggtgctg tcaca 75
<210> 21<210> 21
<211> 76<211> 76
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 21<400> 21
gtcttttaca tgaagagatg atttacacct aatagacatt gaatatgata gacatacatg 60gtcttttaca tgaagagatg atttacacct aatagacatt gaatatgata gacatacatg 60
tatatatgta tcagtt 76tatatatgta tcagtt 76
<210> 22<210> 22
<211> 74<211> 74
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 22<400> 22
ttaggatagt gttgcctgaa gatttacaac tgaagaatgc aagattatta tgtagttggc 60ttaggatagt gttgcctgaa gatttacaac tgaagaatgc aagattatta tgtagttggc 60
agctgagaac aata 74agctgagaac aata 74
<210> 23<210> 23
<211> 73<211> 73
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 23<400> 23
cttagtggat accatcgaat agtacaacag agaatgcagc actctcctga tctaatgagc 60cttagtggat accatcgaat agtacaacag agaatgcagc actctcctga tctaatgagc 60
tttatgatgg agt 73tttatgatgg agt 73
<210> 24<210> 24
<211> 74<211> 74
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 24<400> 24
tgaagatgct tttggaagtt gccttaaaga atagacaaga gctgtatgca ctacctcctc 60tgaagatgct tttggaagtt gccttaaaga atagacaaga gctgtatgca ctacctcctc 60
ctccccagtt ctac 74ctccccagtt ctac 74
<210> 25<210> 25
<211> 75<211> 75
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 25<400> 25
gaataccacc aagaccagga aaagaagaaa gaagaaaatt actgatgttc ttgcaaaatc 60gaataccacc aagaccagga aaagaagaaa gaagaaaatt actgatgttc ttgcaaaatc 60
agaaccaaaa ccagg 75agaaccaaaa ccagg 75
<210> 26<210> 26
<211> 75<211> 75
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 26<400> 26
gttacctgaa gacctacaga agctgatgaa ggactattat agcagcagac gcttggtgat 60gttacctgaa gacctacaga agctgatgaa ggactattat agcagcagac gcttggtgat 60
tgaattagaa gaact 75tgaattagaa gaact 75
<210> 27<210> 27
<211> 71<211> 71
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 27<400> 27
gaacctgcca gactcctgtt tcctcaaggc caatgatttg actcacagtc tttcctcata 60gaacctgcca gactcctgtt tcctcaaggc caatgatttg actcacagtc tttcctcata 60
cctaaaagaa a 71cctaaaagaa a 71
<210> 28<210> 28
<211> 74<211> 74
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 28<400> 28
attccctctg ctgacaacca aacgtgtgtt ctggaagggt gttttggagg agttgctgtg 60attccctctg ctgacaacca aacgtgtgtt ctggaagggt gttttggagg agttgctgtg 60
gtttatcaag ggat 74gtttatcaag ggat 74
<210> 29<210> 29
<211> 74<211> 74
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 29<400> 29
tgctaaagag ctgtcttcca agggagtgaa aatctgggat gccaatggat cccgagactt 60tgctaaagag ctgtcttcca agggagtgaa aatctgggat gccaatggat cccgagactt 60
tttggacagc ctgg 74tttggacagc ctgg 74
<210> 30<210> 30
<211> 76<211> 76
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 30<400> 30
cttgggccca gtttatggct tccagtggag gcattttggg gcagaataca gagatatgga 60cttgggccca gtttatggct tccagtggag gcattttggg gcagaataca gagatatgga 60
atcagattat tcagga 76atcagattat tcagga 76
<210> 31<210> 31
<211> 70<211> 70
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 31<400> 31
cccatcgtta tcactcttcg tagacatgat ccgccactac gtgtccatcc tgctggagag 60cccatcgtta tcactcttcg tagacatgat ccgccactac gtgtccatcc tgctggagag 60
cgacaagaag 70cgacaagaag 70
<210> 32<210> 32
<211> 70<211> 70
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 32<400> 32
ctcacccagg aacaagtatc tgacagggga cgaggcaccc acagtccctc tcccataagc 60ctcacccagg aacaagtatc tgacagggga cgaggcaccc acagtccctc tcccataagc 60
ctgccaagaa 70ctgccaagaa 70
<210> 33<210> 33
<211> 71<211> 71
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 33<400> 33
gattgatgtg gcccgtgtaa cctttgacct gtacaagctg aacccacagg acttcattgg 60gattgatgtg gcccgtgtaa cctttgacct gtacaagctg aacccacagg acttcattgg 60
ctgcctgaac a 71ctgcctgaac a 71
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811534784.0A CN111321221B (en) | 2018-12-14 | 2018-12-14 | Compositions, microarrays and computer systems for predicting recurrence risk after local resection of rectal cancer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811534784.0A CN111321221B (en) | 2018-12-14 | 2018-12-14 | Compositions, microarrays and computer systems for predicting recurrence risk after local resection of rectal cancer |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111321221A true CN111321221A (en) | 2020-06-23 |
CN111321221B CN111321221B (en) | 2022-09-23 |
Family
ID=71163380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811534784.0A Active CN111321221B (en) | 2018-12-14 | 2018-12-14 | Compositions, microarrays and computer systems for predicting recurrence risk after local resection of rectal cancer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111321221B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114591956A (en) * | 2022-03-03 | 2022-06-07 | 中山大学附属第一医院 | Application of WDR43 antisense nucleotide in preparing medicine for inhibiting intestinal cancer cell proliferation and transfer |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101389957A (en) * | 2005-12-23 | 2009-03-18 | 环太平洋生物技术有限公司 | Prognosis prediction for colorectal cancer |
EP2092086A2 (en) * | 2006-11-02 | 2009-08-26 | Signature Diagnostics AG | Prognostic marker for predicting the five-year progression-free survival of patients with colorectal carcinoma based on expression profiles of biological samples |
US20090269775A1 (en) * | 2006-11-02 | 2009-10-29 | Signature Diagnostics Ag | Prognostic markers for classifying colorectal carcinoma on the basis of expression profiles of biological samples |
US20120238464A1 (en) * | 2011-03-18 | 2012-09-20 | Baylor Research Institute | Biomarkers for Predicting the Recurrence of Colorectal Cancer Metastasis |
CN103403187A (en) * | 2011-01-18 | 2013-11-20 | 艾沃锐斯特基因有限公司 | Prognostic signature for colorectal cancer recurrence |
US20140045915A1 (en) * | 2010-08-31 | 2014-02-13 | The General Hospital Corporation | Cancer-related biological materials in microvesicles |
CN104031915A (en) * | 2014-06-17 | 2014-09-10 | 复旦大学附属肿瘤医院 | Gene segments for prognosis of colorectal cancers and application of gene segments |
US20160208333A1 (en) * | 2013-07-30 | 2016-07-21 | H. Lee Moffitt Cancer Center And Research Institute, Inc. | Colorectal cancer recurrence gene expression signature |
US20160259883A1 (en) * | 2013-10-18 | 2016-09-08 | Agency For Science, Technology And Research | Sense-antisense gene pairs for patient stratification, prognosis, and therapeutic biomarkers identification |
-
2018
- 2018-12-14 CN CN201811534784.0A patent/CN111321221B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101389957A (en) * | 2005-12-23 | 2009-03-18 | 环太平洋生物技术有限公司 | Prognosis prediction for colorectal cancer |
EP2092086A2 (en) * | 2006-11-02 | 2009-08-26 | Signature Diagnostics AG | Prognostic marker for predicting the five-year progression-free survival of patients with colorectal carcinoma based on expression profiles of biological samples |
US20090269775A1 (en) * | 2006-11-02 | 2009-10-29 | Signature Diagnostics Ag | Prognostic markers for classifying colorectal carcinoma on the basis of expression profiles of biological samples |
US20140045915A1 (en) * | 2010-08-31 | 2014-02-13 | The General Hospital Corporation | Cancer-related biological materials in microvesicles |
CN103403187A (en) * | 2011-01-18 | 2013-11-20 | 艾沃锐斯特基因有限公司 | Prognostic signature for colorectal cancer recurrence |
US20120238464A1 (en) * | 2011-03-18 | 2012-09-20 | Baylor Research Institute | Biomarkers for Predicting the Recurrence of Colorectal Cancer Metastasis |
US20160208333A1 (en) * | 2013-07-30 | 2016-07-21 | H. Lee Moffitt Cancer Center And Research Institute, Inc. | Colorectal cancer recurrence gene expression signature |
US20160259883A1 (en) * | 2013-10-18 | 2016-09-08 | Agency For Science, Technology And Research | Sense-antisense gene pairs for patient stratification, prognosis, and therapeutic biomarkers identification |
CN104031915A (en) * | 2014-06-17 | 2014-09-10 | 复旦大学附属肿瘤医院 | Gene segments for prognosis of colorectal cancers and application of gene segments |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114591956A (en) * | 2022-03-03 | 2022-06-07 | 中山大学附属第一医院 | Application of WDR43 antisense nucleotide in preparing medicine for inhibiting intestinal cancer cell proliferation and transfer |
Also Published As
Publication number | Publication date |
---|---|
CN111321221B (en) | 2022-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2015277059B2 (en) | Methods, compositions, and devices for rapid analysis of biological markers | |
Wittenberger et al. | DNA methylation markers for early detection of women’s cancer: promise and challenges | |
CN102625850B (en) | Multiplex nucleic acid detection methods and systems | |
CN102311953B (en) | Method and kit for diagnosing bladder cancer with urine | |
JP4435259B2 (en) | Detection method of trace gastric cancer cells | |
JP2022531637A (en) | DNA methylation biomarker for early detection of cervical cancer | |
CN108350504A (en) | The diagnostic method of carcinoma of urinary bladder | |
JP2010527577A (en) | Detection method | |
CN112534506A (en) | Tissue-specific methylation markers | |
CN102628082B (en) | Method for qualitatively and quantitatively detecting nucleic acid based on high-flux sequencing technology | |
Zhang et al. | Identification of microRNAs in nipple discharge as potential diagnostic biomarkers for breast cancer | |
JP6381020B2 (en) | Method for obtaining information on colorectal cancer, and marker and kit for obtaining information on colorectal cancer | |
CN111424093B (en) | Kit, device and method for diagnosis of lung cancer | |
JP2020519296A (en) | DNA methylation and mutation analysis method for bladder cancer monitoring | |
WO2023226938A1 (en) | Methylation biomarker, kit and use | |
CN115315530A (en) | Composition for diagnosing bladder cancer using CPG methylation change in specific gene and use thereof | |
JP4317854B2 (en) | Detection method of trace gastric cancer cells | |
CN105907859A (en) | Colorectal cancer screening kit | |
CN111321221B (en) | Compositions, microarrays and computer systems for predicting recurrence risk after local resection of rectal cancer | |
TW202142549A (en) | Tumor detection reagent and kit | |
CN101008034A (en) | Breast carcinoma transfer related gene chip establishment and its establishing method | |
EP3810807A1 (en) | Methods and compositions for the analysis of cancer biomarkers | |
Dutta et al. | Nucleic Acid in Diagnostics | |
CN106916893A (en) | A kind of gene methylation degree quantitative approach based on digital pcr chip | |
WO2015121663A1 (en) | Biomarkers for prostate cancer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |