CN111307480A - Embedded heat pipe-based heat transfer management system, method and storage medium - Google Patents
Embedded heat pipe-based heat transfer management system, method and storage medium Download PDFInfo
- Publication number
- CN111307480A CN111307480A CN202010106001.XA CN202010106001A CN111307480A CN 111307480 A CN111307480 A CN 111307480A CN 202010106001 A CN202010106001 A CN 202010106001A CN 111307480 A CN111307480 A CN 111307480A
- Authority
- CN
- China
- Prior art keywords
- heat pipe
- data
- heat
- module
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012546 transfer Methods 0.000 title claims abstract description 80
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000003745 diagnosis Methods 0.000 claims abstract description 53
- 238000004364 calculation method Methods 0.000 claims abstract description 18
- 239000007788 liquid Substances 0.000 claims abstract description 5
- 238000012360 testing method Methods 0.000 claims description 65
- 238000013528 artificial neural network Methods 0.000 claims description 48
- 238000001514 detection method Methods 0.000 claims description 36
- 230000008569 process Effects 0.000 claims description 33
- 238000012545 processing Methods 0.000 claims description 28
- 238000012549 training Methods 0.000 claims description 28
- 238000007726 management method Methods 0.000 claims description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 26
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 230000005611 electricity Effects 0.000 claims description 9
- 208000032953 Device battery issue Diseases 0.000 claims description 6
- 238000004422 calculation algorithm Methods 0.000 claims description 6
- 238000005070 sampling Methods 0.000 claims description 6
- 238000009825 accumulation Methods 0.000 claims description 5
- 238000004458 analytical method Methods 0.000 claims description 5
- 238000012544 monitoring process Methods 0.000 claims description 5
- 238000004590 computer program Methods 0.000 claims description 4
- 238000000354 decomposition reaction Methods 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 3
- 230000004927 fusion Effects 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 230000007246 mechanism Effects 0.000 claims description 3
- 238000003909 pattern recognition Methods 0.000 claims description 3
- 238000010998 test method Methods 0.000 claims description 3
- 239000000284 extract Substances 0.000 claims description 2
- 230000017525 heat dissipation Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012806 monitoring device Methods 0.000 description 2
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 description 1
- 206010035148 Plague Diseases 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M99/00—Subject matter not provided for in other groups of this subclass
- G01M99/002—Thermal testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/20—Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
本发明属于热管传热管理技术领域,公开了一种基于嵌入式热管传热管理系统、方法及存储介质,温度检测模块通过温度传感器检测热管温度数据,热损耗检测模块通过热管监测设备检测热管热损耗数据;根据检测的数值,中央控制模块控制传热效率计算模块,计算程序计算热管传热效率数据;控制故障诊断模块通过诊断电路对热管连接电池故障进行诊断;根据传热效率和电池故障数据结果,通过热管寿命预测模块利用预测程序对热管寿命进行预测。本发明通过故障诊断模块能够在短路发生的初始阶段、尚未出现高温之前诊断电池的短路及漏液情况,准确预测短路引起的最大温升问题。
The invention belongs to the technical field of heat transfer management of heat pipes, and discloses a heat transfer management system, method and storage medium based on an embedded heat pipe. Loss data; according to the detected value, the central control module controls the heat transfer efficiency calculation module, and the calculation program calculates the heat transfer efficiency data of the heat pipe; controls the fault diagnosis module to diagnose the fault of the heat pipe connected to the battery through the diagnostic circuit; according to the heat transfer efficiency and battery fault data As a result, the heat pipe life is predicted using the prediction program by the heat pipe life prediction module. Through the fault diagnosis module, the invention can diagnose the short circuit and liquid leakage of the battery in the initial stage of the occurrence of the short circuit and before the high temperature occurs, and accurately predict the maximum temperature rise problem caused by the short circuit.
Description
技术领域technical field
本发明属于热管传热管理技术领域,尤其涉及一种基于嵌入式热管传热管理系统、方法及存储介质。The invention belongs to the technical field of heat transfer management of heat pipes, and in particular relates to a heat transfer management system, method and storage medium based on embedded heat pipes.
背景技术Background technique
热管(heat pipe)技术以前被广泛应用在宇航、军工等行业,自从被引入散热器制造行业,使得人们改变了传统散热器的设计思路,摆脱了单纯依靠高风量电机来获得更好散热效果的单一散热模式,采用热管技术使得散热器即便采用低转速、低风量电机,同样可以得到满意效果,使得困扰风冷散热的噪音问题得到良好解决,开辟了散热行业新天地。然而,现有基于嵌入式热管传热管理系统不能对热管连接的电池故障进行准确诊断;同时,不能准确测试热管导热性能。Heat pipe technology has been widely used in aerospace, military and other industries before. Since it was introduced into the radiator manufacturing industry, people have changed the design thinking of traditional radiators and got rid of the need to rely solely on high-volume motors to obtain better heat dissipation. The single heat dissipation mode adopts heat pipe technology, so that even if the radiator adopts a low-speed and low-air volume motor, it can still obtain satisfactory results, so that the noise problem that plagues air-cooled heat dissipation can be well solved, opening up a new world in the heat dissipation industry. However, the existing heat transfer management system based on the embedded heat pipe cannot accurately diagnose the battery failure connected by the heat pipe; at the same time, the heat conduction performance of the heat pipe cannot be accurately tested.
综上所述,现有技术存在的问题是:现有基于嵌入式热管传热管理系统不能对热管连接的电池故障进行准确诊断;同时不能准确测试热管导热性能。To sum up, the existing problems in the prior art are: the existing embedded heat pipe heat transfer management system cannot accurately diagnose the battery failure connected by the heat pipe; meanwhile, the heat conduction performance of the heat pipe cannot be accurately tested.
发明内容SUMMARY OF THE INVENTION
针对现有技术存在的问题,本发明提供了一种基于嵌入式热管传热管理系统、方法及存储介质。In view of the problems existing in the prior art, the present invention provides a heat transfer management system, method and storage medium based on an embedded heat pipe.
本发明是这样实现的,一种基于嵌入式热管传热管理系统,所述基于嵌入式热管传热管理系统包括:The present invention is realized in this way, a heat transfer management system based on embedded heat pipe, the heat transfer management system based on embedded heat pipe includes:
温度检测模块,与中央控制模块连接,用于通过温度传感器检测热管温度数据;温度检测模块对采集的信号进行处理的过程为:通过敏感元件检测温度的变换,利用转换元件对信号进行转化;转化完成的信号传递到处理电路;处理电路对采集的信号进行去噪放大,得到不含有噪声的信号;不含有噪声的信号传递到中央控制模块;通过处理电路对采集信号进行去噪的过程为:对采集的温度信号,进行小波分解,得到温度数据的各尺度系数;根据温度数据的各尺度系数,对温度数据进行阈值处理;处理完成后,采用小波重构,得到不含有噪声的信号;The temperature detection module is connected with the central control module, and is used to detect the temperature data of the heat pipe through the temperature sensor; the process of processing the collected signal by the temperature detection module is: detecting the temperature change through the sensitive element, and using the conversion element to convert the signal; conversion; The completed signal is transmitted to the processing circuit; the processing circuit denoises and amplifies the collected signal to obtain a signal without noise; the signal without noise is transmitted to the central control module; the process of denoising the collected signal through the processing circuit is as follows: Perform wavelet decomposition on the collected temperature signal to obtain various scale coefficients of the temperature data; perform threshold processing on the temperature data according to each scale coefficient of the temperature data; after the processing is completed, use wavelet reconstruction to obtain a signal without noise;
热损耗检测模块,与中央控制模块连接,用于通过热管监测设备检测热管热损耗数据;The heat loss detection module is connected with the central control module and is used to detect the heat loss data of the heat pipe through the heat pipe monitoring equipment;
中央控制模块,与温度检测模块、热损耗检测模块、传热效率计算模块、故障诊断模块、热管测试模块、热管寿命预测模块、显示模块连接,用于通过主控机控制各个模块正常工作;中央控制模块根据热管温度数据、热管损耗数据、热管传热效率数据和故障诊断结果,提取相应的数据特征;根据提取的数据特征,建立相应的训练集;并且将热管温度数据、热管损耗数据、热管传热效率数据和故障诊断结果,建立相应的测试集;计算需要测试的对象与训练集间的差值,并且在差值范围内,选定N个训练对象的属性,作为测试数据的近邻;根据N个训练对象的属性,对测试数据进行分类;The central control module is connected with the temperature detection module, the heat loss detection module, the heat transfer efficiency calculation module, the fault diagnosis module, the heat pipe test module, the heat pipe life prediction module and the display module, and is used to control the normal operation of each module through the main control computer; The control module extracts corresponding data features according to the heat pipe temperature data, heat pipe loss data, heat pipe heat transfer efficiency data and fault diagnosis results; establishes a corresponding training set according to the extracted data features; and combines the heat pipe temperature data, heat pipe loss data, heat pipe Heat transfer efficiency data and fault diagnosis results, establish a corresponding test set; calculate the difference between the object to be tested and the training set, and within the range of the difference, select the attributes of N training objects as the neighbors of the test data; Classify the test data according to the attributes of N training objects;
传热效率计算模块,与中央控制模块连接,用于通过计算程序计算热管传热效率数据;The heat transfer efficiency calculation module, connected with the central control module, is used to calculate the heat transfer efficiency data of the heat pipe through the calculation program;
故障诊断模块,与中央控制模块连接,用于通过诊断电路对热管连接电池故障进行诊断;The fault diagnosis module is connected with the central control module, and is used for diagnosing the fault of the heat pipe connected to the battery through the diagnosis circuit;
热管测试模块,与中央控制模块连接,用于通过测试设备对热管导热性能进行测试;The heat pipe test module, connected with the central control module, is used to test the thermal conductivity of the heat pipe through the test equipment;
热管寿命预测模块,与中央控制模块连接,用于通过预测程序对热管寿命进行预测;根据检测到热管温度数据、热管损耗数据、热管传热效率数据和故障诊断结果,将上述数据储存在数据库中,进行积累数据并进行分析; 数据积累分析完成后,确定热管发生故障的模型和特征;根据热管发生故障的模型和特征,预测热管的使用寿命;The heat pipe life prediction module, connected with the central control module, is used to predict the heat pipe life through the prediction program; according to the detected heat pipe temperature data, heat pipe loss data, heat pipe heat transfer efficiency data and fault diagnosis results, the above data is stored in the database , to accumulate data and analyze; after the data accumulation and analysis is completed, determine the model and characteristics of the heat pipe failure; predict the service life of the heat pipe according to the model and characteristics of the heat pipe failure;
显示模块,与中央控制模块连接,用于通过显示器显示检测的热管温度、热损耗数据及传热效率、诊断结果、测试结果、寿命预测结果。The display module, connected with the central control module, is used to display the detected heat pipe temperature, heat loss data, heat transfer efficiency, diagnosis result, test result and life prediction result through the display.
本发明另一目的在于提供一种运用所述基于嵌入式热管传热管理系统的基于嵌入式热管传热管理方法,所述基于嵌入式热管传热管理方法,包括:Another object of the present invention is to provide an embedded heat pipe-based heat transfer management method using the embedded heat pipe-based heat transfer management system, and the embedded heat pipe-based heat transfer management method includes:
步骤一,通过利用热管测试模块中的测试设备对热管导热性能进行测试;Step 1, test the thermal conductivity of the heat pipe by using the test equipment in the heat pipe test module;
步骤二,在对热管导热性能测试过程中,温度检测模块通过温度传感器检测热管温度数据,热损耗检测模块通过热管监测设备检测热管热损耗数据;
步骤三,根据检测的数值,中央控制模块控制传热效率计算模块,计算程序计算热管传热效率数据;控制故障诊断模块通过诊断电路对热管连接电池故障进行诊断;
步骤四,根据传热效率和电池故障数据结果,通过热管寿命预测模块利用预测程序对热管寿命进行预测;
步骤五,中央控制模块控制显示模块利用显示器显示检测的热管温度、热损耗数据及传热效率、诊断结果、测试结果、寿命预测结果。
进一步,所述步骤一中,热管测试模块测试方法如下:Further, in the step 1, the test method of the heat pipe test module is as follows:
准备一热管测试装置,该热管测试装置包括一恒温水槽,一热管定位治具及一测试仪,该恒温水槽内装有恒定温度的热水,该热管定位治具是活动装设到该恒温水槽上方,其用于夹持固定这些热管的第一端,该测试仪连接到该热管定位治具上,其用于测量这些热管第一端的温度;Prepare a heat pipe test device, the heat pipe test device includes a constant temperature water tank, a heat pipe positioning fixture and a tester, the constant temperature water tank is filled with hot water of a constant temperature, and the heat pipe positioning fixture is movably installed above the constant temperature water tank , which is used to clamp and fix the first ends of these heat pipes, the tester is connected to the heat pipe positioning fixture, and is used to measure the temperature of the first ends of these heat pipes;
当该热管定位治具处于第一活动位置时,先将这些热管的第一端夹持固定到该热管定位治具上,此时这些热管的第二端是悬置在热水的水面上方的;然后再使该热管定位治具处于第二活动位置,使热管的第二端浸入热水内进行加热并开始计时;将这些热管浸泡到热水内加热一段时间后,通过该测试仪读出此时每一热管第一端的温度,如果某一热管第一端的温度高于一特定值则可判断该热管的导热性能符合要求。When the heat pipe positioning fixture is in the first active position, the first ends of the heat pipes are clamped and fixed on the heat pipe positioning fixture, and the second ends of the heat pipes are suspended above the water surface of the hot water. ; Then put the heat pipe positioning fixture in the second active position, make the second end of the heat pipe immersed in hot water for heating and start timing; after immersing these heat pipes in hot water for a period of time, read through the tester At this time, the temperature of the first end of each heat pipe, if the temperature of the first end of a heat pipe is higher than a certain value, it can be judged that the thermal conductivity of the heat pipe meets the requirements.
进一步,所述步骤二中,温度检测模块对采集的信号进行处理的过程为:Further, in the second step, the temperature detection module processes the collected signals as follows:
通过敏感元件检测温度的变换,利用转换元件对信号进行转化;转化完成的信号传递到处理电路;The temperature conversion is detected by the sensitive element, and the signal is converted by the conversion element; the converted signal is transmitted to the processing circuit;
处理电路对采集的信号进行去噪放大,得到不含有噪声的信号;不含有噪声的信号传递到中央控制模块。The processing circuit denoises and amplifies the collected signal to obtain a signal without noise; the signal without noise is transmitted to the central control module.
进一步,所述通过处理电路对采集信号进行去噪的过程为:Further, the process of denoising the collected signal through the processing circuit is as follows:
对采集的温度信号,进行小波分解,得到温度数据的各尺度系数;Perform wavelet decomposition on the collected temperature signal to obtain the scale coefficients of the temperature data;
根据温度数据的各尺度系数,对温度数据进行阈值处理;处理完成后,采用小波重构,得到不含有噪声的信号。According to the scale coefficients of the temperature data, threshold processing is performed on the temperature data; after the processing is completed, wavelet reconstruction is used to obtain a signal without noise.
进一步,所述步骤三中,中央控制模块对数据进行分类的过程为:Further, in the third step, the process of classifying the data by the central control module is as follows:
根据热管温度数据、热管损耗数据、热管传热效率数据和故障诊断结果,提取相应的数据特征;根据提取的数据特征,建立相应的训练集;并且将热管温度数据、热管损耗数据、热管传热效率数据和故障诊断结果,建立相应的测试集;According to the heat pipe temperature data, heat pipe loss data, heat pipe heat transfer efficiency data and fault diagnosis results, the corresponding data features are extracted; according to the extracted data features, a corresponding training set is established; and the heat pipe temperature data, heat pipe loss data, heat pipe heat transfer data are extracted. Efficiency data and fault diagnosis results, establish corresponding test sets;
计算需要测试的对象与训练集间的差值,并且在差值范围内,选定N个训练对象的属性,作为测试数据的近邻;Calculate the difference between the object to be tested and the training set, and within the range of the difference, select the attributes of N training objects as the nearest neighbors of the test data;
根据N个训练对象的属性,对测试数据进行分类。The test data is classified according to the attributes of the N training objects.
进一步,所述步骤三中,中央控制模块对多个温度传感器检测的数据进行融合的过程为:Further, in the
中央控制模块接收多个温度传感器传输的数据信息,利用相应的算法提取相应的技术特征;The central control module receives data information transmitted by multiple temperature sensors, and uses corresponding algorithms to extract corresponding technical features;
根据提取的技术特征,建立具有代表作用的特征向量;According to the extracted technical features, establish a representative feature vector;
对特征向量进行模式识别处理,对检测目标进行说明标定;根据说明标定的内容,建立相应的关联性;同时利用融合算法对数据进行合成。The feature vector is processed by pattern recognition, and the detection target is described and calibrated; the corresponding correlation is established according to the content of the description and calibration; at the same time, the data is synthesized by the fusion algorithm.
进一步,所述步骤三中,故障诊断模块诊断方法如下:Further, in the
第a步,配置上位机诊断参数开启上位机并初始化采样频率f、电流阈值Is、电量阈值Cs;Step a, configure the upper computer diagnostic parameters to open the upper computer and initialize the sampling frequency f, current threshold value Is, and power threshold value Cs;
第b步,上位机通过电流传感器实时监测电流信号I,若I<Is,所述上位机继续通过电流传感器实时监测电流信号,重复第b步,若I≥Is,触发电池外部短路故障诊断及最大温升预测机制,进入第c步;In step b, the host computer monitors the current signal I in real time through the current sensor. If I<Is, the host computer continues to monitor the current signal in real time through the current sensor, and repeats step b. If I≥Is, the external short-circuit fault diagnosis and Maximum temperature rise prediction mechanism, enter step c;
第c步,所述上位机根据所述采样频率f在第ti时刻采集并储存电流信号Ii,计算外部短路所释放的电量C,计算关系式如下:The cth step, the host computer collects and stores the current signal Ii at the tith moment according to the sampling frequency f, calculates the electricity C released by the external short circuit, and the calculation relationship is as follows:
其中,N是发生外部短路后的采样数目;where N is the number of samples after an external short circuit occurs;
第d步,诊断所述外部短路是否引发电池漏液,若C≥Cs,电池被诊断为尚未发生漏液,将结果显示于所述上位机界面,并进入第e步,若C<Cs,则诊断为发生漏液,将结果显示于所述上位机界面,并进入第f步;The dth step is to diagnose whether the external short circuit causes battery leakage. If C≥Cs, the battery is diagnosed as not leaking, and the result is displayed on the host computer interface, and the e-th step is entered. If C<Cs, Then it is diagnosed as liquid leakage, the result is displayed on the interface of the host computer, and the f-th step is entered;
第e步,第一神经网络处理,所述上位机将所述第c步计算得的电量C输入至预先建立并训练好的BP神经网络1中,得出所述BP神经网络1的输出,该输出即为该电池外部短路故障最大温升的预测值ΔTmax;The e-th step, the first neural network process, the upper computer inputs the electricity C calculated in the c-th step into the pre-established and trained BP neural network 1, and obtains the output of the BP neural network 1, The output is the predicted value ΔTmax of the maximum temperature rise of the external short-circuit fault of the battery;
第f步,第二神经网络处理,所述上位机将所述第c步计算得的电量C输入至预先建立并训练好的BP第二神经网络中,得出所述BP第二神经网络的输出,该输出即为该电池外部短路故障最大温升的预测值ΔTmax。The fth step, the second neural network process, the upper computer inputs the electricity C calculated in the cth step into the pre-established and trained BP second neural network, and obtains the BP second neural network. The output is the predicted value ΔTmax of the maximum temperature rise of the external short-circuit fault of the battery.
进一步,所述BP第一神经网络和BP第二神经网络的建立和训练过程具体包括以下步骤:Further, the establishment and training process of the BP first neural network and the BP second neural network specifically includes the following steps:
(1)确定所述BP第一神经网络和BP第二神经网络的训练样本;(1) determine the training samples of the BP first neural network and the BP second neural network;
(2)建立所述BP第一神经网络和BP第二神经网络;(2) establishing described BP first neural network and BP second neural network;
(3)分别对所述BP第一神经网络和BP第二神经网络进行训练;(3) training the BP first neural network and the BP second neural network respectively;
(4)确定出最佳的所述BP第一神经网络和BP第二神经网络。(4) Determine the best BP first neural network and BP second neural network.
进一步,所述步骤四中,热管寿命预测模块对热管寿命的预测过程为:Further, in the
根据检测到热管温度数据、热管损耗数据、热管传热效率数据和故障诊断结果,将上述数据储存在数据库中,进行积累数据并进行分析;According to the detected heat pipe temperature data, heat pipe loss data, heat pipe heat transfer efficiency data and fault diagnosis results, the above data is stored in the database, and the data is accumulated and analyzed;
数据积累分析完成后,确定热管发生故障的模型和特征;After the data accumulation analysis is completed, the model and characteristics of the heat pipe failure are determined;
根据热管发生故障的模型和特征,预测热管的使用寿命。Predict the service life of heat pipes based on the models and characteristics of heat pipe failures.
本发明的优点及积极效果为:本发明通过故障诊断模块能够在短路发生的初始阶段、尚未出现高温之前诊断电池的短路及漏液情况,并准确预测短路将引起的最大温升的问题,能够为动力电池外部短路故障的防护及进一步干预提供良好的基础;同时通过热管测试模块先将这些热管的第一端夹持固定到该热管定位治具上,而其第二端悬置在热水的上方;然后再使该热管定位治具枢转到第二活动位置,使热管的第二端浸泡到热水内加热并开始计时;将这些热管的第二端加热一段时间后,通过该测试仪读出此时每一热管的第一端的温度;如果某一热管第一端的温度高于一特定值则可判断该热管的导热性能符合要求,从而大大提高热管导热性能测试的准确性。The advantages and positive effects of the present invention are as follows: the present invention can diagnose the short circuit and liquid leakage of the battery at the initial stage of the short circuit occurrence and before the high temperature occurs, and accurately predict the problem of the maximum temperature rise caused by the short circuit through the fault diagnosis module. It provides a good foundation for the protection and further intervention of the external short-circuit fault of the power battery; at the same time, the first end of the heat pipes is clamped and fixed to the heat pipe positioning fixture through the heat pipe test module, and the second end is suspended on the hot water. The heat pipe positioning fixture is then pivoted to the second active position, and the second end of the heat pipe is immersed in hot water to heat and start timing; after heating the second end of the heat pipe for a period of time, the test is passed. The meter reads the temperature of the first end of each heat pipe at this time; if the temperature of the first end of a heat pipe is higher than a certain value, it can be judged that the thermal conductivity of the heat pipe meets the requirements, thereby greatly improving the accuracy of the heat pipe thermal conductivity test. .
附图说明Description of drawings
图1是本发明实施例提供的基于嵌入式热管传热管理系统示意图。FIG. 1 is a schematic diagram of a heat transfer management system based on an embedded heat pipe provided by an embodiment of the present invention.
图中:1、温度检测模块;2、热损耗检测模块;3、中央控制模块;4、传热效率计算模块;5、故障诊断模块;6、热管测试模块;7、热管寿命预测模块;8、显示模块。In the figure: 1. Temperature detection module; 2. Heat loss detection module; 3. Central control module; 4. Heat transfer efficiency calculation module; 5. Fault diagnosis module; 6. Heat pipe test module; 7. Heat pipe life prediction module; 8 , Display module.
图2是本发明实施例提供的基于嵌入式热管传热管理方法流程图。FIG. 2 is a flowchart of a method for heat transfer management based on an embedded heat pipe provided by an embodiment of the present invention.
具体实施方式Detailed ways
为能进一步了解本发明的发明内容、特点及功效,兹例举以下实施例,并配合附图详细说明如下。In order to further understand the content, characteristics and effects of the present invention, the following embodiments are exemplified and described in detail below with the accompanying drawings.
下面结合附图对本发明的结构作详细的描述。The structure of the present invention will be described in detail below with reference to the accompanying drawings.
如图1所示,本发明实施例提供的基于嵌入式热管传热管理系统包括:温度检测模块1、热损耗检测模块2、中央控制模块3、传热效率计算模块4、故障诊断模块5、热管测试模块6、热管寿命预测模块7、显示模块8。As shown in FIG. 1 , the embedded heat pipe-based heat transfer management system provided by the embodiment of the present invention includes: a temperature detection module 1, a heat
温度检测模块1,与中央控制模块3连接,用于通过温度传感器检测热管温度数据。The temperature detection module 1 is connected to the
热损耗检测模块2,与中央控制模块3连接,用于通过热管监测设备检测热管热损耗数据。The heat
中央控制模块3,与温度检测模块1、热损耗检测模块2、传热效率计算模块4、故障诊断模块5、热管测试模块6、热管寿命预测模块7、显示模块8连接,用于通过主控机控制各个模块正常工作。The
传热效率计算模块4,与中央控制模块3连接,用于通过计算程序计算热管传热效率数据。The heat transfer
故障诊断模块5,与中央控制模块3连接,用于通过诊断电路对热管连接电池故障进行诊断。The
热管测试模块6,与中央控制模块3连接,用于通过测试设备对热管导热性能进行测试。The heat pipe test module 6 is connected to the
热管寿命预测模块7,与中央控制模块3连接,用于通过预测程序对热管寿命进行预测。The heat pipe
显示模块8,与中央控制模块3连接,用于通过显示器显示检测的热管温度、热损耗数据及传热效率、诊断结果、测试结果、寿命预测结果。The
如图2所示,本发明实施例提供的基于嵌入式热管传热管理方法,包括:As shown in FIG. 2, the embedded heat pipe-based heat transfer management method provided by the embodiment of the present invention includes:
S101:通过利用热管测试模块中的测试设备对热管导热性能进行测试。S101: Test the thermal conductivity of the heat pipe by using the test equipment in the heat pipe test module.
S102:在对热管导热性能测试过程中,温度检测模块通过温度传感器检测热管温度数据,热损耗检测模块通过热管监测设备检测热管热损耗数据。S102: In the process of testing the thermal conductivity of the heat pipe, the temperature detection module detects the temperature data of the heat pipe through the temperature sensor, and the heat loss detection module detects the heat loss data of the heat pipe through the heat pipe monitoring device.
S103:根据检测的数值,中央控制模块控制传热效率计算模块,计算程序计算热管传热效率数据。控制故障诊断模块通过诊断电路对热管连接电池故障进行诊断。S103: According to the detected value, the central control module controls the heat transfer efficiency calculation module, and the calculation program calculates the heat transfer efficiency data of the heat pipe. The control fault diagnosis module diagnoses the fault of the heat pipe connected to the battery through the diagnosis circuit.
S104:根据传热效率和电池故障数据结果,通过热管寿命预测模块利用预测程序对热管寿命进行预测。S104: According to the results of the heat transfer efficiency and the battery failure data, the heat pipe life prediction module uses a prediction program to predict the heat pipe life.
S105:中央控制模块控制显示模块利用显示器显示检测的热管温度、热损耗数据及传热效率、诊断结果、测试结果、寿命预测结果。S105: The central control module controls the display module to display the detected heat pipe temperature, heat loss data, heat transfer efficiency, diagnosis result, test result, and life prediction result by using the display.
下面结合具体实施例对本发明作进一步描述。The present invention will be further described below in conjunction with specific embodiments.
实施例1Example 1
本发明提供的与中央控制模块3连接,用于通过温度传感器检测热管温度数据的温度检测模块1对采集的信号进行处理的过程为:The process of processing the collected signals by the temperature detection module 1, which is connected to the
通过敏感元件检测温度的变换,利用转换元件对信号进行转化。转化完成的信号传递到处理电路。The temperature change is detected by the sensitive element, and the signal is converted by the conversion element. The converted signal is passed to the processing circuit.
处理电路对采集的信号进行去噪放大,得到不含有噪声的信号。不含有噪声的信号传递到中央控制模块。The processing circuit denoises and amplifies the collected signal to obtain a signal without noise. The noise-free signal is passed to the central control module.
所述通过处理电路对采集信号进行去噪的过程为:The process of denoising the collected signal through the processing circuit is as follows:
对采集的温度信号,进行小波分解,得到温度数据的各尺度系数。The collected temperature signal is decomposed by wavelet, and the scale coefficients of the temperature data are obtained.
根据温度数据的各尺度系数,对温度数据进行阈值处理。处理完成后,采用小波重构,得到不含有噪声的信号。According to each scale coefficient of the temperature data, threshold processing is performed on the temperature data. After the processing is completed, wavelet reconstruction is used to obtain a signal without noise.
本发明提供的与温度检测模块1、热损耗检测模块2、传热效率计算模块4、故障诊断模块5、热管测试模块6、热管寿命预测模块7、显示模块8连接,用于通过主控机控制各个模块正常工作的中央控制模块3对数据进行分类的过程为:The invention provides a temperature detection module 1, a heat
根据热管温度数据、热管损耗数据、热管传热效率数据和故障诊断结果,提取相应的数据特征。根据提取的数据特征,建立相应的训练集。并且将热管温度数据、热管损耗数据、热管传热效率数据和故障诊断结果,建立相应的测试集。According to the heat pipe temperature data, heat pipe loss data, heat pipe heat transfer efficiency data and fault diagnosis results, the corresponding data features are extracted. According to the extracted data features, a corresponding training set is established. And a corresponding test set is established based on the heat pipe temperature data, heat pipe loss data, heat pipe heat transfer efficiency data and fault diagnosis results.
计算需要测试的对象与训练集间的差值,并且在差值范围内,选定N个训练对象的属性,作为测试数据的近邻。Calculate the difference between the object to be tested and the training set, and within the range of the difference, select the attributes of N training objects as the nearest neighbors of the test data.
根据N个训练对象的属性,对测试数据进行分类。The test data is classified according to the attributes of the N training objects.
实施例2Example 2
本发明提供的与温度检测模块1、热损耗检测模块2、传热效率计算模块4、故障诊断模块5、热管测试模块6、热管寿命预测模块7、显示模块8连接,用于通过主控机控制各个模块正常工作的中央控制模块3,为了防止单个温度传感器在测量热管温度过程中,出现误差。需要多个温度传感器对热管中的温度进行测量。多个温度传感器将检测的数据传递到中央控制模块3中,对多个温度传感器检测的数据进行融合的过程为:The invention provides a temperature detection module 1, a heat
中央控制模块接收多个温度传感器传输的数据信息,利用相应的算法提取相应的技术特征。The central control module receives data information transmitted by multiple temperature sensors, and uses corresponding algorithms to extract corresponding technical features.
根据提取的技术特征,建立具有代表作用的特征向量。According to the extracted technical features, a representative feature vector is established.
对特征向量进行模式识别处理,对检测目标进行说明标定。根据说明标定的内容,建立相应的关联性。同时利用融合算法对数据进行合成。The feature vector is processed by pattern recognition, and the detection target is described and calibrated. According to the content of the description and calibration, establish the corresponding correlation. At the same time, the fusion algorithm is used to synthesize the data.
实施例3Example 3
本发明提供的故障诊断模块5中的故障诊断方法如下:The fault diagnosis method in the
第a步,配置上位机诊断参数开启上位机并初始化采样频率f、电流阈值Is、电量阈值Cs。Step a, configure the upper computer diagnostic parameters to turn on the upper computer and initialize the sampling frequency f, the current threshold value Is, and the power threshold value Cs.
第b步,上位机通过电流传感器实时监测电流信号I,若I<Is,所述上位机继续通过电流传感器实时监测电流信号,重复第b步,若I≥Is,触发电池外部短路故障诊断及最大温升预测机制,进入第c步。In step b, the host computer monitors the current signal I in real time through the current sensor. If I<Is, the host computer continues to monitor the current signal in real time through the current sensor, and repeats step b. If I≥Is, the external short-circuit fault diagnosis and Maximum temperature rise prediction mechanism, go to step c.
第c步,所述上位机根据所述采样频率f在第ti时刻采集并储存电流信号Ii,计算外部短路所释放的电量C,计算关系式如下:The cth step, the host computer collects and stores the current signal Ii at the tith moment according to the sampling frequency f, calculates the electricity C released by the external short circuit, and the calculation relationship is as follows:
其中,N是发生外部短路后的采样数目。where N is the number of samples after an external short circuit occurs.
第d步,诊断所述外部短路是否引发电池漏液,若C≥Cs,电池被诊断为尚未发生漏液,将结果显示于所述上位机界面,并进入第e步,若C<Cs,则诊断为发生漏液,将结果显示于所述上位机界面,并进入第f步。The dth step is to diagnose whether the external short circuit causes battery leakage. If C≥Cs, the battery is diagnosed as not leaking, and the result is displayed on the host computer interface, and the e-th step is entered. If C<Cs, Then, it is diagnosed that liquid leakage occurs, the result is displayed on the interface of the host computer, and the step f is entered.
第e步,第一神经网络处理,所述上位机将所述第c步计算得的电量C输入至预先建立并训练好的BP神经网络1中,得出所述BP神经网络1的输出,该输出即为该电池外部短路故障最大温升的预测值ΔTmax。The e-th step, the first neural network process, the upper computer inputs the electricity C calculated in the c-th step into the pre-established and trained BP neural network 1, and obtains the output of the BP neural network 1, The output is the predicted value ΔTmax of the maximum temperature rise of the external short-circuit fault of the battery.
第f步,第二神经网络处理,所述上位机将所述第c步计算得的电量C输入至预先建立并训练好的BP第二神经网络中,得出所述BP第二神经网络的输出,该输出即为该电池外部短路故障最大温升的预测值ΔTmax。The fth step, the second neural network process, the upper computer inputs the electricity C calculated in the cth step into the pre-established and trained BP second neural network, and obtains the BP second neural network. The output is the predicted value ΔTmax of the maximum temperature rise of the external short-circuit fault of the battery.
实施例4Example 4
本发明提供的BP第一神经网络和BP第二神经网络的建立和训练过程具体包括以下步骤:The establishment and training process of the BP first neural network and the BP second neural network provided by the present invention specifically include the following steps:
(1)确定所述BP第一神经网络和BP第二神经网络的训练样本。(1) Determine the training samples of the BP first neural network and the BP second neural network.
(2)建立所述BP第一神经网络和BP第二神经网络。(2) Establish the BP first neural network and the BP second neural network.
(3)分别对所述BP第一神经网络和BP第二神经网络进行训练。(3) The BP first neural network and the BP second neural network are trained respectively.
(4)确定出最佳的所述BP第一神经网络和BP第二神经网络。(4) Determine the best BP first neural network and BP second neural network.
本发明提供的热管测试模块6测试方法如下:The test method of the heat pipe test module 6 provided by the present invention is as follows:
准备一热管测试装置,该热管测试装置包括一恒温水槽,一热管定位治具及一测试仪,该恒温水槽内装有恒定温度的热水,该热管定位治具是活动装设到该恒温水槽上方,其用于夹持固定这些热管的第一端,该测试仪连接到该热管定位治具上,其用于测量这些热管第一端的温度。Prepare a heat pipe test device, the heat pipe test device includes a constant temperature water tank, a heat pipe positioning fixture and a tester, the constant temperature water tank is filled with hot water of a constant temperature, and the heat pipe positioning fixture is movably installed above the constant temperature water tank , which is used to clamp and fix the first ends of the heat pipes, the tester is connected to the heat pipe positioning fixture, and is used to measure the temperature of the first ends of the heat pipes.
当该热管定位治具处于第一活动位置时,先将这些热管的第一端夹持固定到该热管定位治具上,此时这些热管的第二端是悬置在热水的水面上方的。然后再使该热管定位治具处于第二活动位置,使热管的第二端浸入热水内进行加热并开始计时。将这些热管浸泡到热水内加热一段时间后,通过该测试仪读出此时每一热管第一端的温度,如果某一热管第一端的温度高于一特定值则可判断该热管的导热性能符合要求。When the heat pipe positioning fixture is in the first active position, the first ends of the heat pipes are clamped and fixed on the heat pipe positioning fixture, and the second ends of the heat pipes are suspended above the water surface of the hot water. . Then, the heat pipe positioning fixture is placed in the second active position, and the second end of the heat pipe is immersed in hot water to heat and start timing. After soaking these heat pipes in hot water for a period of time, the temperature of the first end of each heat pipe is read out by the tester. If the temperature of the first end of a certain heat pipe is higher than a certain value, it can be judged that the The thermal conductivity meets the requirements.
本发明提供的与中央控制模块3连接,用于通过预测程序对热管寿命进行预测的热管寿命预测模块7对热管寿命的预测过程为:The heat pipe
根据检测到热管温度数据、热管损耗数据、热管传热效率数据和故障诊断结果,将上述数据储存在数据库中,进行积累数据并进行分析。According to the detected heat pipe temperature data, heat pipe loss data, heat pipe heat transfer efficiency data and fault diagnosis results, the above data is stored in the database, and the data is accumulated and analyzed.
数据积累分析完成后,确定热管发生故障的模型和特征。After the data accumulation analysis is completed, the model and characteristics of the failure of the heat pipe are determined.
根据热管发生故障的模型和特征,预测热管的使用寿命。Predict the service life of heat pipes based on the models and characteristics of heat pipe failures.
实施例5Example 5
本发明工作时,首先,通过利用热管测试模块6中的测试设备对热管导热性能进行测试。在对热管导热性能测试过程中,温度检测模块1通过温度传感器检测热管温度数据,热损耗检测模块2通过热管监测设备检测热管热损耗数据。根据检测的数值,中央控制模块3控制传热效率计算模块,计算程序计算热管传热效率数据。控制故障诊断模块5通过诊断电路对热管连接电池故障进行诊断。根据传热效率和电池故障数据结果,通过热管寿命预测模块7利用预测程序对热管寿命进行预测。中央控制模块3控制显示模块利用显示器显示检测的热管温度、热损耗数据及传热效率、诊断结果、测试结果、寿命预测结果。When the present invention works, firstly, the heat conduction performance of the heat pipe is tested by using the test equipment in the heat pipe test module 6 . In the process of testing the thermal conductivity of the heat pipe, the temperature detection module 1 detects the temperature data of the heat pipe through the temperature sensor, and the heat
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用全部或部分地以计算机程序产品的形式实现,所述计算机程序产品包括一个或多个计算机指令。在计算机上加载或执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输)。所述计算机可读取存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘SolidState Disk(SSD))等。In the above-mentioned embodiments, it may be implemented in whole or in part by software, hardware, firmware or any combination thereof. When implemented in whole or in part in the form of a computer program product, the computer program product includes one or more computer instructions. When the computer program instructions are loaded or executed on a computer, all or part of the processes or functions described in the embodiments of the present invention are generated. The computer may be a general purpose computer, special purpose computer, computer network, or other programmable device. The computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.)). The computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media. The usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), among others.
以上所述仅是对本发明的较佳实施例而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所做的任何简单修改,等同变化与修饰,均属于本发明技术方案的范围内。The above is only the preferred embodiment of the present invention, and does not limit the present invention in any form. Any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention belong to the present invention. within the scope of the technical solution of the invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010106001.XA CN111307480B (en) | 2020-02-20 | 2020-02-20 | Embedded heat pipe-based heat transfer management system, method and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010106001.XA CN111307480B (en) | 2020-02-20 | 2020-02-20 | Embedded heat pipe-based heat transfer management system, method and storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111307480A true CN111307480A (en) | 2020-06-19 |
CN111307480B CN111307480B (en) | 2022-03-04 |
Family
ID=71156491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010106001.XA Active CN111307480B (en) | 2020-02-20 | 2020-02-20 | Embedded heat pipe-based heat transfer management system, method and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111307480B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113052220A (en) * | 2021-03-16 | 2021-06-29 | 洛阳城市建设勘察设计院有限公司郑州工程分公司 | Sealing performance strength detection system, terminal and medium for direct-buried heat supply pipeline research |
CN113108643A (en) * | 2021-03-19 | 2021-07-13 | 吉林建筑大学 | Heat exchange system based on micro-channel heat exchanger and computer readable storage medium |
CN113505628A (en) * | 2021-04-02 | 2021-10-15 | 上海师范大学 | Target identification method based on lightweight neural network and application thereof |
CN118915703A (en) * | 2024-10-08 | 2024-11-08 | 潍柴动力股份有限公司 | Fault detection method and device for motor controller cooling system and vehicle |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1804604A (en) * | 2005-01-13 | 2006-07-19 | 东莞莫仕连接器有限公司 | Heat pipe testing method |
US20070116088A1 (en) * | 2005-11-18 | 2007-05-24 | Foxconn Technology Co., Ltd. | Performance testing apparatus for heat pipes |
CN102495100A (en) * | 2011-11-15 | 2012-06-13 | 上海卫星工程研究所 | Test device for testing operating life of heat pipe |
CN104749211A (en) * | 2013-12-27 | 2015-07-01 | 川崎重工业株式会社 | Heat transfer tube life estimating system |
CN105403590A (en) * | 2015-11-12 | 2016-03-16 | 中国石油天然气股份有限公司 | Heat conductivity coefficient testing method and device for heat insulation pipe |
CN105547730A (en) * | 2016-01-17 | 2016-05-04 | 太原理工大学 | Fault detection system of water-wheel generator set |
CN106526493A (en) * | 2016-11-01 | 2017-03-22 | 北京理工大学 | Power battery external short circuit fault diagnosing and temperature rise prediction method and system based on BP neural networks |
CN107085009A (en) * | 2017-05-08 | 2017-08-22 | 广东工业大学 | A heat pipe heat exchanger performance testing device |
CN107576686A (en) * | 2017-10-27 | 2018-01-12 | 江苏优为视界科技有限公司 | A kind of heat-conducting medium material conducts heat aptitude tests device and method of testing |
CN111002830A (en) * | 2019-12-19 | 2020-04-14 | 吉林建筑大学 | Power battery management system and method based on flexible heat pipe |
-
2020
- 2020-02-20 CN CN202010106001.XA patent/CN111307480B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1804604A (en) * | 2005-01-13 | 2006-07-19 | 东莞莫仕连接器有限公司 | Heat pipe testing method |
US20070116088A1 (en) * | 2005-11-18 | 2007-05-24 | Foxconn Technology Co., Ltd. | Performance testing apparatus for heat pipes |
CN102495100A (en) * | 2011-11-15 | 2012-06-13 | 上海卫星工程研究所 | Test device for testing operating life of heat pipe |
CN104749211A (en) * | 2013-12-27 | 2015-07-01 | 川崎重工业株式会社 | Heat transfer tube life estimating system |
CN105403590A (en) * | 2015-11-12 | 2016-03-16 | 中国石油天然气股份有限公司 | Heat conductivity coefficient testing method and device for heat insulation pipe |
CN105547730A (en) * | 2016-01-17 | 2016-05-04 | 太原理工大学 | Fault detection system of water-wheel generator set |
CN106526493A (en) * | 2016-11-01 | 2017-03-22 | 北京理工大学 | Power battery external short circuit fault diagnosing and temperature rise prediction method and system based on BP neural networks |
CN107085009A (en) * | 2017-05-08 | 2017-08-22 | 广东工业大学 | A heat pipe heat exchanger performance testing device |
CN107576686A (en) * | 2017-10-27 | 2018-01-12 | 江苏优为视界科技有限公司 | A kind of heat-conducting medium material conducts heat aptitude tests device and method of testing |
CN111002830A (en) * | 2019-12-19 | 2020-04-14 | 吉林建筑大学 | Power battery management system and method based on flexible heat pipe |
Non-Patent Citations (3)
Title |
---|
JIALINLIANG: "Thermal and electrochemical performance of a serially connected battery module using a heat pipe-based thermal management system under different coolant temperatures", 《ENERGY》 * |
WEI YUAN: "Heat-Pipe-Based Thermal Management and TemperatureCharacteristics of Li-Ion Batteries", 《THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING》 * |
丹聃: "基于热管技术的动力电池热管理系统研究现状及展望", 《科学通报》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113052220A (en) * | 2021-03-16 | 2021-06-29 | 洛阳城市建设勘察设计院有限公司郑州工程分公司 | Sealing performance strength detection system, terminal and medium for direct-buried heat supply pipeline research |
CN113108643A (en) * | 2021-03-19 | 2021-07-13 | 吉林建筑大学 | Heat exchange system based on micro-channel heat exchanger and computer readable storage medium |
CN113108643B (en) * | 2021-03-19 | 2022-04-22 | 吉林建筑大学 | Heat exchange system based on micro-channel heat exchanger and computer readable storage medium |
CN113505628A (en) * | 2021-04-02 | 2021-10-15 | 上海师范大学 | Target identification method based on lightweight neural network and application thereof |
CN118915703A (en) * | 2024-10-08 | 2024-11-08 | 潍柴动力股份有限公司 | Fault detection method and device for motor controller cooling system and vehicle |
CN118915703B (en) * | 2024-10-08 | 2025-01-17 | 潍柴动力股份有限公司 | Fault detection method and device for motor controller cooling system and vehicle |
Also Published As
Publication number | Publication date |
---|---|
CN111307480B (en) | 2022-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111307480A (en) | Embedded heat pipe-based heat transfer management system, method and storage medium | |
CN116879662B (en) | Transformer fault detection method based on data analysis | |
CN118503636A (en) | Power distribution equipment health state assessment method and system | |
CN106645934B (en) | Anti-electricity stealing diagnosis method and device for electricity consumption behavior based on dynamic grid outliers | |
CN110221137A (en) | A kind of distribution transformer abnormal state detection method based on vibration acoustic correlation | |
CN113780401A (en) | Composite insulator fault detection method and system based on principal component analysis method | |
CN113933734A (en) | Method for extracting parameters of monomers in retired battery pack | |
CN115684942A (en) | Battery short-circuit fault detection method and device, computer equipment and medium | |
CN110555235A (en) | Structure local defect detection method based on vector autoregressive model | |
CN111257753A (en) | Battery system fault diagnosis method | |
CN118364381A (en) | DC power supply early warning operation and maintenance method and system based on gradual data statistical analysis | |
CN117289045A (en) | Method, device and storage medium for predicting residual life of lightning arrester | |
CN117189309A (en) | Noise reduction method and device for intelligent computation center diesel generator set | |
CN108549001A (en) | A kind of detecting system and method for electric power electronic module strain state | |
CN118155047B (en) | A small battery management method suitable for high-cold areas | |
CN114895163A (en) | Cable inspection positioning device and method based on cable insulation performance | |
CN100363738C (en) | Fuel cell proton exchange membrane water shortage diagnosis method and monitoring device | |
CN111025093B (en) | XLPE cable insulation life estimation method based on double-end balance factor | |
CN117554785A (en) | A chip detection method and system | |
CN118017132A (en) | Integrated manufacturing method of new energy battery box and liquid cooling plate | |
CN117783872A (en) | Data anomaly detection method, device, server and storage medium for power battery | |
CN114492636B (en) | Transformer winding state signal acquisition system | |
CN116184229A (en) | Lithium ion battery internal short circuit fault diagnosis method and device based on voltage prediction | |
CN116338391A (en) | Insulator state detection method, device, electronic equipment and medium | |
CN117496133B (en) | Closed bus R-CNN temperature fault monitoring method based on multi-mode data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |