CN111310103A - 生态环境监测数据的稠密化处理方法 - Google Patents
生态环境监测数据的稠密化处理方法 Download PDFInfo
- Publication number
- CN111310103A CN111310103A CN202010123724.0A CN202010123724A CN111310103A CN 111310103 A CN111310103 A CN 111310103A CN 202010123724 A CN202010123724 A CN 202010123724A CN 111310103 A CN111310103 A CN 111310103A
- Authority
- CN
- China
- Prior art keywords
- data
- ecological environment
- auxiliary
- processing
- monitoring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 50
- 238000000280 densification Methods 0.000 title claims abstract description 8
- 238000003672 processing method Methods 0.000 title description 4
- 238000000034 method Methods 0.000 claims abstract description 25
- 238000013507 mapping Methods 0.000 claims abstract description 19
- 238000012545 processing Methods 0.000 claims abstract description 19
- 238000013135 deep learning Methods 0.000 claims abstract description 8
- 238000010606 normalization Methods 0.000 claims description 7
- 238000007781 pre-processing Methods 0.000 claims description 5
- 238000012935 Averaging Methods 0.000 claims description 4
- 238000012549 training Methods 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 description 6
- 239000000356 contaminant Substances 0.000 description 5
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 2
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Chemical compound O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 2
- 230000009469 supplementation Effects 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000007477 logistic regression Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Physics (AREA)
- General Physics & Mathematics (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Computation (AREA)
- Algebra (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Databases & Information Systems (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010123724.0A CN111310103A (zh) | 2020-02-27 | 2020-02-27 | 生态环境监测数据的稠密化处理方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010123724.0A CN111310103A (zh) | 2020-02-27 | 2020-02-27 | 生态环境监测数据的稠密化处理方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111310103A true CN111310103A (zh) | 2020-06-19 |
Family
ID=71156634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010123724.0A Pending CN111310103A (zh) | 2020-02-27 | 2020-02-27 | 生态环境监测数据的稠密化处理方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111310103A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117113089A (zh) * | 2023-10-16 | 2023-11-24 | 北京英视睿达科技股份有限公司 | 基于一氧化碳的甲烷数据补全方法、装置、设备及介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109063908A (zh) * | 2018-07-30 | 2018-12-21 | 浙江鸿程计算机系统有限公司 | 一种基于深度多任务学习的城市aqi预测与空间细粒度aqi等级估计方法 |
CN110263479A (zh) * | 2019-06-28 | 2019-09-20 | 浙江航天恒嘉数据科技有限公司 | 一种大气污染因子浓度时空分布预测方法及系统 |
CN110567510A (zh) * | 2019-07-23 | 2019-12-13 | 北京英视睿达科技有限公司 | 大气污染监测方法、系统、计算机设备和存储介质 |
CN110598953A (zh) * | 2019-09-23 | 2019-12-20 | 哈尔滨工程大学 | 一种时空相关的空气质量预测方法 |
US20200110019A1 (en) * | 2017-06-09 | 2020-04-09 | Sense Square S.R.L.S. | Atmospheric pollution source mapping and tracking of pollutants by using air quality monitoring networks having high space-time resolution |
-
2020
- 2020-02-27 CN CN202010123724.0A patent/CN111310103A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200110019A1 (en) * | 2017-06-09 | 2020-04-09 | Sense Square S.R.L.S. | Atmospheric pollution source mapping and tracking of pollutants by using air quality monitoring networks having high space-time resolution |
CN109063908A (zh) * | 2018-07-30 | 2018-12-21 | 浙江鸿程计算机系统有限公司 | 一种基于深度多任务学习的城市aqi预测与空间细粒度aqi等级估计方法 |
CN110263479A (zh) * | 2019-06-28 | 2019-09-20 | 浙江航天恒嘉数据科技有限公司 | 一种大气污染因子浓度时空分布预测方法及系统 |
CN110567510A (zh) * | 2019-07-23 | 2019-12-13 | 北京英视睿达科技有限公司 | 大气污染监测方法、系统、计算机设备和存储介质 |
CN110598953A (zh) * | 2019-09-23 | 2019-12-20 | 哈尔滨工程大学 | 一种时空相关的空气质量预测方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117113089A (zh) * | 2023-10-16 | 2023-11-24 | 北京英视睿达科技股份有限公司 | 基于一氧化碳的甲烷数据补全方法、装置、设备及介质 |
CN117113089B (zh) * | 2023-10-16 | 2024-01-23 | 北京英视睿达科技股份有限公司 | 基于一氧化碳的甲烷数据补全方法、装置、设备及介质 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109492830B (zh) | 一种基于时空深度学习的移动污染源排放浓度预测方法 | |
CN116186566B (zh) | 基于深度学习的扩散预测方法及系统 | |
US10725008B2 (en) | Automatic siting for air quality monitoring stations | |
CN116363601B (zh) | 一种污染监测设备的数据采集与分析方法及系统 | |
CN110533239B (zh) | 一种智慧城市空气品质高精度测量方法 | |
CN115796434B (zh) | 一种用于配电网的管控方法、装置、电子设备及存储介质 | |
CN110381515B (zh) | 基于合分模式实现小区网络流量资源指标预测的方法 | |
CN110555551A (zh) | 一种智慧城市的空气质量大数据管理方法及系统 | |
CN113642263B (zh) | 基于北斗网格的空气质量预警方法和装置 | |
CN116307212B (zh) | 一种空气质量预测方法及系统 | |
CN116862081B (zh) | 一种污染治理设备运维方法及系统 | |
CN113011455B (zh) | 一种空气质量预测svm模型构建方法 | |
CN116307268B (zh) | 一种基于污染场地修复过程中的碳排放预测方法及系统 | |
Lee et al. | An efficient prediction for heavy rain from big weather data using genetic algorithm | |
CN115542429A (zh) | 一种基于XGBoost的臭氧质量预测方法及系统 | |
CN115438582A (zh) | 一种联合多要素和图注意力的pm2.5浓度预测方法 | |
CN111310103A (zh) | 生态环境监测数据的稠密化处理方法 | |
CN117391139A (zh) | 基于改进UNet神经网络的天气现象预报订正方法 | |
CN116960962A (zh) | 一种跨区域数据融合的中长期区域负荷预测方法 | |
CN113344290B (zh) | 基于U-Net网络的次季节降水气象预报订正方法 | |
Shukla et al. | Comparison of spatial modelling approaches to predict urban growth of Lucknow City, India | |
LIU et al. | A case study on intelligent operation system for wireless networks | |
CN117910657B (zh) | 碳排因子的预测方法、模型训练方法、计算设备、存储介质及程序产品 | |
CN117113267B (zh) | 基于大数据的预测模型训练方法、光伏发电性能检测方法 | |
KR102704545B1 (ko) | 트리 기반 기계학습 알고리즘과 기상 예측 자료를 이용한 시정 예측 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20230601 Address after: No. 705, Unit 1, Building 3, No. 15, Wuke East 1st Road, Wuhou District, Chengdu City, Sichuan Province, 610000 Applicant after: Sichuan Wansi Sida Technology Co.,Ltd. Applicant after: Xie Guojin Address before: 5-1-10-1, Shidai Jincheng, No. 699, South Section 2, zangwei Road, Shuangliu District, Chengdu, Sichuan 610200 Applicant before: Xie Guoyu Applicant before: Liu Zhongyang |
|
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200619 |