CN111300459A - 一种多自由度仿人刚柔混合手及其制造工艺 - Google Patents
一种多自由度仿人刚柔混合手及其制造工艺 Download PDFInfo
- Publication number
- CN111300459A CN111300459A CN202010177322.9A CN202010177322A CN111300459A CN 111300459 A CN111300459 A CN 111300459A CN 202010177322 A CN202010177322 A CN 202010177322A CN 111300459 A CN111300459 A CN 111300459A
- Authority
- CN
- China
- Prior art keywords
- air cavity
- soft
- central air
- joint
- rigid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J15/00—Gripping heads and other end effectors
- B25J15/0009—Gripping heads and other end effectors comprising multi-articulated fingers, e.g. resembling a human hand
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J15/00—Gripping heads and other end effectors
- B25J15/08—Gripping heads and other end effectors having finger members
- B25J15/12—Gripping heads and other end effectors having finger members with flexible finger members
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/007—Means or methods for designing or fabricating manipulators
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
Abstract
一种多自由度仿人刚柔混合手及其制造工艺,属于机器人技术领域。每个所述软体手指均包括掌指关节及指间关节;所述中央气道与中央气腔连通,所述多个掌指关节气腔环绕中央气道设置,且掌指关节气腔外侧缠绕一层纤维限制螺纹管,在中央气道和多个掌指关节气腔末端插入手指底座;所述硬质手掌的主体部内设有通气腔,硬质手掌通过螺钉固定软体手指;每个中央气道、每个掌指关节气腔以及每个中央气腔均通过各自的毛细硅胶软管进气。本发明主动自由度多,仿人手关节结构,关节角度及运动关系接近人手参数;得益于关节式结构,比连续弯曲型软体手爪具备更大的包络空间,抓握性能更好,柔顺性好,对于柔软、易碎物品及非结构化环境有很好的适应性。
Description
技术领域
本发明属于机器人技术领域,特别是涉及一种多自由度仿人刚柔混合手及其制造工艺。
背景技术
机器人手作为机器人末端夹持器的一种,应用于对物体进行夹持及操作等任务。为了使其具备类似于人手的夹持及操作性能,许多机械人手爪被设计成仿人构型。他们大多具备多根手指(三指、四指、五指甚至更多手指)[1-3],不同手指间可协调工作以模仿人手实现精度抓取、侧边抓取、强力抓取等抓取模式,或对工具进行操作[4](如转笔、拧魔方[5]等)。传统的机器人手使用刚性构件及运动副组成运动链,利用电机、人工肌肉等致动器配合连杆、齿轮或腱绳等传动件实现规定的运动。这些刚性机器人手存在一些固有的缺陷:1)为了实现多自由度的协同运动,刚性机械手一般在关节处安装了数量众多的电机。在极其严格的尺寸限制下集成大量主动自由度会对电机减速器的选择提出极为苛刻的要求。欠驱动[6]、耦合机构可以在一定程度上解决这些困难,但其结构仍然复杂或易损2)为了抓握柔性易碎物品或避免冲击破坏,机器人手需要集成更多的缓冲材料、位置及力传感器并实现多自由度的柔顺控制,这对控制算法提出了更高的要求,极大地提高了系统复杂度。
软体机器人技术可以很好地解决这些困难,超弹性材料固有的抗冲击、柔顺变形性能使其对复杂非结构化环境及复杂物体表面具有更好的适应性[7]。软体机器人一般结构简单轻便,环境适应性好,成本低廉,具备更好的人机交互及安全性。相较于刚性机器人手而言,软体机器人手更适合对易碎,易变形的物体的抓取[8-9]。软体驱动方式有很多选择,如使用介电弹性体、离子聚合物、形状记忆合金/聚合物、磁流变液等材料的物理量致动效应以及流体压力驱动等[10-11]。其中,气体正压/负压驱动因其便宜、清洁、能量密度高、响应较快等优点,成为最常用的软体驱动方式。现在已有部分软体机器人技术在机器人手方面的应用,但其仍然普遍存在一些缺陷:1)主动自由度较少,与人手相比只能实现有限的抓握模式。2)手指以近似常曲率弯曲,包络空间不足而使灵巧性受限[12]。3)结构不可拆分,不便于维护。4)需要连接大体积且结构复杂的气泵、阀组等附件,增大了系统整体的体积与重量。
参考文献
[1]刘伊威,金明河,樊绍巍,et al.五指仿人机器人灵巧手DLR/HIT HandⅡ[J].机械工程学报,2009,45(11):16-23.
[2]孙富春,方斌,李洪波.一种7自由度五指机械手:.
[3]Belter J T,Segil J L,Dollar A M,et al.Mechanical design andperformance specifications of anthropomorphic prosthetic hands:A review[J].The Journal of Rehabilitation Research and Development,2013,50(5):599.
[4]Bridgwater,Ihrke,Diftler,et al.The Robonaut 2hand-designed to dowork with tools[C]//2012.
[5]https://openai.com/blog/solving-rubiks-cube/
[6]刘菲,何广平,陆震.弹性欠驱动四指灵巧手设计与试验%Research andDesign of a Novel Tendon Driven Underactuated Multi-fingered Hand[J].机械工程学报,2014,050(015):53-59.
[7]Laschi C,Mazzolai B,Cianchetti M.Soft robotics:Technologies andsystems pushing the boundaries of robot abilities[J].Sci.Robot,2016,1(1):eaah3690.
[8]Whitesides G M.Soft robotics[J].Angewandte Chemie InternationalEdition,2018,57(16):4258-4273.
[9]http://www.softrobottech.com/
[10]张进华,王韬,洪军,等.软体机械手研究综述[J].机械工程学报,2017,53(13):19-28.
[11]Shintake Jun,Cacucciolo Vito,Floreano Dario,等.Soft RoboticGrippers[J].Advanced Materials:1707035-.
[12]Bobak Mosadegh,Panagiotis Polygerinos,Christoph Keplinger,等.SoftRobotics:Pneumatic Networks for Soft Robotics that Actuate Rapidly(Adv.Funct.Mater.15/2014)[J].Advanced Functional Materials,2014,24(15):2109-2109.
发明内容
本发明的目的在于提供一种多自由度仿人刚柔混合手及其制造工艺,用于解决上述背景技术中存在的问题。
本发明所采取的技术方案是:一种多自由度仿人刚柔混合手,包括硬质手掌以及可拆卸安装在硬质手掌上的五根结构相同的软体手指;每个所述软体手指的指间关节均包括中央气腔、贴附在中央气腔底面的应变限制层、由缠绕在中央气腔和应变限制层外侧的不可伸缩丝线而形成纤维限制层,以及覆盖在外表面的软体外壳;
每个所述软体手指均包括掌指关节及指间关节;所述掌指关节包括纤维限制螺纹管、中央气道、手指底座及多个掌指关节气腔;所述中央气道与中央气腔连通,所述多个掌指关节气腔环绕中央气道设置,且掌指关节气腔外侧缠绕一层纤维限制螺纹管,在中央气道和多个掌指关节气腔末端插入手指底座;
所述硬质手掌的主体部内设有通气腔,硬质手掌通过螺钉固定软体手指;
每个中央气道、每个掌指关节气腔以及每个中央气腔均通过各自的毛细硅胶软管进气。
多自由度仿人刚柔混合手的制造工艺,包括以下步骤:
制作手指:S1.将各气腔的基体材料EcoFlex00-30硅胶的AB组分按照质量分数比例1:1在室温下搅拌混合均匀;
S2.基体材料在负0.8个大气压的真空中静置脱泡处理;
S3.将基体材料分别倒入掌指关节模具及指间关节中央气腔模具;
S4.室温固化4小时之后,开模取出气腔基体;
S5.掌指关节的中央气道内插入应变限制管并用硅胶胶水固定,外层缠绕Kevlar纤维;在指间关节的中央气腔下方贴附应变限制层并缠绕Kevlar纤维,依次插入近指节骨骼、中指节骨骼及软指节骨骼并用硅胶胶水固定;
S6.将掌指关节和指间关节组装固定后整体放入外壳模具;
S7.合模后,将静置脱泡后的硅胶混合液体通过外壳模具前端的浇注口缓慢倒入,至硅胶充满内部空腔后,在排气口处抽气排出气泡,避免气泡产生的固化缺陷;浇注完成后,常温固化4小时;
S8.待整体固化完成后脱模修剪飞边;
组装:S9.使用硅胶胶水固定手指底座,并将直径2mm的毛细硅胶软管插入手指底座上的气孔并用硅胶胶水密封固定,即完成刚柔混合手指的制造及组装。
本发明的有益效果在于:
本发明采用了①.类人手骨骼结构、纤维约束型、三关节模块化、气动刚柔混合手指结构设计;②.多自由度刚柔混合手制造工艺;③.嵌入式多通道正压气动软体驱动控制系统设计;
具有如下优点:
1)结构相对简单;重量轻;成本低廉;对原料及制造工艺要求较低。
2)柔顺性好,结构抗冲击;适合抓握柔软、易碎物体;人机交互、环境交互性能好,安全性高。
3)控制简单,不需大量传感器及复杂算法即可实现柔顺抓取。
4)主动自由度多,指尖关节可实现耦合弯曲,掌指关节具备弯曲及侧摆两个自由度,灵活性高;仿人手关节结构,关节角度及运动关系接近人手参数;得益于关节式结构,比连续弯曲型软体手爪具备更大的包络空间,抓握性能更好。
5)模块化设计,手指型号通用且方便拆换。
6)嵌入式控制系统及集成方案,控制器集成传感器阵列、微型电磁阀阵列、微型高压气阀;实现气源、控制、传感的高度集成,大大缩小软体机械手附件的体积和质量。
附图说明
图1是本发明结构示意图;
图2是软体手指结构示意图;
图3是软体手指主剖视图;
图4是图3的A-A剖切图;
图5是硬质手掌示意图;
图6是掌指关节加压仿真结果图;
图7是近侧指间关节加压仿真结果图;
图8是远端指间关节加压仿真结果图;
图9是刚柔混合手指制造工艺流程图;
图10是掌指关节模具结构示意图;
图11是掌指关节模具主剖视图;
图12是指间关节中央气腔模具结构示意图;
图13是指间关节中央气腔模具主剖视图;
图14是外壳模具结构示意图;
图15是外壳模具主剖视图;
图16是仿人五指手气压控制系统;
图17是控制系统硬件架构图;
其中:1-硬质手掌;1-1-前盖板;1-2-后盖板;1-3-连接件;2-软体手指;3-掌指关节;3-1-掌指关节气腔;3-2-纤维限制螺纹管;3-3-中央气道;3-4-手指底座;4-指间关节;4-1-纤维限制层;4-2-近指节骨骼;4-3-中指节骨骼;4-4-中央气腔;4-5-软指节骨骼;4-6-软体外壳;4-7-应变限制层;5-掌指关节模具;5-1-气道细棍;5-2-上盖;5-3-壁板;5-4-气腔细棍;5-5-固定盘;5-6-支座;6-关节中央气腔模具;6-1-卡扣;6-2-央气腔细棍;6-3-外盖;6-4-底座;6-5-侧板;7-应变限制管;8-外壳模具;8-1-浇注口;8-2-外壳上模;8-3-外壳下模。
具体实施方式
如图1~图17所示,新型模块化仿人多自由度刚柔混合机械手结构设计:为了获得比刚性机械手更好的本体柔顺性,同比获得比纯软体手爪更高的刚度及驱动能力,本发明所设计的机械手采用刚柔混合的结构方案,将超弹性材料与弹性模量相对较高的材料相结合。驱动采用气体正压驱动方案,这种方案能源清洁,能量密度高,响应较快,成本低廉,安全性高。为了获得更加拟人的运动性能,本刚柔混合机械手采用仿人构型。全手由五根结构相同的软体手指2与硬质手掌1构成。软体手指2可方便拆换,具备互换性。每根软体手指2具有五个气腔,三个关节,通过向不同气腔通入特定压力的空气实现手指的不同运动。设计气压可达350kPa,在最大气压条件下,两指间关节可各产生90°的弯曲,掌指关节可产生60°的弯曲。手指的协调运动实现对易损物品的柔性抓取。五根手指通过螺纹连接到硬质手掌,形成完整的类人手结构。
刚柔混合手指设计:
刚柔混合手指采用纤维约束型气动弯曲气腔结构,在超弹性材料制成的气腔外侧缠绕不可伸缩丝线以限制气腔在充气时的径向膨胀。使气腔产生向轴向伸长的倾向。再通过在气腔的某个方向上布置限制伸长的应变限制层即可使气腔产生特异性变形,使气腔向应变限制层的方向弯曲。
如图1~图4所示,多自由度仿人刚柔混合手,包括硬质手掌1以及可拆卸安装在硬质手掌1上的五根结构相同的软体手指2;
每个所述软体手指2均包括掌指关节3及指间关节4;所述掌指关节3包括纤维限制螺纹管3-2、中央气道3-3、手指底座3-4及多个掌指关节气腔3-1;所述中央气道3-3与中央气腔4-4连通,形成气路通道,所述多个掌指关节气腔3-1环绕中央气道3-3设置,多个掌指关节气腔3-1的数量优选为四个,且掌指关节气腔3-1外侧缠绕一层纤维限制螺纹管3-2,在中央气道3-3和多个掌指关节气腔3-1末端插入手指底座3-4;
所述硬质手掌1的主体部内设有通气腔,硬质手掌1通过螺钉固定软体手指2;
每个中央气道3-3、每个掌指关节气腔3-1以及每个中央气腔4-4均通过各自的毛细硅胶软管进气。
如图2~图4所示,软体手指2可以分为两大部分:掌指关节3与指间关节4。
掌指关节3的结构:
掌指关节3为全向弯曲关节,为对称分布的五气腔结构。五气腔结构的基体由EcoFlex00-30硅胶制成,截面上将四个气腔均匀布置,中央布置有一气腔作为指间关节4气腔的气路通道。中央气路通道外侧有一应变限制管7,采用相对于基体材料弹性模量较大的LDPE低密度聚乙烯材料。基体外侧缠绕一层Kevlar纤维制成纤维限制螺旋管3-2。在气腔末端插入3D打印SLA光敏树脂制成的手指底座3-4。将截面上均布的四气腔按顺时针编号,手指上方的气腔设置编号为1。则如果向1号气腔通入加压气体,掌指关节3将向下弯曲。如果向2号或4号气腔通入加压气体,则掌指关节3将向对向弯曲产生侧摆运动。如果同时向不同气腔通入加压气体,则可产生耦合的全向弯曲运动。通过控制各气腔的不同气压比例,可以实现向任意方向的弯曲。
如图6所示,通过ABAQUS利用Ogden应变能模型对其进行有限元仿真,掌指关节最高可以产生60°左右的弯曲。
指间关节4均包括中央气腔4-4、贴附在中央气腔4-4底面的应变限制层4-7、由缠绕在中央气腔4-4和应变限制层4-7外侧的不可伸缩丝线而形成纤维限制层4-7、覆盖在外表面的软体外壳4-6以及近指节骨骼4-2、中指节骨骼4-3和软指节骨骼4-5从指跟到指尖依次间隔设置,并套装在纤维限制层4-1外侧上。每个所述软指节骨骼4-5为两端敞口中部设有隔板的圆筒结构。
如图2~图4所示,指间关节4的结构
指间关节4为单一气腔的双关节结构,为耦合弯曲关节。加压气体通过掌指关节3的中央气道3-3进入指间关节4的中央气腔4-4,中央气腔4-4基体材料为EcoFlex00-30硅胶。中央气腔4-4下方贴附纸张制成的薄膜作为应变限制层4-7。在中央气腔4-4外侧缠绕一层Kevlar纤维限制径向变形。同时将SLA制成的指节骨骼套入中央气腔4-4以限制弯曲区域,产生类人手关节的运动,提升手指包络空间,增大指尖可达区域。指间关节4最外侧覆盖一层EcoFlex材料制成的超弹性硅胶外壳。用以保护指间关节4的结构同时形成类人手指外形。
如图7、图8所示,通过ABAQUS利用Ogden应变能模型对其进行有限元仿真,两指间关节可在200kPa的最高气压下可以产生90°左右的弯曲。两关节弯曲角度近似保持1:1的比例,与人手关节的运动规律相近。
如图9所示,刚柔混合手指制造工艺过程需首先将各气腔的EcoFlex硅胶的AB组分按照质量分数比例1:1在室温下搅拌混合均匀。之后在负0.8个大气压的真空中静置脱泡处理。静止5min;待气泡清除完毕后分别倒入掌指关节模具5及指间关节中央气腔模具6。室温固化4小时之后,开模取出气腔基体。掌指关节3的中央气道3-3内插入应变限制管7并用硅胶胶水固定,外层缠绕Kevlar纤维;在指间关节4的中央气腔4-4下方贴附应变限制层4-7并缠绕Kevlar纤维,插入硬质指节骨骼并用硅胶胶水固定;将掌指关节3和指间关节4组装固定后整体放入外壳模具8。合模后,将静置脱泡后的硅胶混合液体通过外壳模具8前端的浇注口8-1缓慢倒入,至硅胶充满内部空腔后,在排气口处抽气排出气泡,避免气泡产生的固化缺陷。浇注完成后,常温固化4小时。待整体固化完成后脱模修剪飞边。使用硅胶胶水固定手指底座3-4,并将直径2mm的毛细硅胶软管插入手指底座3-4上的气孔并用硅胶胶水密封固定,即完成刚柔混合手指的制造及组装。
如图10、图11所示,所述掌指关节模具5包括气道细棍5-1、上盖5-2、固定盘5-5、支座5-6、两个壁板5-3及多个气腔细棍5-4;所述多个气腔细棍5-4均匀环绕在气道细棍5-1外侧,所述多个气腔细棍5-4垂直固定在支座5-6上,所述固定盘5-5通过通孔穿过多个气腔细棍5-4并贴在支座5-6上,所述气道细棍5-1插在固定盘5-5的中心孔内,所述前后两壁板5-3止口连接合围成圆柱结构并间隙套装在多个气腔细棍5-4外侧后放置在支座5-6上,上盖5-2盖合在圆柱结构上。
其中,固定盘5-5截面与气腔截面一致,前后壁板5-3设计有止口以减少硅胶泄露。使用时,先向最后硅胶接触表面喷涂脱模剂,再将气腔细棍5-4及气道细棍5-1插入固定盘5-5,安装壁板5-3使止口对其。在硅胶倒入并静置排泡后插入上盖5-2。上盖5-2能起到减少硅胶泄露及固定气道细棍5-1的作用,优化成型质量。脱模时先将气道细棍5-1、上盖5-2及壁板5-3移除,通过固定盘5-5向外推挤使硅胶气腔与气腔细棍5-4分离。
如图12、图13所示,所述指间关节中央气腔模具6包括卡扣6-1、中央气腔细棍6-2、外盖6-3、底座6-4及侧板6-5;所述中央气腔细棍6-2通过卡扣6-1固定在底座6-4上,卡扣6-1和侧板6-5组层底座6-4的四周侧壁,所述外盖6-3盖在底座6-4的四周侧壁上。
中央气腔细棍6-2用以产生气腔内部结构,设计有卡扣6-1固定其与底座6-4的相对位置。浇注硅胶前将外盖6-3打开,向内喷涂脱模剂,浇注硅胶至硅胶充满空腔后将应变限制层4-7贴附在硅胶表面,并合上外盖6-3。
如图14、图15所示,所述外壳模具8包括外壳下模8-3、外壳上模8-2及浇注口8-1;所述外壳下模8-3和外壳上模8-2通过销和止口定位,外壳下模8-3和外壳上模8-2的内腔合并为手指模型腔,外壳上模8-2设有浇注口8-1,所述浇注口8-1的通道连接到手指模型腔外壳上模8-2的内腔最上方设置有排气口。
将手指中心设置为分型面,浇注前,在所有硅胶接触表面喷涂脱模剂并静置,均匀涂刷一层同组分硅胶后,将组装好的气腔结构放入并合模。浇注硅胶后从排气口抽气减少气泡。
如图5所示,所述硬质手掌1的通过前盖板1-1和后盖板1-2相对设置形成主体部,且前盖板1-1和后盖板1-2通过螺钉固定,主体部底部设有的安装孔内插入连接件1-3,连接件1-3设有用于引出多根毛细硅胶软管的中心通孔。
本发明采用模块化的设计。五根手指采用完全相同的结构,可以互相替换。为了方便与常规机械臂对接,采用了3D打印SLA硬质手掌1的结构。手掌设计为仿人手形状,剖分为前后盖板两主体部分。在五指手组装时,首先将五根手指通过手指底座3-4安装在手掌背板(即后盖板1-2)上,将手指底座3-4上的环形槽插入手掌背板相应部位,而后通过螺钉将各手指固定。将连接件1-3插入手掌后盖板1-2底部的安装孔,并将各气腔的毛细硅胶软管通过连接件1-3中心的通孔引出。最后合上手掌前盖板1-1并将四颗螺钉旋入固定。
如图16所示,本发明的仿人刚柔混合手一共有五根手指,每根软体手指2需要通入四个气腔以控制掌指关节3的弯曲、两个方向的侧摆以及指间关节4的耦合弯曲运动。相应配套集成软体控制器,该控制器集成2x10个高速电磁阀阵列及其功率放大驱动芯片,4x 5+1气压传感器阵列以及高流量微型气泵。气压传感器阵列与本发明的仿人刚柔混合手通过毛细硅胶软管连接。传感器信号通过两片STM32F1C8芯片的ADC外设通过DMA通道并行循环采集。控制系统依据气压传感器反馈信号,通过PWM控制电磁阀的充放气节律以控制气腔气压。其中气泵体积仅77mm x 82mm x 30mm,集成双通道高流量单向阀,最大流量可达10L/min。集成的SMC-S070电磁阀宽度仅7mm,响应时间为3μs,Cv值为0.002。通过STM32F4输出100Hz PWM波调制调节充气节律以控制输出压力。
如图17所示,本方案直接使用STM32F1C8内部资源中集成的10通道12位ADC进行采样计算,使用定时器外部触发实现三块芯片的时钟同步,可以节约成本并减小硬件体积。传感器输出压力信号经4x5RSCM17100KP201传感器阵列后分别通过两块STM32F1C8使用DMA通道以50kHz频率循环采集并进行模数转换,转换数据经过点数为45的滑动平均滤波后转换为截止频率500Hz的信号。传感器压力数据通过联合体格式经串口反馈回STM32F4进行PID调节,输出电磁阀作动频率并转换为3.3V PWM波,经功率放大后驱动电磁阀控制气路通断及调节输出气压。微型气泵输出端的气压信号及气泵无刷电机的转速脉冲信号经由STM32F4采集后进行PID调节,得到的PWM输出经高速光耦电平转换后驱动气泵电机,控制输出端压力恒定。
本发明中所设计的模块化仿人多自由度软体机器人手可以安装到机械臂或其他运动机构末端;可应用在方便面、水果等柔软易碎物品的生产线分拣工序。柔顺性好,不易使抓握物体产生变形及损坏,整体成本低,控制简便。
软体手指2内部气腔可替换为PneuNet气动网络结构。但这种结构的致动器刚度较低,难以抵御更高的驱动气压,且内部腔道结构复杂,对模具材料、结构及其他制造工艺提出更高的要求。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (10)
1.一种多自由度仿人刚柔混合手,包括硬质手掌(1)以及可拆卸安装在硬质手掌(1)上的五根结构相同的软体手指(2);每个所述软体手指(2)的指间关节(4)均包括中央气腔(4-4)、贴附在中央气腔(4-4)底面的应变限制层(4-7)、由缠绕在中央气腔(4-4)和应变限制层(4-7)外侧的不可伸缩丝线而形成纤维限制层(4-1),以及覆盖在外表面的软体外壳(4-6);
其特征在于:每个所述软体手指(2)均包括掌指关节(3)及指间关节(4);所述掌指关节(3)包括纤维限制螺纹管(3-2)、中央气道(3-3)、手指底座(3-4)及多个掌指关节气腔(3-1);所述中央气道(3-3)与中央气腔(4-4)连通,所述多个掌指关节气腔(3-1)环绕中央气道(3-3)设置,且掌指关节气腔(3-1)外侧缠绕一层纤维限制螺纹管(3-2),在中央气道(3-3)和多个掌指关节气腔(3-1)末端插入手指底座(3-4);
所述硬质手掌(1)的主体部内设有通气腔,硬质手掌(1)通过螺钉固定软体手指(2);
每个中央气道(3-3)、每个掌指关节气腔(3-1)以及每个中央气腔(4-4)均通过各自的毛细硅胶软管进气。
2.根据权利要求1所述的一种多自由度仿人刚柔混合手,其特征在于:所述指间关节(4)还包括近指节骨骼(4-2)、中指节骨骼(4-3)及软指节骨骼(4-5);所述近指节骨骼(4-2)、中指节骨骼(4-3)和软指节骨骼(4-5)依次间隔设置,并套装在纤维限制层(4-1)外侧上。
3.根据权利要求2所述的一种多自由度仿人刚柔混合手,其特征在于:每个所述软指节骨骼(4-5)为两端敞口中部设有隔板的圆筒结构。
4.根据权利要求1或3所述的一种多自由度仿人刚柔混合手,其特征在于:所述硬质手掌(1)的通过前盖板(1-1)和后盖板(1-2)相对设置形成主体部,且前盖板(1-1)和后盖板(1-2)通过螺钉固定,主体部底部设有的安装孔内插入连接件(1-3),连接件(1-3)设有用于引出多根毛细硅胶软管的中心通孔。
5.据权利要求4所述的一种多自由度仿人刚柔混合手,其特征在于:所述多个中央气道(3-3)、多个掌指关节气腔(3-1)以及多个中央气腔(4-4)的基体由EcoFlex00-30硅胶制成。
6.根据权利要求1所述的一种多自由度仿人刚柔混合手,其特征在于:所述多自由度仿人刚柔混合手采用嵌入式控制系统,相应配套集成软体控制器,该软体控制器集成2x10个高速电磁阀阵列及其功率放大驱动芯片,4x 5+1气压传感器阵列以及高流量微型气泵。
7.一种制备权利要求1~6任意一项所述的多自由度仿人刚柔混合手的制造工艺,其特征在于:包括以下步骤:
制作手指:S1.将各气腔的基体材料EcoFlex00-30硅胶的AB组分按照质量分数比例1:1在室温下搅拌混合均匀;
S2.基体材料在负0.8个大气压的真空中静置脱泡处理;
S3.将基体材料分别倒入掌指关节模具(5)及指间关节中央气腔模具(6);
S4.室温固化4小时之后,开模取出气腔基体;
S5.掌指关节(3)的中央气道(3-3)内插入应变限制管(7)并用硅胶胶水固定,外层缠绕Kevlar纤维;在指间关节(4)的中央气腔(4-4)下方贴附应变限制层(4-7)并缠绕Kevlar纤维,依次插入近指节骨骼(4-2)、中指节骨骼(4-3)及软指节骨骼(4-5)并用硅胶胶水固定;
S6.将掌指关节(3)和指间关节(4)组装固定后整体放入外壳模具(8);
S7.合模后,将静置脱泡后的硅胶混合液体通过外壳模具(8)前端的浇注口(8-1)缓慢倒入,至硅胶充满内部空腔后,在排气口处抽气排出气泡,避免气泡产生的固化缺陷;浇注完成后,常温固化4小时;
S8.待整体固化完成后脱模修剪飞边;
组装:S9.使用硅胶胶水固定手指底座(3-4),并将直径2mm的毛细硅胶软管插入手指底座(3-4)上的气孔并用硅胶胶水密封固定,即完成刚柔混合手指的制造及组装。
8.根据权利要求7所述的多自由度仿人刚柔混合手的制造工艺,其特征在于:所述掌指关节模具(5)包括气道细棍(5-1)、上盖(5-2)、固定盘(5-5)、支座(5-6)、两个壁板(5-3)及多个气腔细棍(5-4);所述多个气腔细棍(5-4)均匀环绕在气道细棍(5-1)外侧,所述多个气腔细棍(5-4)垂直固定在支座(5-6)上,所述固定盘(5-5)通过通孔穿过多个气腔细棍(5-4)并贴在支座(5-6)上,所述气道细棍(5-1)插在固定盘(5-5)的中心孔内,所述前后两壁板(5-3)止口连接合围成圆柱结构并间隙套装在多个气腔细棍(5-4)外侧后放置在支座(5-6)上,上盖(5-2)盖合在圆柱结构上。
9.根据权利要求7所述的多自由度仿人刚柔混合手的制造工艺,其特征在于:所述指间关节中央气腔模具(6)包括卡扣(6-1)、央气腔细棍(6-2)、外盖(6-3)、底座(6-4)及侧板(6-5);所述中央气腔细棍(6-2)通过卡扣(6-1)固定在底座(6-4)上,卡扣(6-1)和侧板(6-5)组层底座(6-4)的四周侧壁,所述外盖(6-3)盖在底座(6-4)的四周侧壁上。
10.根据权利要求7所述的多自由度仿人刚柔混合手的制造工艺,其特征在于:所述外壳模具(8)包括外壳下模(8-3)、外壳上模(8-2)及浇注口(8-1);所述外壳下模(8-3)和外壳上模(8-2)通过销和止口定位,外壳下模(8-3)和外壳上模(8-2)的内腔合并为手指模型腔,外壳上模(8-2)设有浇注口(8-1),所述浇注口(8-1)的通道连接到手指模型腔外壳上模(8-2)的内腔最上方设置有排气口。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010177322.9A CN111300459B (zh) | 2020-03-13 | 2020-03-13 | 一种多自由度仿人刚柔混合手及其制造工艺 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010177322.9A CN111300459B (zh) | 2020-03-13 | 2020-03-13 | 一种多自由度仿人刚柔混合手及其制造工艺 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111300459A true CN111300459A (zh) | 2020-06-19 |
CN111300459B CN111300459B (zh) | 2022-10-25 |
Family
ID=71155132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010177322.9A Active CN111300459B (zh) | 2020-03-13 | 2020-03-13 | 一种多自由度仿人刚柔混合手及其制造工艺 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111300459B (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111822642A (zh) * | 2020-07-16 | 2020-10-27 | 浙江理工大学 | 一种负重软体仿生手指及其制作工艺 |
CN112045694A (zh) * | 2020-08-04 | 2020-12-08 | 华中科技大学 | 一种利用巨电流变液实现分段弯曲的软体手指 |
CN112720467A (zh) * | 2020-12-17 | 2021-04-30 | 大连理工大学 | 五指机械手仿人抓取有限元建模与分析方法 |
CN113084829A (zh) * | 2021-04-02 | 2021-07-09 | 浙江工业大学 | 一种基于可精准控制骨架的仿生软体消毒机械臂 |
CN113334427A (zh) * | 2021-04-09 | 2021-09-03 | 北京理工大学 | 一种柔性机器人及其制备方法 |
CN113500615A (zh) * | 2021-07-15 | 2021-10-15 | 清华大学 | 机器人指尖装置和具有它的机器人手指 |
CN114012785A (zh) * | 2021-10-25 | 2022-02-08 | 哈尔滨工业大学 | 一种刚柔软混合手的制作方法及刚柔软混合手的控制方法 |
CN114083556A (zh) * | 2021-10-25 | 2022-02-25 | 哈尔滨工业大学 | 一种刚柔混合手指、手指模具及手指的制造方法 |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0479778A1 (en) * | 1989-06-21 | 1992-04-15 | Michelsens Chr Inst | ARRANGEMENT FOR A TIGHTENING OR GRIPPING DEVICE WITH HYDRAULIC OR PNEUMATIC CONTROLS. |
CN1303328A (zh) * | 1998-05-26 | 2001-07-11 | Rp东富丽株式会社 | 合成树脂模制品及其制造方法 |
CN2774718Y (zh) * | 2005-03-02 | 2006-04-26 | 浙江工业大学 | 一种气动柔性人工手指 |
CN202241293U (zh) * | 2011-10-26 | 2012-05-30 | 宁波力匠机械制造有限公司 | 人工管状肌肉 |
CN102490371A (zh) * | 2011-12-16 | 2012-06-13 | 江苏九鼎新材料股份有限公司 | 一种玻璃钢格栅成型方法及其专用成型模具 |
CN105415356A (zh) * | 2015-12-25 | 2016-03-23 | 哈尔滨工业大学 | 一种分段式超灵巧机械臂 |
CN105619379A (zh) * | 2016-02-21 | 2016-06-01 | 北京航空航天大学 | 一种软体仿人手指及其制备方法 |
CN106455905A (zh) * | 2013-12-19 | 2017-02-22 | 数字内镜检查股份有限公司 | 用于制造长形空心型材元件的装置和方法、长形空心型材元件以及用于内窥镜的弯曲单元 |
CN106976100A (zh) * | 2017-04-11 | 2017-07-25 | 浙江工业大学 | 具有位姿反馈功能的仿生软体多指灵巧手 |
CN108189059A (zh) * | 2018-01-31 | 2018-06-22 | 哈尔滨工业大学 | 一种仿人指充气式软体三指夹持器 |
CN108466276A (zh) * | 2018-01-22 | 2018-08-31 | 江苏大学 | 一种基于弹性体软材料的多自由度运动手指及其制备方法 |
CN209140908U (zh) * | 2018-10-24 | 2019-07-23 | 五邑大学 | 一种刚柔耦合仿生机械手 |
CN110091348A (zh) * | 2019-05-28 | 2019-08-06 | 南京林业大学 | 一种仿人手气动软体手爪 |
CN110125958A (zh) * | 2019-05-23 | 2019-08-16 | 五邑大学 | 一种充气软体手指的制造方法 |
CN110193825A (zh) * | 2019-04-19 | 2019-09-03 | 华中科技大学 | 一种基于光纤弯曲传感器的软体致动器 |
US20190298548A1 (en) * | 2018-03-29 | 2019-10-03 | Open Bionics Ltd | Prosthetic limbs |
CN110540676A (zh) * | 2019-09-17 | 2019-12-06 | 哈尔滨工业大学 | 导电热塑性淀粉聚合物的制备方法及基于该聚合物的具有折纸结构的仿人软体手指 |
CN110696025A (zh) * | 2019-10-17 | 2020-01-17 | 哈尔滨工业大学 | 一种柔性仿人手 |
CN110772402A (zh) * | 2019-12-04 | 2020-02-11 | 大连理工大学 | 一种刚软结合气动可穿戴手指康复装置及其制造方法 |
-
2020
- 2020-03-13 CN CN202010177322.9A patent/CN111300459B/zh active Active
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0479778A1 (en) * | 1989-06-21 | 1992-04-15 | Michelsens Chr Inst | ARRANGEMENT FOR A TIGHTENING OR GRIPPING DEVICE WITH HYDRAULIC OR PNEUMATIC CONTROLS. |
CN1303328A (zh) * | 1998-05-26 | 2001-07-11 | Rp东富丽株式会社 | 合成树脂模制品及其制造方法 |
CN2774718Y (zh) * | 2005-03-02 | 2006-04-26 | 浙江工业大学 | 一种气动柔性人工手指 |
CN202241293U (zh) * | 2011-10-26 | 2012-05-30 | 宁波力匠机械制造有限公司 | 人工管状肌肉 |
CN102490371A (zh) * | 2011-12-16 | 2012-06-13 | 江苏九鼎新材料股份有限公司 | 一种玻璃钢格栅成型方法及其专用成型模具 |
CN106455905A (zh) * | 2013-12-19 | 2017-02-22 | 数字内镜检查股份有限公司 | 用于制造长形空心型材元件的装置和方法、长形空心型材元件以及用于内窥镜的弯曲单元 |
CN105415356A (zh) * | 2015-12-25 | 2016-03-23 | 哈尔滨工业大学 | 一种分段式超灵巧机械臂 |
CN105619379A (zh) * | 2016-02-21 | 2016-06-01 | 北京航空航天大学 | 一种软体仿人手指及其制备方法 |
CN106976100A (zh) * | 2017-04-11 | 2017-07-25 | 浙江工业大学 | 具有位姿反馈功能的仿生软体多指灵巧手 |
CN108466276A (zh) * | 2018-01-22 | 2018-08-31 | 江苏大学 | 一种基于弹性体软材料的多自由度运动手指及其制备方法 |
CN108189059A (zh) * | 2018-01-31 | 2018-06-22 | 哈尔滨工业大学 | 一种仿人指充气式软体三指夹持器 |
US20190298548A1 (en) * | 2018-03-29 | 2019-10-03 | Open Bionics Ltd | Prosthetic limbs |
CN209140908U (zh) * | 2018-10-24 | 2019-07-23 | 五邑大学 | 一种刚柔耦合仿生机械手 |
CN110193825A (zh) * | 2019-04-19 | 2019-09-03 | 华中科技大学 | 一种基于光纤弯曲传感器的软体致动器 |
CN110125958A (zh) * | 2019-05-23 | 2019-08-16 | 五邑大学 | 一种充气软体手指的制造方法 |
CN110091348A (zh) * | 2019-05-28 | 2019-08-06 | 南京林业大学 | 一种仿人手气动软体手爪 |
CN110540676A (zh) * | 2019-09-17 | 2019-12-06 | 哈尔滨工业大学 | 导电热塑性淀粉聚合物的制备方法及基于该聚合物的具有折纸结构的仿人软体手指 |
CN110696025A (zh) * | 2019-10-17 | 2020-01-17 | 哈尔滨工业大学 | 一种柔性仿人手 |
CN110772402A (zh) * | 2019-12-04 | 2020-02-11 | 大连理工大学 | 一种刚软结合气动可穿戴手指康复装置及其制造方法 |
Non-Patent Citations (1)
Title |
---|
姜力: "智能假肢手的生机电集成", 《机器人》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111822642A (zh) * | 2020-07-16 | 2020-10-27 | 浙江理工大学 | 一种负重软体仿生手指及其制作工艺 |
CN112045694A (zh) * | 2020-08-04 | 2020-12-08 | 华中科技大学 | 一种利用巨电流变液实现分段弯曲的软体手指 |
CN112720467A (zh) * | 2020-12-17 | 2021-04-30 | 大连理工大学 | 五指机械手仿人抓取有限元建模与分析方法 |
CN113084829A (zh) * | 2021-04-02 | 2021-07-09 | 浙江工业大学 | 一种基于可精准控制骨架的仿生软体消毒机械臂 |
CN113334427A (zh) * | 2021-04-09 | 2021-09-03 | 北京理工大学 | 一种柔性机器人及其制备方法 |
CN113500615A (zh) * | 2021-07-15 | 2021-10-15 | 清华大学 | 机器人指尖装置和具有它的机器人手指 |
CN114012785A (zh) * | 2021-10-25 | 2022-02-08 | 哈尔滨工业大学 | 一种刚柔软混合手的制作方法及刚柔软混合手的控制方法 |
CN114083556A (zh) * | 2021-10-25 | 2022-02-25 | 哈尔滨工业大学 | 一种刚柔混合手指、手指模具及手指的制造方法 |
CN114012785B (zh) * | 2021-10-25 | 2023-01-31 | 哈尔滨工业大学 | 一种刚柔软混合手的制作方法及刚柔软混合手的控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111300459B (zh) | 2022-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111300459B (zh) | 一种多自由度仿人刚柔混合手及其制造工艺 | |
Tawk et al. | A 3D-printed omni-purpose soft gripper | |
Liu et al. | A two-finger soft-robotic gripper with enveloping and pinching grasping modes | |
CN1322962C (zh) | 机器人气动灵巧手 | |
CN107081777B (zh) | 基于形状记忆合金柔体智能数字复合结构的仿人灵巧手 | |
Mutlu et al. | A 3D printed monolithic soft gripper with adjustable stiffness | |
Anver et al. | 3D printing of a thin-wall soft and monolithic gripper using fused filament fabrication | |
CN108466276A (zh) | 一种基于弹性体软材料的多自由度运动手指及其制备方法 | |
CN112549055A (zh) | 一种仿人气动式软体机器手指 | |
Chen et al. | A reconfigurable hybrid actuator with rigid and soft components | |
CN111452066A (zh) | 一种全柔性仿生气动式机械手 | |
CN110116422A (zh) | 一种双驱动多模块软体末端连接装置 | |
CN111906811A (zh) | 一种全柔性气动式执行器 | |
CN110238836A (zh) | 一种气动软体弯曲转向结构 | |
Gerez et al. | Employing pneumatic, telescopic actuators for the development of soft and hybrid robotic grippers | |
US11034017B2 (en) | Soft actuators | |
Wang et al. | Fiber-reinforced soft robotic anthropomorphic finger | |
CN2764573Y (zh) | 机器人气动机械手 | |
Mei et al. | Blue hand: a novel type of soft anthropomorphic hand based on pneumatic series-parallel mechanism | |
Wang et al. | A novel design of soft robotic hand with a human-inspired soft palm for dexterous grasping | |
CN112809720B (zh) | 软体机械手 | |
CN215548737U (zh) | 一种手指装置、机械手和机器人 | |
CN113967922B (zh) | 一种全柔性气动式软体仿生机械手 | |
Liu et al. | A Modular Bio-inspired Robotic Hand with High Sensitivity | |
Wang et al. | Design and analysis of pneumatic bending actuator used in soft robotics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |