CN111292355B - 一种融合运动信息的核相关滤波多目标跟踪方法 - Google Patents
一种融合运动信息的核相关滤波多目标跟踪方法 Download PDFInfo
- Publication number
- CN111292355B CN111292355B CN202010089349.2A CN202010089349A CN111292355B CN 111292355 B CN111292355 B CN 111292355B CN 202010089349 A CN202010089349 A CN 202010089349A CN 111292355 B CN111292355 B CN 111292355B
- Authority
- CN
- China
- Prior art keywords
- target
- tracking
- frame
- frames
- detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 94
- 230000033001 locomotion Effects 0.000 title claims abstract description 50
- 238000001914 filtration Methods 0.000 title claims abstract description 28
- 238000001514 detection method Methods 0.000 claims abstract description 111
- 230000007246 mechanism Effects 0.000 claims abstract description 6
- 230000004044 response Effects 0.000 claims description 31
- 238000004364 calculation method Methods 0.000 claims description 17
- 238000012549 training Methods 0.000 claims description 15
- 230000006870 function Effects 0.000 claims description 14
- 230000004083 survival effect Effects 0.000 claims description 11
- 230000008033 biological extinction Effects 0.000 claims description 10
- 238000012360 testing method Methods 0.000 claims description 7
- 238000013507 mapping Methods 0.000 claims description 5
- 239000011159 matrix material Substances 0.000 claims description 5
- 230000004927 fusion Effects 0.000 claims 8
- 238000002474 experimental method Methods 0.000 abstract description 24
- 230000008569 process Effects 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 4
- 238000012544 monitoring process Methods 0.000 abstract description 3
- 230000010365 information processing Effects 0.000 abstract description 2
- 238000013461 design Methods 0.000 abstract 1
- 239000012634 fragment Substances 0.000 abstract 1
- 230000003993 interaction Effects 0.000 abstract 1
- 241001239379 Calophysus macropterus Species 0.000 description 16
- 101000642315 Homo sapiens Spermatogenesis-associated protein 17 Proteins 0.000 description 5
- 102100036408 Spermatogenesis-associated protein 17 Human genes 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 241000195940 Bryophyta Species 0.000 description 2
- 235000008694 Humulus lupulus Nutrition 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
- G06T7/246—Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
- G06T7/251—Analysis of motion using feature-based methods, e.g. the tracking of corners or segments involving models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/74—Image or video pattern matching; Proximity measures in feature spaces
- G06V10/75—Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
- G06V10/751—Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10016—Video; Image sequence
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Multimedia (AREA)
- Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Databases & Information Systems (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010089349.2A CN111292355B (zh) | 2020-02-12 | 2020-02-12 | 一种融合运动信息的核相关滤波多目标跟踪方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010089349.2A CN111292355B (zh) | 2020-02-12 | 2020-02-12 | 一种融合运动信息的核相关滤波多目标跟踪方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111292355A CN111292355A (zh) | 2020-06-16 |
CN111292355B true CN111292355B (zh) | 2023-06-16 |
Family
ID=71030751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010089349.2A Active CN111292355B (zh) | 2020-02-12 | 2020-02-12 | 一种融合运动信息的核相关滤波多目标跟踪方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111292355B (zh) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114004861B (zh) * | 2020-07-28 | 2023-04-07 | 华为技术有限公司 | 目标跟踪方法及相关系统、存储介质、智能驾驶车辆 |
CN112233140B (zh) * | 2020-07-31 | 2022-10-21 | 中国人民解放军陆军炮兵防空兵学院 | 一种基于diou损失与平滑约束的ssvm跟踪方法 |
CN112053325A (zh) * | 2020-08-12 | 2020-12-08 | 华东交通大学 | 一种乳腺肿块图像处理和分类系统 |
CN112528927B (zh) * | 2020-12-22 | 2024-05-10 | 阿波罗智联(北京)科技有限公司 | 基于轨迹分析的置信度确定方法、路侧设备及云控平台 |
CN112614159B (zh) * | 2020-12-22 | 2023-04-07 | 浙江大学 | 一种面向仓库场景的跨摄像头多目标跟踪方法 |
CN112581507A (zh) * | 2020-12-31 | 2021-03-30 | 北京澎思科技有限公司 | 目标跟踪方法、系统及计算机可读存储介质 |
CN112734809B (zh) * | 2021-01-21 | 2024-07-05 | 高新兴科技集团股份有限公司 | 基于Deep-Sort跟踪框架的在线多行人跟踪方法及装置 |
CN113223052A (zh) * | 2021-05-12 | 2021-08-06 | 北京百度网讯科技有限公司 | 轨迹优化方法、装置、设备、存储介质以及程序产品 |
CN113259630B (zh) * | 2021-06-03 | 2021-09-28 | 南京北斗创新应用科技研究院有限公司 | 一种多摄像头行人轨迹聚合系统和方法 |
CN113920168B (zh) * | 2021-11-02 | 2024-09-03 | 中音讯谷科技有限公司 | 一种音视频控制设备中图像跟踪方法 |
CN114972418B (zh) * | 2022-03-30 | 2023-11-21 | 北京航空航天大学 | 基于核自适应滤波与yolox检测结合的机动多目标跟踪方法 |
CN114943955B (zh) * | 2022-07-25 | 2022-11-01 | 山东广通汽车科技股份有限公司 | 一种用于半挂车自动卸货控制方法 |
CN116385498A (zh) * | 2023-06-05 | 2023-07-04 | 成都九洲迪飞科技有限责任公司 | 一种基于人工智能的目标跟踪方法及系统 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108010067B (zh) * | 2017-12-25 | 2018-12-07 | 北京航空航天大学 | 一种基于组合判断策略的视觉目标跟踪方法 |
CN110008844B (zh) * | 2019-03-12 | 2023-07-21 | 华南理工大学 | 一种融合slic算法的kcf长期手势跟踪方法 |
CN110084831B (zh) * | 2019-04-23 | 2021-08-24 | 江南大学 | 基于YOLOv3多伯努利视频多目标检测跟踪方法 |
CN110751096B (zh) * | 2019-10-21 | 2022-02-22 | 陕西师范大学 | 一种基于kcf轨迹置信度的多目标跟踪方法 |
-
2020
- 2020-02-12 CN CN202010089349.2A patent/CN111292355B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN111292355A (zh) | 2020-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111292355B (zh) | 一种融合运动信息的核相关滤波多目标跟踪方法 | |
CN111488795B (zh) | 应用于无人驾驶车辆的实时行人跟踪方法 | |
CN110084831B (zh) | 基于YOLOv3多伯努利视频多目标检测跟踪方法 | |
CN112541441B (zh) | 一种融合相关滤波的gm-phd视频多目标跟踪方法 | |
WO2023065395A1 (zh) | 作业车辆检测与跟踪方法和系统 | |
CN107145862B (zh) | 一种基于霍夫森林的多特征匹配多目标跟踪方法 | |
CN110473231B (zh) | 一种具有预判式学习更新策略的孪生全卷积网络的目标跟踪方法 | |
CN109785366B (zh) | 一种针对遮挡的相关滤波目标跟踪方法 | |
CN112489081B (zh) | 一种视觉目标跟踪方法及装置 | |
CN113409361B (zh) | 一种多目标跟踪方法、装置、计算机及存储介质 | |
CN106355604A (zh) | 图像目标跟踪方法与系统 | |
CN109934846A (zh) | 基于时间和空间网络的深度集成目标跟踪方法 | |
CN111612817A (zh) | 基于深浅特征自适应融合与上下文信息的目标跟踪方法 | |
CN112085765B (zh) | 结合粒子滤波及度量学习的视频目标跟踪方法 | |
CN111091583B (zh) | 长期目标跟踪方法 | |
CN114708300B (zh) | 一种可抗遮挡的自适应目标跟踪方法及系统 | |
CN111862155A (zh) | 一种针对目标遮挡的无人机单视觉目标跟踪方法 | |
CN111274917A (zh) | 一种基于深度检测的长时目标跟踪方法 | |
CN111739053A (zh) | 一种复杂场景下的在线多行人检测跟踪方法 | |
CN113902991A (zh) | 一种基于级联特征融合的孪生网络目标跟踪方法 | |
CN111666860A (zh) | 一种车牌信息与车辆特征融合的车辆轨迹跟踪方法 | |
CN113537077A (zh) | 基于特征池优化的标签多伯努利视频多目标跟踪方法 | |
CN116580333A (zh) | 基于YOLOv5和改进StrongSORT的粮库车辆追踪方法 | |
CN113313733A (zh) | 基于共享卷积的分级无人机目标跟踪方法 | |
CN111161323B (zh) | 一种基于相关滤波的复杂场景目标跟踪方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240729 Address after: No. 168 Hexiao East Road, Ningbo City, Zhejiang Province, 315000 Patentee after: Ningbo New Quality Intelligent Manufacturing Technology Research Institute Country or region after: China Address before: 214000 1800 Lihu Avenue, Binhu District, Wuxi, Jiangsu Patentee before: Jiangnan University Country or region before: China |
|
TR01 | Transfer of patent right | ||
OL01 | Intention to license declared | ||
OL01 | Intention to license declared | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20200616 Assignee: Ningbo Leshu Sports Culture Co.,Ltd. Assignor: Ningbo New Quality Intelligent Manufacturing Technology Research Institute Contract record no.: X2024980015985 Denomination of invention: A Multi object Tracking Method with Kernel Correlation Filtering and Fusion of Motion Information Granted publication date: 20230616 License type: Open License Record date: 20240924 |
|
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20200616 Assignee: Ningbo Fengyang Construction Co.,Ltd. Assignor: Ningbo New Quality Intelligent Manufacturing Technology Research Institute Contract record no.: X2024980016474 Denomination of invention: A Multi object Tracking Method with Kernel Correlation Filtering and Fusion of Motion Information Granted publication date: 20230616 License type: Open License Record date: 20240927 |