CN111313774A - An online parameter identification method of permanent magnet synchronous motor based on NLMS algorithm - Google Patents
An online parameter identification method of permanent magnet synchronous motor based on NLMS algorithm Download PDFInfo
- Publication number
- CN111313774A CN111313774A CN202010114865.6A CN202010114865A CN111313774A CN 111313774 A CN111313774 A CN 111313774A CN 202010114865 A CN202010114865 A CN 202010114865A CN 111313774 A CN111313774 A CN 111313774A
- Authority
- CN
- China
- Prior art keywords
- motor
- neural network
- equation
- inductance
- formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/34—Modelling or simulation for control purposes
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/0003—Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
- H02P21/0014—Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control using neural networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/14—Estimation or adaptation of machine parameters, e.g. flux, current or voltage
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
本发明公开了一种基于NLMS算法的永磁同步电机参数在线辨识方法,包括步骤:1)构建Adaline神经网络辨识系统,采用NLMS算法对Adaline神经网络辨识系统的权值进行更新;2)考虑逆变器非线性因素,构建永磁同步电机控制系统的离散域数学模型,结合Adaline神经网络辨识系统的辨识原理,简化离散域数学模型,得到分别用于迭代计算电机定子电阻、电感、转子磁链的辨识方程;3)由电机定子电阻、电感、转子磁链的辨识方程计算得到Adaline神经网络辨识系统的各个矢量,构建基于NLMS算法的参数辨识器,用于辨识电机定子电阻、电感、转子磁链的值。本发明考虑了逆变器非线性因素,将自适应神经网络和归一化最小均方算法相结合,可以对永磁同步电机的参数进行有效的辨识。
The invention discloses an on-line identification method for permanent magnet synchronous motor parameters based on NLMS algorithm. The nonlinear factor of the inverter is used to construct the discrete domain mathematical model of the permanent magnet synchronous motor control system. Combined with the identification principle of the Adaline neural network identification system, the discrete domain mathematical model is simplified, and the discrete domain mathematical model is obtained for iterative calculation of the motor stator resistance, inductance and rotor flux linkage. 3) The various vectors of the Adaline neural network identification system are calculated from the identification equations of the motor stator resistance, inductance, and rotor flux linkage, and a parameter identifier based on the NLMS algorithm is constructed to identify the motor stator resistance, inductance, rotor magnetic chain value. The invention takes into account the nonlinear factors of the inverter, and combines the adaptive neural network and the normalized least mean square algorithm to effectively identify the parameters of the permanent magnet synchronous motor.
Description
技术领域technical field
本发明涉及电机控制的技术领域,尤其是指一种基于NLMS算法的永磁同步电机参数在线辨识方法。The invention relates to the technical field of motor control, in particular to an online parameter identification method of a permanent magnet synchronous motor based on an NLMS algorithm.
背景技术Background technique
永磁同步电机(PMSM)具有比功率高、节能高效、控制精准等优点,在各个领域获得广泛的应用。PMSM的高性能控制方法主要有矢量控制与直接转矩控制等。在永磁同步电机的控制系统中,控制器的参数往往需要电机参数来辅助设计(如无速度传感器控制、矢量控制最优控制器参数设计等),故控制性能的好坏在一定程度上取决于电机参数的准确程度。在电机运行过程中,永磁同步电机的定子电阻、定子电感、转子磁链幅值等参数会随着温度、负载和磁饱和程度的变化而产生变化,如果在不同运行状态下均按照电机标称参数设计控制器,则很难保证电机的控制性能。因此,为在电机正常运行过程中根据电机参数的变化在线调整控制器参数、优化电机控制性能,电机在线参数辨识方法得到了大量研究。Permanent magnet synchronous motor (PMSM) has the advantages of high specific power, energy saving and high efficiency, and precise control, and has been widely used in various fields. The high-performance control methods of PMSM mainly include vector control and direct torque control. In the control system of the permanent magnet synchronous motor, the parameters of the controller often need the motor parameters to assist the design (such as speed sensorless control, vector control optimal controller parameter design, etc.), so the control performance depends to a certain extent. depends on the accuracy of the motor parameters. During the operation of the motor, the parameters of the permanent magnet synchronous motor, such as stator resistance, stator inductance, and rotor flux linkage amplitude, will change with the changes of temperature, load and magnetic saturation. It is difficult to ensure the control performance of the motor if it is called a parameter design controller. Therefore, in order to adjust the controller parameters online and optimize the control performance of the motor according to the changes of the motor parameters during the normal operation of the motor, a lot of researches have been done on the online parameter identification method of the motor.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于克服现有技术的不足与缺点,提出了一种基于NLMS算法(归一化最小均方算法)的永磁同步电机参数在线辨识方法,该方法通过d轴电流注入法使参数辨识方程满秩,通过NLMS算法实现永磁同步电机的多参数(定子电阻、电感和转子磁链等参数)在线准确辨识。The purpose of the present invention is to overcome the deficiencies and shortcomings of the prior art, and proposes an online parameter identification method of permanent magnet synchronous motor based on NLMS algorithm (normalized least mean square algorithm). The identification equation is full rank, and the multi-parameter (stator resistance, inductance and rotor flux linkage and other parameters) of the permanent magnet synchronous motor can be accurately identified online through the NLMS algorithm.
为实现上述目的,本发明所提供的技术方案为:一种基于NLMS算法的永磁同步电机参数在线辨识方法,包括以下步骤:In order to achieve the above object, the technical solution provided by the present invention is: a method for online parameter identification of permanent magnet synchronous motor based on NLMS algorithm, comprising the following steps:
1)构建Adaline神经网络辨识系统,采用NLMS算法对Adaline神经网络辨识系统的权值进行更新;1) Build the Adaline neural network identification system, and use the NLMS algorithm to update the weights of the Adaline neural network identification system;
2)考虑逆变器非线性因素,构建永磁同步电机控制系统的离散域数学模型,结合步骤1)中Adaline神经网络辨识系统的辨识原理,简化永磁同步电机控制系统的离散域数学模型,得到分别用于迭代计算电机定子电阻、电感、转子磁链的辨识方程;2) Considering the nonlinear factors of the inverter, construct the discrete domain mathematical model of the permanent magnet synchronous motor control system, and combine the identification principle of the Adaline neural network identification system in step 1) to simplify the discrete domain mathematical model of the permanent magnet synchronous motor control system, The identification equations for iterative calculation of stator resistance, inductance and rotor flux linkage are obtained respectively;
3)由步骤2)得到的电机定子电阻、电感、转子磁链的辨识方程计算得到Adaline神经网络辨识系统的各个矢量,构建基于NLMS算法的参数辨识器,用于辨识电机定子电阻、电感、转子磁链的值。3) Calculate the various vectors of the Adaline neural network identification system from the identification equations of the motor stator resistance, inductance, and rotor flux linkage obtained in step 2), and build a parameter identifier based on the NLMS algorithm to identify the motor stator resistance, inductance, rotor The value of the flux linkage.
在步骤1)中,所述Adaline神经网络辨识系统称为自适应性神经网络辨识系统,其输入和输出关系如下式:In step 1), described Adaline neural network identification system is called adaptive neural network identification system, and its input and output relation are as follows:
y=WX=∑WiXi (1)y=WX=∑W i X i (1)
式中:X、y、W分别是自适应线性神经网络辨识系统的输入、输出和权值,Wi、Xi分别是权值和输入的第i个分量;在该自适应线性神经网络辨识系统中,采用NLMS算法进行迭代更新权值,辨识系统方程如下:In the formula: X, y, W are the input, output and weight of the adaptive linear neural network identification system, respectively, Wi, X i are the weight and the ith component of the input; in the adaptive linear neural network identification In the system, the NLMS algorithm is used to iteratively update the weights, and the identification system equation is as follows:
式中:X(k)、y(k)、W(k)为第k个采样时刻自适应线性神经网络辨识系统的输入矢量、输出矢量和权值矢量;d(k)是第k次采样的期望输出矢量;ε(k)是自适应线性神经网络辨识系统输出与期望输出的偏差;W(k+1)为第k+1个采样时刻的权值矢量;XT(k)为输入信号X(k)的转置矩阵;η为权值计算的步长,取值范围是0<η<2;δ是为了防止输入矢量X(k)的内积过小导致权值步长变化过大而引入的小整数,取0.0001;通过不停的迭代计算,每次迭代根据目标输出值及Adaline神经网络辨识系统输出的偏差ε(k),采用NLMS算法更新权值矢量W(k+1),并且继续进行迭代计算,直到ε(k)小于要求值。In the formula: X(k), y(k), W(k) are the input vector, output vector and weight vector of the adaptive linear neural network identification system at the kth sampling time; d(k) is the kth sampling time The expected output vector of ; ε(k) is the deviation between the output of the adaptive linear neural network identification system and the expected output; W(k+1) is the weight vector at the k+1th sampling time; X T (k) is the input The transposed matrix of the signal X(k); η is the step size of the weight calculation, and the value range is 0<η<2; δ is to prevent the weight step size from changing because the inner product of the input vector X(k) is too small The small integer introduced because it is too large is taken as 0.0001; through continuous iterative calculation, each iteration is based on the target output value and the deviation ε(k) of the output of the Adaline neural network identification system, and the NLMS algorithm is used to update the weight vector W(k+ 1), and continue iterative calculation until ε(k) is less than the required value.
在步骤2)中,所述考虑逆变器非线性因素是指忽略表贴式永磁同步电机的磁饱和以及铁损耗;所述Adaline神经网络辨识系统的辨识原理是指分别将电机定子电阻、电感、转子磁链作为Adaline神经网络辨识系统的权值矢量进行迭代计算;所述电机定子电阻、电感、转子磁链的辨识方程由以下步骤求得:In step 2), the consideration of the nonlinear factor of the inverter refers to ignoring the magnetic saturation and iron loss of the surface-mounted permanent magnet synchronous motor; the identification principle of the Adaline neural network identification system refers to the separation of the motor stator resistance, The inductance and rotor flux linkage are iteratively calculated as the weight vector of the Adaline neural network identification system; the identification equations of the motor stator resistance, inductance and rotor flux linkage are obtained by the following steps:
2.1)永磁同步电机在d-q同步旋转坐标系下的电压方程为:2.1) The voltage equation of the permanent magnet synchronous motor in the d-q synchronous rotating coordinate system is:
式中:ud、uq分别是定子电压的d、q轴分量;id、iq分别是定子电流的d、q轴分量;R为定子绕组的电阻;Ls为电机电感;ω为电机的电角速度;Ψm为转子磁链幅值;In the formula: ud and u q are the d and q axis components of the stator voltage, respectively; id , i q are the d and q axis components of the stator current, respectively; R is the resistance of the stator winding; L s is the motor inductance; ω is the The electrical angular velocity of the motor; Ψ m is the amplitude of the rotor flux linkage;
2.2)在考虑逆变器非线性因素时,式(3)的离散域数学模型为:2.2) When considering the nonlinear factors of the inverter, the discrete domain mathematical model of equation (3) is:
其中,in,
式中:Vdead为考虑逆变器非线性因素的等效补偿电压;k为采样次数;θ为转子位置;ias、ibs、ics为电机三相电流;Dd(k)函数是均值为0的6次谐波;Dq(k)是含有直流分量的6次谐波,函数sgn(i)的定义为:In the formula : V dead is the equivalent compensation voltage considering the nonlinear factor of the inverter; k is the sampling times; θ is the rotor position; i as , i bs , and ics are the three-phase currents of the motor; The 6th harmonic with mean 0; D q (k) is the 6th harmonic with a DC component, and the function sgn(i) is defined as:
电机在起动到转速稳定的短时间阶段,定子电阻不会发生大变化,注入d轴电流可实现电机定子电阻的初步辨识;The stator resistance will not change greatly during the short period of time from the start of the motor to the stable speed of the motor, and the initial identification of the stator resistance of the motor can be realized by injecting the d-axis current;
2.3)当电机转速为0时,即ω=0,注入d轴电流,式(4)简化为:2.3) When the motor speed is 0, that is, ω=0, the d-axis current is injected, and equation (4) is simplified as:
式中:ud0(k)、uq0(k)和id0(k)、iq0(k)分别为电机静止状态下第k次采样得到d、q轴电压和电流;对式(7)进行变换,消除误差电压得到:In the formula: u d0 (k), u q0 (k) and i d0 (k), i q0 (k) are the d and q axis voltages and currents obtained from the kth sampling of the motor in the static state, respectively; for formula (7) Transform and eliminate the error voltage to get:
ud0(k)Dq0(k)-uq0(k)Dd(k)=Rid0(k)Dq(k)-Riq0(k)Dd(k) (8)u d0 (k)D q0 (k)-u q0 (k)D d (k)=Ri d0 (k)D q (k)-Ri q0 (k)D d (k) (8)
定子电阻通过式(8)进行初步辨识;The stator resistance is initially identified by formula (8);
2.4)在id=0的控制策略下,式(4)简化为:2.4) Under the control strategy of id = 0, formula (4) is simplified as:
对式(9)中的第一个方程进行平均得到:The first equation in equation (9) is averaged to get:
式中:分别是ud(k)、ω(k)、iq(k)经过滤波后的直流分量;Dd(k)是均值为0的6次谐波,VdeadDd(k)的直流分量为0;式(10)中不含误差电压且其未知参数只有Ls,将式(10)用作迭代计算电感的辨识方程;where: are the filtered DC components of u d (k), ω(k), and i q (k) respectively; D d (k) is the 6th harmonic with a mean value of 0, and the DC component of V dead D d (k) is 0; there is no error voltage in equation (10) and its unknown parameter is only L s , and equation (10) is used as the identification equation for iterative calculation of inductance;
2.5)对式(7)中第二个方程进行变换,消除误差电压得到:2.5) Transform the second equation in equation (7) and eliminate the error voltage to get:
ud(k)Dq(k)-uq(k)Dd(k)=-Lsω(k)iq(k)Dq(k)-Riq(k)Dd(k)-ψmω(k)Dd(k) (11)u d (k)D q (k)-u q (k)D d (k)=-L s ω(k)i q (k)D q (k)-Ri q (k)D d (k) -ψ m ω(k)D d (k) (11)
式(11)中的定子电阻已通过电机静止时电流注入的方式计算出来,电感Ls也通过式(10)计算得到,因此,式(11)能够用作迭代计算转子永磁体磁链ψm的辨识方程。The stator resistance in equation (11) has been calculated by the current injection method when the motor is stationary, and the inductance L s is also calculated by equation (10). Therefore, equation (11) can be used to iteratively calculate the rotor permanent magnet flux linkage ψ m identification equation.
在步骤3)中,所述Adaline神经网络辨识系统的各个矢量分别指的是输入矢量、输出矢量、期望输出矢量和权值矢量;构建基于NLMS算法的参数辨识器,用于辨识电机定子电阻、电感、转子磁链的值,包括以下步骤:In step 3), each vector of the Adaline neural network identification system refers to an input vector, an output vector, an expected output vector and a weight vector respectively; a parameter identifier based on the NLMS algorithm is constructed to identify the motor stator resistance, The value of inductance, rotor flux linkage, including the following steps:
3.1)由式ud0(k)Dq0(k)-uq0(k)Dd(k)=Rid0(k)Dq(k)-Riq0(k)Dd(k)得,电机定子电阻R的初步辨识器为:3.1) From the formula u d0 (k)D q0 (k)-u q0 (k)D d (k)=Ri d0 (k)D q (k)-Ri q0 (k)D d (k), the motor The preliminary identifier for the stator resistance R is:
式中:k表示采样次数;ud0(k)、uq0(k)和id0(k)、iq0(k)分别为电机静止状态下第k次采样得到d、q轴电压和电流;Dd(k)函数是均值为0的6次谐波;Dq(k)是含有直流分量的6次谐波;In the formula: k represents the sampling times; u d0 (k), u q0 (k) and i d0 (k), i q0 (k) are the d and q axis voltages and currents obtained from the kth sampling when the motor is stationary; The D d (k) function is the 6th harmonic with mean 0; D q (k) is the 6th harmonic with a DC component;
在电机起动后,短时间运行状态下电机的电阻保持不变;在电机运行至稳定转速后,通过辨识得到的电感Ls和转子磁链Ψm对电阻值进行更新辨识,基于NLMS算法的电机定子电阻辨识器为:After the motor is started, the resistance of the motor remains unchanged in a short-term running state; after the motor runs to a stable speed, the resistance value is updated and identified by the identified inductance L s and rotor flux linkage Ψ m . The motor based on NLMS algorithm The stator resistance identifier is:
式中:k表示采样次数;X(k)是在第k时刻的输入矢量;ud(k)、uq(k)和id(k)、iq(k)分别为第k次采样得到d、q轴电压和电流;Dd(k)函数是均值为0的6次谐波;Dq(k)是含有直流分量的6次谐波;O(k)是第k个采样时刻的Adaline神经网络辨识系统输出矢量;ε(k)是第k次采样的误差信号;d(k)是第k次采样的期望输出矢量;ω(k)是第k次采样的角速度;Ψm是转子磁链;η为权值计算的步长,取值范围是0<η<2;δ是为了防止输入矢量X(k)的内积过小导致权值步长变化过大而引入的小整数,取0.0001;R(k)和R(k+1)分别是第k次采样和第k+1个采样的电机定子电阻R的辨识值;In the formula: k represents the sampling times; X(k) is the input vector at the kth moment; ud (k), u q (k) and id (k), i q (k) are the kth sampling respectively Obtain the d and q axis voltages and currents; D d (k) is the 6th harmonic with a mean value of 0; D q (k) is the 6th harmonic with a DC component; O(k) is the kth sampling time The Adaline neural network identifies the system output vector; ε(k) is the error signal of the kth sampling; d(k) is the expected output vector of the kth sampling; ω(k) is the angular velocity of the kth sampling; Ψ m is the rotor flux linkage; η is the step size of the weight calculation, and the value range is 0<η<2; δ is introduced to prevent the inner product of the input vector X(k) from being too small to cause the weight step size to change too much Small integer, take 0.0001; R(k) and R(k+1) are the identification values of the motor stator resistance R of the kth sampling and the k+1th sampling respectively;
3.2)由式得,基于NLMS算法的电感辨识器为3.2) By the formula So, the inductance identifier based on NLMS algorithm is
式中:Ls(k)和Ls(k+1)分别是第k次采样和第k+1次采样的电感辨识值; 分别是ud(k)、ω(k)、iq(k)经过滤波后的直流分量;In the formula: L s (k) and L s (k+1) are the inductance identification values of the kth sampling and the k+1th sampling, respectively; are the filtered DC components of ud (k), ω(k), and i q (k), respectively;
3.3)由式ud(k)Dq(k)-uq(k)Dd(k)=-Lsω(k)iq(k)Dq(k)-Riq(k)Dd(k)-ψmω(k)Dd(k)得,基于NLMS算法的转子磁链辨识器为:3.3) By the formula u d (k)D q (k)-u q (k)D d (k)=-L s ω(k)i q (k)D q (k)-Ri q (k)D d (k)-ψ m ω(k)D d (k), the rotor flux linkage identifier based on NLMS algorithm is:
式中:ψm(k)和ψm(k+1)分别是第k个采样时刻和第k+1个采样时刻的转子磁链的辨识值。In the formula: ψ m (k) and ψ m (k+1) are the identification values of the rotor flux linkage at the k-th sampling time and the k+1-th sampling time, respectively.
本发明与现有技术相比,具有如下优点与有益效果:Compared with the prior art, the present invention has the following advantages and beneficial effects:
1、本发明所用的NLMS算法将输入信号按照自身能力进行了归一化处理,解决了LMS(最小均方)算法中因为输入信号突变带来的系统系数突变问题,有效提高LMS算法的性能。1. The NLMS algorithm used in the present invention normalizes the input signal according to its own ability, solves the problem of sudden change of system coefficients in the LMS (least mean square) algorithm due to the sudden change of the input signal, and effectively improves the performance of the LMS algorithm.
2、在系统存在白噪声和有色噪声时,本发明使用的NLMS算法相比传统的LMS算法有更好的收敛速度和稳态性能。2. When the system has white noise and colored noise, the NLMS algorithm used in the present invention has better convergence speed and steady-state performance than the traditional LMS algorithm.
3、本发明在建立电机矢量控制方程时,考虑到了逆变器的非线性因素,从而在电机参数在线辨识方面可以获得更高的辨识精度。3. The present invention takes into account the nonlinear factors of the inverter when establishing the motor vector control equation, so that higher identification accuracy can be obtained in the online identification of motor parameters.
附图说明Description of drawings
图1为本发明使用的Adline神经网络基本架构图。FIG. 1 is a basic architecture diagram of the Adline neural network used in the present invention.
图2为本发明用于验证NLMS算法有效性的待辨识系统。FIG. 2 is a system to be identified for verifying the validity of the NLMS algorithm according to the present invention.
图3为NLMS算法对比LMS算法的效果图。Figure 3 shows the effect of the NLMS algorithm compared to the LMS algorithm.
具体实施方式Detailed ways
下面结合具体实施例对本发明作进一步说明。The present invention will be further described below in conjunction with specific embodiments.
本实施例所提供的基于NLMS算法的永磁同步电机参数在线辨识方法,是基于三相逆变器控制的电机矢量控制系统,采用Adaline神经网络加NLMS算法对电机的参数进行在线辨识,具体包括以下步骤:The method for online parameter identification of permanent magnet synchronous motor based on NLMS algorithm provided in this embodiment is a motor vector control system based on three-phase inverter control, and uses Adaline neural network and NLMS algorithm to identify the parameters of the motor online, specifically including: The following steps:
1)构建基于NLMS算法的Adaline神经网络辨识系统1) Construct Adaline neural network identification system based on NLMS algorithm
所述Adaline神经网络辨识系统又称为自适应线性神经网络辨识系统,其网络结构如图1所示,其输入和输出关系如下式:The Adaline neural network identification system is also called an adaptive linear neural network identification system, and its network structure is shown in Figure 1, and its input and output relationship is as follows:
y=WX=∑WiXi (16)y=WX=∑W i X i (16)
其中,X、y、W分别是自适应线性神经网络辨识系统的输入、输出和权值,Wi、Xi分别是权值和输入的第i个分量。在该自适应线性神经网络辨识系统中,采用NLMS算法(归一化最小均方算法)进行迭代更新权值,更新公式如下:Among them, X, y and W are the input, output and weight of the adaptive linear neural network identification system respectively, and Wi and X i are the weight and the ith component of the input, respectively. In this adaptive linear neural network identification system, the NLMS algorithm (normalized least mean square algorithm) is used to iteratively update the weights, and the update formula is as follows:
其中,X(k)、y(k)、W(k)为第k个采样时刻自适应线性神经网络辨识系统的输入、输出和权值;d(k)是第k次采样的期望输出;ε(k)是自适应线性神经网络辨识系统输出与期望输出的偏差;W(k+1)为第k+1个采样时刻;XT(k)为输入信号X(k)的转置矩阵;η为权值计算的步长,取值范围是0<η<2;δ是为了防止输入数据矢量X(k)的内积过小导致权值步长变化过大而引入的小整数,一般取0.0001。通过不停的迭代计算,每次迭代根据目标输出值及Adaline神经网络辨识系统输出的偏差ε(k),采用NLMS算法更新权值W(k+1),并且继续进行迭代计算,直到ε(k)小于要求值。Among them, X(k), y(k), W(k) are the input, output and weights of the adaptive linear neural network identification system at the kth sampling time; d(k) is the expected output of the kth sampling; ε(k) is the deviation between the output of the adaptive linear neural network identification system and the expected output; W(k+1) is the k+1th sampling time; X T (k) is the transposed matrix of the input signal X(k) ; η is the step size of the weight calculation, and the value range is 0<η<2; δ is a small integer introduced to prevent the inner product of the input data vector X(k) from being too small to cause the weight step size to change too much, Generally take 0.0001. Through continuous iterative calculation, each iteration identifies the deviation ε(k) of the system output according to the target output value and the Adaline neural network, uses the NLMS algorithm to update the weight W(k+1), and continues the iterative calculation until ε( k) is less than the required value.
为了验证NLMS算法的有效性,采用MATLAB建立仿真模型,如图2所示。其中v1(k)为均值为0,方差为1的白噪声信号,通过AR自回归模型G1(z)=1+0.5z-1,得到输入信号x(k),输入待辨识模型G2(z)=2+z-1+0.5z-2-0.2z-3,其中z是z域的变量,v(k)是均值为0,方差为0.3的白噪声作为测量噪声,采用LMS和NLMS两种算法进权值向量W辨识。辨识结果如图3所示,可见NLMS算法相比LMS算法具有更快的收敛速度和更好的稳态性能。In order to verify the effectiveness of the NLMS algorithm, a simulation model is established using MATLAB, as shown in Figure 2. Among them, v 1 (k) is a white noise signal with a mean value of 0 and a variance of 1. Through the AR autoregressive model G 1 (z)=1+0.5z -1 , the input signal x(k) is obtained, and the model G to be identified is input. 2 (z)=2+z -1 +0.5z -2 -0.2z -3 , where z is a variable in the z domain, v(k) is a white noise with a mean of 0 and a variance of 0.3 as the measurement noise, using LMS And NLMS two algorithms into the weight vector W identification. The identification results are shown in Figure 3. It can be seen that the NLMS algorithm has faster convergence speed and better steady-state performance than the LMS algorithm.
2)考虑逆变器非线性因素,构建永磁同步电机控制系统的离散域数学模型,结合步骤1)中Adaline神经网络辨识系统的辨识原理,简化永磁同步电机控制系统的离散域数学模型,得到分别用于迭代计算电机定子电阻、电感、转子磁链的辨识方程。2) Considering the nonlinear factors of the inverter, construct the discrete domain mathematical model of the permanent magnet synchronous motor control system, and combine the identification principle of the Adaline neural network identification system in step 1) to simplify the discrete domain mathematical model of the permanent magnet synchronous motor control system, The identification equations used to iteratively calculate the stator resistance, inductance and rotor flux linkage of the motor are obtained.
所述考虑逆变器非线性因素是指忽略表贴式永磁同步电机的磁饱和以及铁损耗;所述Adaline神经网络辨识系统的辨识原理是指分别将电机定子电阻、电感、转子磁链作为Adaline神经网络辨识系统的权值矢量进行迭代计算;所述电机定子电阻、电感、转子磁链的辨识方程由以下步骤求得:The non-linear factor of the inverter is considered, which means that the magnetic saturation and iron loss of the surface-mounted permanent magnet synchronous motor are ignored. The weight vector of the Adaline neural network identification system is iteratively calculated; the identification equations of the motor stator resistance, inductance, and rotor flux linkage are obtained by the following steps:
2.1)永磁同步电机在d-q同步旋转坐标系下的电压方程为:2.1) The voltage equation of the permanent magnet synchronous motor in the d-q synchronous rotating coordinate system is:
式中ud、uq分别是定子电压的d、q轴分量;id、iq分别是定子电流的d、q轴分量;R为定子绕组的电阻;Ls为电机电感;ω为电机的电角速度;Ψm为转子磁链幅值;where ud and u q are the d and q axis components of the stator voltage, respectively; id and i q are the d and q axis components of the stator current, respectively; R is the resistance of the stator winding; L s is the motor inductance; ω is the motor The electrical angular velocity; Ψ m is the rotor flux amplitude;
2.2)在考虑逆变器非线性因素时,式(16)的稳定离散域方程为:2.2) When considering the nonlinear factor of the inverter, the stable discrete domain equation of equation (16) is:
其中in
式中,Vdead为考虑逆变器非线性因素的等效补偿电压;k为采样次数;θ为转子位置;ias、ibs、ics为电机三相电流;Dd(k)函数是均值为0的6次谐波;Dq(k)是含有直流分量的6次谐波,函数sgn(i)的定义为In the formula , V dead is the equivalent compensation voltage considering the nonlinear factors of the inverter; k is the sampling times; θ is the rotor position; i as , i bs , and ics are the three-phase currents of the motor; The 6th harmonic with mean 0; D q (k) is the 6th harmonic with a DC component, and the function sgn(i) is defined as
电机在起动到转速稳定的短时间阶段,定子电阻不会发生较大变化。因此可以通过转速为0时,注入d轴电流实现定子电阻初步辨识。During the short period of time from the start of the motor to the stable speed of the motor, the stator resistance will not change greatly. Therefore, the initial identification of the stator resistance can be realized by injecting the d-axis current when the rotational speed is 0.
2.3)当电机转速为0时(ω=0),注入d轴电流,式(17)可简化为2.3) When the motor speed is 0 (ω=0), the d-axis current is injected, and equation (17) can be simplified as
式中,ud0(k)、uq0(k)和id0(k)、iq0(k)分别为电机静止状态下采样得到d、q轴电压和电流。对式(20)进行变换,消除误差电压可得到In the formula, u d0 (k), u q0 (k) and i d0 (k), i q0 (k) are the d and q axis voltages and currents obtained by sampling under the static state of the motor, respectively. Transforming equation (20) and eliminating the error voltage can be obtained
ud0(k)Dq0(k)-uq0(k)Dd(k)=Rid0(k)Dq(k)-Riq0(k)Dd(k) (23)u d0 (k)D q0 (k)-u q0 (k)D d (k)=Ri d0 (k)D q (k)-Ri q0 (k)D d (k) (23)
定子电阻可以通过式(21)进行初步辨识。The stator resistance can be preliminarily identified by equation (21).
2.4)在id=0的控制策略下,式(17)可简化为2.4) Under the control strategy of id = 0, equation (17) can be simplified as
对式(22)中的第一个方程进行平均可得到Averaging the first equation in Eq. (22) yields
式中,分别是ud(k)、ω(k)、iq(k)经过滤波后的直流分量。由式(18)中表达式可知,Dd(k)是均值为0的6次谐波,所以VdeadDd(k)的直流分量为0。因此,式(23)中不含误差电压且其未知参数只有Ls,因此将式(23)作为电感的辨识模型。In the formula, are the filtered DC components of ud (k), ω(k), and i q (k), respectively. It can be known from the expression in equation (18) that D d (k) is the 6th harmonic with an average value of 0, so the DC component of V dead D d (k) is 0. Therefore, there is no error voltage in equation (23) and its unknown parameter is only L s , so equation (23) is used as the identification model of the inductance.
2.5)对式(22)中第二个方程进行变换,消除误差电压可得到2.5) Transform the second equation in equation (22) and eliminate the error voltage to get
ud(k)Dq(k)-uq(k)Dd(k)=-Lsω(k)iq(k)Dq(k)-Riq(k)Dd(k)-ψmω(k)Dd(k) (26)u d (k)D q (k)-u q (k)D d (k)=-L s ω(k)i q (k)D q (k)-Ri q (k)D d (k) -ψ m ω(k)D d (k) (26)
式(24)中的定子电阻已通过电机静止时电流注入的方式辨识出来,电感Ls也通过式(23)辨识模型得到,因此式(24)可作为转子永磁体磁链ψm的辨识模型。The stator resistance in equation (24) has been identified by the way of current injection when the motor is stationary, and the inductance L s is also obtained by the identification model of equation (23), so equation (24) can be used as the identification model of rotor permanent magnet flux linkage ψm .
3)由步骤2)得到的电机定子电阻、电感、转子磁链的辨识方程计算得到Adaline神经网络辨识系统的各个矢量,构建基于NLMS算法的参数辨识器,用于辨识电机定子电阻、电感、转子磁链的值,步骤如下:3) Calculate the various vectors of the Adaline neural network identification system from the identification equations of the motor stator resistance, inductance, and rotor flux linkage obtained in step 2), and build a parameter identifier based on the NLMS algorithm to identify the motor stator resistance, inductance, rotor The value of the flux linkage, the steps are as follows:
3.1)由式(6)得,定子电阻R的初步辨识器为3.1) From equation (6), the preliminary identifier of stator resistance R is
其中,k表示采样次数;ud0(k)、uq0(k)和id0(k)、iq0(k)分别为电机静止状态下第k次采样得到d、q轴电压和电流;Dd(k)函数是均值为0的6次谐波;Dq(k)是含有直流分量的6次谐波。Among them, k represents the number of samplings; u d0 (k), u q0 (k) and i d0 (k), i q0 (k) are the d and q axis voltages and currents obtained from the kth sampling under the static state of the motor, respectively; D The d (k) function is the 6th harmonic with mean 0; D q (k) is the 6th harmonic with a DC component.
在电机起动后,短时间运行状态下电机的电阻基本保持不变。在电机运行至稳定转速后,可由辨识得到的电感Ls和磁链Ψm对电阻值进行更新辨识,电阻的辨识器为:After the motor is started, the resistance of the motor remains basically unchanged in a short-term running state. After the motor runs to a stable speed, the resistance value can be updated and identified by the identified inductance L s and flux linkage Ψ m . The resistance identifier is:
其中,k表示采样次数;X(k)是在第k时刻的输入信号矢量;ud(k)、uq(k)和id(k)、iq(k)分别为第k次采样得到d、q轴电压和电流;Dd(k)函数是均值为0的6次谐波;Dq(k)是含有直流分量的6次谐波;O(k)是第k个采样时刻的自适应线性神经网络辨识系统输出值;ε(k)是第k次采样的误差信号;d(k)是第k次采样的期望输出;ω(k)是第k次采样的角速度;Ψm是转子磁链;η为权值计算的步长,取值范围是0<η<2;δ是为了防止输入数据矢量X(k)的内积过小导致权值步长变化过大而引入的小整数,一般取0.0001。R(k)和R(k+1)分别是第k次采样和第k+1个采样的定子电阻R的辨识值;Among them, k represents the sampling times; X(k) is the input signal vector at the kth moment; ud (k), u q (k) and id (k), i q (k) are the kth sampling respectively Obtain the d and q axis voltages and currents; D d (k) is the 6th harmonic with a mean value of 0; D q (k) is the 6th harmonic with a DC component; O(k) is the kth sampling time The adaptive linear neural network identifies the output value of the system; ε(k) is the error signal of the kth sampling; d(k) is the expected output of the kth sampling; ω(k) is the angular velocity of the kth sampling; Ψ m is the rotor flux linkage; η is the step size of the weight calculation, the value range is 0 < η <2; The small integer introduced is generally 0.0001. R(k) and R(k+1) are the identification values of the stator resistance R of the kth sampling and the k+1th sampling, respectively;
3.2)由式得,电感Ls的辨识器为3.2) By the formula So, the identifier of the inductance L s is
其中,Ls(k)和Ls(k+1)分别是第k次采样和第k+1次采样的电机电感辨识值;分别是ud(k)、ω(k)、iq(k)经过滤波后的直流分量。Among them, L s (k) and L s (k+1) are the motor inductance identification values of the kth sampling and the k+1th sampling, respectively; are the filtered DC components of ud (k), ω(k), and i q (k), respectively.
3.3)由式ud(k)Dq(k)-uq(k)Dd(k)=-Lsω(k)iq(k)Dq(k)-Riq(k)Dd(k)-ψmω(k)Dd(k)得,转子永磁体磁链ψm的辨识器为:3.3) By the formula u d (k)D q (k)-u q (k)D d (k)=-L s ω(k)i q (k)D q (k)-Ri q (k)D d (k)-ψ m ω(k)D d (k), the identifier of rotor permanent magnet flux linkage ψ m is:
其中,ψm(k)和ψm(k+1)分别是第k个采样时刻和第k+1个采样时刻的转子永磁体磁链的辨识值。Among them, ψ m (k) and ψ m (k+1) are the identification values of the rotor permanent magnet flux linkage at the kth sampling time and the k+1th sampling time, respectively.
为了验证所提的永磁同步电机参数在线辨识的可行性,建立基于磁场定向控制的双闭环调速系统。测试平台主要包括以TMS320F28069M作为主控芯片的控制系统和富士IGBT功率模块7MBP50VFN060-50为核心的功率驱动系统,其中SPMSM标称参数如表1所示。In order to verify the feasibility of the proposed permanent magnet synchronous motor parameter online identification, a double closed-loop speed control system based on field-oriented control is established. The test platform mainly includes a control system with TMS320F28069M as the main control chip and a power drive system with Fuji IGBT power module 7MBP50VFN060-50 as the core. The nominal parameters of SPMSM are shown in Table 1.
表1-SPMSM参数标称值Table 1-Nominal values of SPMSM parameters
基于本发明对电机参数进行在线辨识,具体参数辨识结果表2所示。Based on the present invention, the motor parameters are identified online, and the specific parameter identification results are shown in Table 2.
表2-SPMSM参数辨识值Table 2-SPMSM parameter identification values
从表2可知,本发明基于NLMS算法对电阻参数辨识的精度相比LMS算法有所提高,能有效对电机参数进行在线准确辨识。It can be seen from Table 2 that the accuracy of the resistance parameter identification based on the NLMS algorithm in the present invention is improved compared with the LMS algorithm, and the motor parameters can be effectively and accurately identified online.
以上所述实施例只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之形状、原理所作的变化,均应涵盖在本发明的保护范围内。The above-mentioned embodiments are only preferred embodiments of the present invention, and are not intended to limit the scope of implementation of the present invention. Therefore, any changes made according to the shape and principle of the present invention should be included within the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010114865.6A CN111313774A (en) | 2020-02-25 | 2020-02-25 | An online parameter identification method of permanent magnet synchronous motor based on NLMS algorithm |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010114865.6A CN111313774A (en) | 2020-02-25 | 2020-02-25 | An online parameter identification method of permanent magnet synchronous motor based on NLMS algorithm |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111313774A true CN111313774A (en) | 2020-06-19 |
Family
ID=71149175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010114865.6A Pending CN111313774A (en) | 2020-02-25 | 2020-02-25 | An online parameter identification method of permanent magnet synchronous motor based on NLMS algorithm |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111313774A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112087178A (en) * | 2020-09-14 | 2020-12-15 | 四川长虹电器股份有限公司 | Parameter identification method of permanent magnet synchronous motor |
CN112953338A (en) * | 2021-03-08 | 2021-06-11 | 上海交通大学 | PMSM parameter online identification method, system, terminal and medium |
CN113078852A (en) * | 2021-04-13 | 2021-07-06 | 东南大学 | Real-time identification method for parameters of permanent magnet synchronous motor |
CN113472251A (en) * | 2021-08-06 | 2021-10-01 | 中山大学 | Motor parameter identification method |
CN113726244A (en) * | 2021-09-02 | 2021-11-30 | 华中科技大学 | Adaline neural network-based rotor flux linkage real-time estimation method and system |
CN113783488A (en) * | 2021-08-04 | 2021-12-10 | 华中科技大学 | Permanent magnet synchronous motor full parameter identification method and permanent magnet synchronous motor system |
CN114094900A (en) * | 2021-11-19 | 2022-02-25 | 合肥工业大学 | Permanent magnet synchronous motor parameter online identification method |
CN114499264A (en) * | 2022-02-10 | 2022-05-13 | 南京工程学院 | Inverter voltage control method and system |
WO2023050050A1 (en) * | 2021-09-28 | 2023-04-06 | 罗伯特·博世有限公司 | Parameter identification method for synchronous motor based on neural network |
CN118393888A (en) * | 2024-04-26 | 2024-07-26 | 沈阳航空航天大学 | Electric aircraft controller efficiency optimization method based on improved loss model |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103248306A (en) * | 2013-05-24 | 2013-08-14 | 天津大学 | Online decoupling identification method of multiple parameters of PMSM (permanent magnet synchronous motor) |
US20150002071A1 (en) * | 2013-06-28 | 2015-01-01 | Eaton Corporation | System and method of rotor time constant online identification in an ac induction machine |
CN104378038A (en) * | 2014-11-18 | 2015-02-25 | 东华大学 | Permanent magnet synchronous motor parameter identification method based on artificial neural network |
CN105375848A (en) * | 2015-11-26 | 2016-03-02 | 上海无线电设备研究所 | Permanent magnet synchronous motor self-adaptive identification control method and control system thereof |
-
2020
- 2020-02-25 CN CN202010114865.6A patent/CN111313774A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103248306A (en) * | 2013-05-24 | 2013-08-14 | 天津大学 | Online decoupling identification method of multiple parameters of PMSM (permanent magnet synchronous motor) |
US20150002071A1 (en) * | 2013-06-28 | 2015-01-01 | Eaton Corporation | System and method of rotor time constant online identification in an ac induction machine |
CN104378038A (en) * | 2014-11-18 | 2015-02-25 | 东华大学 | Permanent magnet synchronous motor parameter identification method based on artificial neural network |
CN105375848A (en) * | 2015-11-26 | 2016-03-02 | 上海无线电设备研究所 | Permanent magnet synchronous motor self-adaptive identification control method and control system thereof |
Non-Patent Citations (4)
Title |
---|
HAIQUAN ZHAO ET AL: "Novel adaptive VSS-NLMS Algorithm for System Identification", 《2013 FOURTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP)》 * |
刘志骋 等: "一种改进的变步长NLMS算法", 《现代电子技术》 * |
张立伟 等: "基于变步长Adaline神经网络的永磁同步电机参数辨识", 《电工技术学报》 * |
张鹏: "永磁同步电机参数辨识算法研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112087178A (en) * | 2020-09-14 | 2020-12-15 | 四川长虹电器股份有限公司 | Parameter identification method of permanent magnet synchronous motor |
CN112953338A (en) * | 2021-03-08 | 2021-06-11 | 上海交通大学 | PMSM parameter online identification method, system, terminal and medium |
CN113078852A (en) * | 2021-04-13 | 2021-07-06 | 东南大学 | Real-time identification method for parameters of permanent magnet synchronous motor |
CN113078852B (en) * | 2021-04-13 | 2022-08-09 | 东南大学 | Real-time identification method for parameters of permanent magnet synchronous motor |
CN113783488A (en) * | 2021-08-04 | 2021-12-10 | 华中科技大学 | Permanent magnet synchronous motor full parameter identification method and permanent magnet synchronous motor system |
CN113783488B (en) * | 2021-08-04 | 2023-10-20 | 华中科技大学 | Permanent magnet synchronous motor full-parameter identification method and permanent magnet synchronous motor system |
CN113472251A (en) * | 2021-08-06 | 2021-10-01 | 中山大学 | Motor parameter identification method |
CN113726244A (en) * | 2021-09-02 | 2021-11-30 | 华中科技大学 | Adaline neural network-based rotor flux linkage real-time estimation method and system |
CN113726244B (en) * | 2021-09-02 | 2023-09-26 | 华中科技大学 | A real-time estimation method and system for rotor flux linkage based on Adaline neural network |
WO2023050050A1 (en) * | 2021-09-28 | 2023-04-06 | 罗伯特·博世有限公司 | Parameter identification method for synchronous motor based on neural network |
CN114094900A (en) * | 2021-11-19 | 2022-02-25 | 合肥工业大学 | Permanent magnet synchronous motor parameter online identification method |
CN114499264A (en) * | 2022-02-10 | 2022-05-13 | 南京工程学院 | Inverter voltage control method and system |
CN114499264B (en) * | 2022-02-10 | 2024-12-17 | 南京工程学院 | Inverter voltage control method and system |
CN118393888A (en) * | 2024-04-26 | 2024-07-26 | 沈阳航空航天大学 | Electric aircraft controller efficiency optimization method based on improved loss model |
CN118393888B (en) * | 2024-04-26 | 2025-05-06 | 沈阳航空航天大学 | Electric aircraft controller efficiency optimization method based on improved loss model |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111313774A (en) | An online parameter identification method of permanent magnet synchronous motor based on NLMS algorithm | |
CN111313773A (en) | Permanent magnet synchronous motor parameter identification method based on variable step length LMS algorithm | |
CN111342728A (en) | Parameter identification method of permanent magnet synchronous motor based on variable-step NLMS algorithm | |
CN105915136B (en) | Current of electric harmonics restraint control system based on fuzzy neural network and method | |
CN109495048A (en) | Permanent magnet synchronous motor Speed Sensorless Control Method based on MRAC observer | |
CN108183648A (en) | A kind of permanent magnet synchronous motor parameter identification method based on inverter nonlinear compensation | |
CN110198150A (en) | A kind of permanent magnet synchronous motor multi-parameter on-line identification method | |
CN107592051B (en) | Online parameter identification simulation method for excitation inductance of linear traction motor | |
Qu et al. | Deadbeat harmonic current control of permanent magnet synchronous machine drives for torque ripple reduction | |
CN109194219A (en) | Based on model-free non-singular terminal sliding formwork control permanent magnet synchronous motor method and system | |
CN110266229B (en) | Resonance suppression method for air conditioner driving system of electrolytic capacitor-free permanent magnet synchronous motor | |
CN113422550B (en) | Low carrier ratio control method for high-speed motor based on complex vector decoupling and delay compensation | |
CN117767845B (en) | Harmonic suppression method based on composite harmonic voltage feedforward compensation | |
CN107465374B (en) | Induction motor full-order self-adaptive observation method taking counter electromotive force as state | |
CN112039386A (en) | A torque ripple suppression method for permanent magnet synchronous motor based on fuzzy quasi-proportional resonance | |
CN110336504B (en) | Permanent magnet synchronous motor control method based on virtual signal injection and gradient descent method | |
CN115580195A (en) | IPMSM field weakening control system and control method based on new sliding mode control | |
CN107482978B (en) | A kind of permanent magnet synchronous motor on-line parameter discrimination method based on finite time algorithm | |
CN116208040A (en) | A full-order terminal sliding mode speed adaptive observation method for permanent magnet synchronous motors | |
CN106230322A (en) | Asynchronous motor DC pre-excitation based on flux compensation and deviation de-couple starts method | |
CN116979845B (en) | Permanent magnet synchronous motor vector control method based on improved sliding mode controller | |
CN117097213A (en) | Permanent magnet synchronous motor robustness finite set model prediction flux linkage control method | |
Qu et al. | Torque ripple reduction method for interior permanent magnet synchronous machine drives with minimal loss | |
Kang et al. | ADRC-based speed control for permanent magnet synchronous machine drives using sliding-mode extended state observer | |
CN111740420A (en) | Grid-side current harmonic suppression method for permanent magnet compressor drive system without electrolytic capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200619 |