CN111291918A - Rotating machine degradation trend prediction method based on stationary subspace exogenous vector autoregression - Google Patents
Rotating machine degradation trend prediction method based on stationary subspace exogenous vector autoregression Download PDFInfo
- Publication number
- CN111291918A CN111291918A CN202010010925.XA CN202010010925A CN111291918A CN 111291918 A CN111291918 A CN 111291918A CN 202010010925 A CN202010010925 A CN 202010010925A CN 111291918 A CN111291918 A CN 111291918A
- Authority
- CN
- China
- Prior art keywords
- degradation
- stationary
- index
- domain
- subspace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006731 degradation reaction Methods 0.000 title claims abstract description 138
- 230000015556 catabolic process Effects 0.000 title claims abstract description 137
- 239000013598 vector Substances 0.000 title claims abstract description 71
- 238000000034 method Methods 0.000 title claims abstract description 52
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 24
- 238000012360 testing method Methods 0.000 claims abstract description 17
- 238000004458 analytical method Methods 0.000 claims abstract description 13
- 230000004927 fusion Effects 0.000 claims abstract description 13
- 230000004044 response Effects 0.000 claims abstract description 8
- 238000007476 Maximum Likelihood Methods 0.000 claims abstract description 5
- 238000000513 principal component analysis Methods 0.000 claims description 12
- 238000000605 extraction Methods 0.000 claims description 10
- 230000009467 reduction Effects 0.000 claims description 9
- 238000001228 spectrum Methods 0.000 claims description 9
- 238000010183 spectrum analysis Methods 0.000 claims description 8
- 230000003190 augmentative effect Effects 0.000 claims description 3
- 239000006185 dispersion Substances 0.000 claims description 3
- 230000007774 longterm Effects 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 230000035939 shock Effects 0.000 claims description 3
- 230000000737 periodic effect Effects 0.000 claims description 2
- 238000010276 construction Methods 0.000 claims 2
- 238000004364 calculation method Methods 0.000 abstract description 4
- 230000000052 comparative effect Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 238000013213 extrapolation Methods 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 238000007726 management method Methods 0.000 description 3
- 238000013473 artificial intelligence Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000611 regression analysis Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000001744 unit root test Methods 0.000 description 2
- 208000032953 Device battery issue Diseases 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000013277 forecasting method Methods 0.000 description 1
- 230000003862 health status Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000006403 short-term memory Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000013526 transfer learning Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
- G06F18/2135—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on approximation criteria, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
- G06F18/253—Fusion techniques of extracted features
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Human Resources & Organizations (AREA)
- Evolutionary Biology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- Evolutionary Computation (AREA)
- Game Theory and Decision Science (AREA)
- Development Economics (AREA)
- Entrepreneurship & Innovation (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种平稳子空间外源矢量自回归的旋转机械退化趋势预测方法,包括步骤如下:首先,对去噪后的多通道信号进行第一次平稳子空间分解提取振动平稳分量;接着提取时、频域退化特征量并通过特征融合得到高维退化指标向量组;再将时、频域下高维退化指标向量组进行第二次平稳子空间分解以及差分运算提取退化指标中的弱平稳成分作为旋转机械退化指标;将退化指标进行平稳性检验、脉冲响应分析并确定内源、外源变量以及模型阶数,通过最大似然估计确定矢量自回归模型参数,最后对旋转机械进行不同预测起始点下的退化趋势估计。本发明得到的退化趋势预测模型不仅在小样本学习下拥有良好泛化能力,而且计算迅速,可释性强。
The invention discloses a method for predicting the degradation trend of rotating machinery by means of autoregressive external source vector in stationary subspace. The time and frequency domain degradation feature quantities are extracted and the high-dimensional degradation index vector group is obtained through feature fusion; then the high-dimensional degradation index vector group in the time and frequency domains is subjected to the second stationary subspace decomposition and difference operation to extract weak degradation indicators. The stationary component is used as the degradation index of rotating machinery; the degradation index is subjected to stationarity test, impulse response analysis, and the endogenous and exogenous variables and model order are determined, and the vector autoregressive model parameters are determined by maximum likelihood estimation. Estimates of degradation trends under the forecast starting point. The degradation trend prediction model obtained by the invention not only has good generalization ability under small sample learning, but also has rapid calculation and strong interpretability.
Description
技术领域technical field
本发明涉及旋转机械设备中的退化趋势预测技术领域,是一种基于平稳子空间外源矢量自回归的旋转机械退化趋势预测方法,具体说是通过二次平稳子空间分解以及差分运算提取弱平稳振动退化指标并通过外源矢量自回归进行退化趋势预测的方法。The invention relates to the technical field of degradation trend prediction in rotating machinery equipment, and is a method for predicting the degradation trend of rotating machinery based on stationary subspace exogenous vector autoregression. Vibration degradation index and a method for predicting degradation trend through exogenous vector autoregression.
背景技术Background technique
旋转机械运行中的持续老化和需求量不断增长呼唤更加先进的故障预测和健康管理技术,其中退化趋势预测在装配旋转机械的复杂工程系统中起着至关重要的作用。准确的退化趋势预测方法可以预先提供机器的状态信息和健康状况以进行预测性维护,从而避免突发的停机风险以及设备故障,提高工业生产环节的整体收益。Continued aging and increasing demand in the operation of rotating machinery call for more advanced failure prediction and health management techniques, in which degradation trend prediction plays a crucial role in the complex engineering systems that assemble rotating machinery. Accurate degradation trend prediction methods can provide machine status information and health status in advance for predictive maintenance, thereby avoiding the risk of sudden downtime and equipment failure, and improving the overall profitability of industrial production.
为有效解决旋转机械退化趋势预测问题,基于物理、力学模型的方法已被广泛研究,但该类方法需要完善的先验知识作为支持,而这在某些复杂的系统中很难满足和发展。数据驱动解决方法作为另一种新兴技术,广泛用于锂离子电池的故障预测和健康管理技术,大规模工业过程监测和旋转机械故障预测和健康管理技术中,能够通过采样数据直接生成退化或寿命模型无需事先知识即可灵活地对未知对象进行建模。它提供了在复杂情况下(例如可变工作条件和系统级预测)进行准确预测和评估的可能性。以深度学习为首的人工智能技术近年来发展迅猛,这极大地推动了数据驱动方法在旋转机械退化趋势预测领域中的推广,此类技术具有出色的特征学习和表示能力,并且大多数预测任务在充裕且完整的标记数据下表现良好。但是不幸的是,这种基于“学习—生成模型”的预测架构或多或少取决于学习样本的质量与数量,并且预测结果受限于学习和测试数据集间的相似性。也就是说,该方法对于某些“数据不足”的高端应用场景可能失效。尽管迁移学习技术可以在一定程度上缓解这一问题,但是缺乏可释的建模过程和完善数学统计学基础作为支持仍然是一个棘手的问题。In order to effectively solve the problem of predicting the degradation trend of rotating machinery, methods based on physical and mechanical models have been widely studied, but such methods require the support of perfect prior knowledge, which is difficult to meet and develop in some complex systems. As another emerging technology, data-driven solutions are widely used in lithium-ion battery failure prediction and health management technology, large-scale industrial process monitoring and rotating machinery failure prediction and health management technology, which can directly generate degradation or life through sampling data. Models flexibly model unknown objects without prior knowledge. It offers the possibility of accurate prediction and evaluation in complex situations such as variable operating conditions and system-level prediction. Artificial intelligence technology led by deep learning has developed rapidly in recent years, which has greatly promoted the promotion of data-driven methods in the field of rotating machinery degradation trend prediction. Such technologies have excellent feature learning and representation capabilities, and most prediction tasks are performed in Performs well with ample and complete labeled data. Unfortunately, this learning-generative model-based prediction architecture is more or less dependent on the quality and quantity of learning samples, and the prediction results are limited by the similarity between the learning and testing datasets. That is to say, this method may fail for some high-end application scenarios of "insufficient data". Although transfer learning techniques can alleviate this problem to a certain extent, the lack of an interpretable modeling process and a sound mathematical and statistical foundation to support it is still a thorny problem.
除了上述基于人工智能技术的数据驱动研究外,基于回归分析的数据驱动预测方法在旋转机械退化趋势预测领域也得到了广泛研究,该类方法能够提供完善的数学、统计学基础,具有良好可释性。但大多数回归分析数据驱动预测方法内部属于静态结构,这极大限制了从时刻t到时刻t+n的外推与泛化。自回归理论作为具有天然外推结构与完善数学理论依据的预测、预报模型广泛应用于河流、地理、经济等领域建模。这类问题通常具有一定周期性且数据较平稳,利于自回归分析,旋转机械退化过程包含大量非平稳以及非线性分量,这极大阻碍了该理论在这个领域的应用与推广,同时也鲜有相关文献报道出现。In addition to the above-mentioned data-driven research based on artificial intelligence technology, data-driven prediction methods based on regression analysis have also been widely studied in the field of rotating machinery degradation trend prediction. sex. However, most regression analysis data-driven forecasting methods have a static structure inside, which greatly limits the extrapolation and generalization from time t to time t+n. Autoregressive theory is widely used in river, geography, economy and other fields as a prediction and forecast model with natural extrapolation structure and perfect mathematical theoretical basis. Such problems usually have a certain periodicity and the data is relatively stable, which is conducive to autoregressive analysis. The degradation process of rotating machinery contains a large number of non-stationary and nonlinear components, which greatly hinders the application and promotion of this theory in this field. Relevant literature reports appear.
鉴于自回归预测、预报模型的优点,及其应用于旋转机械退化趋势预测中存在的缺陷,如何处理振动非平稳信号使其满足自回归理论对于弱平稳性的要求是需要解决的问题。我们从子空间分解理论出发,对具有非平稳、非线性的振动退化信号进行信号处理,并通过外源矢量自回归模型进行退化趋势预测。In view of the advantages of autoregressive forecasting and forecasting models, as well as the defects existing in the prediction of the degradation trend of rotating machinery, how to deal with non-stationary vibration signals to meet the requirements of autoregressive theory for weak stationarity is a problem that needs to be solved. Starting from the subspace decomposition theory, we perform signal processing on non-stationary and nonlinear vibration degradation signals, and predict the degradation trend through the exogenous vector autoregressive model.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提出一种平稳子空间外源矢量自回归(stationarysubspaces-vector autoregressive with exogenous terms,SSVARX)的旋转机械退化趋势预测方法。运用两次平稳子空间分解方法以及差分运算分别提取时域、频域退化指标中的弱平稳成分作为旋转机械退化指标;随后对其进行平稳性检验、脉冲响应分析并确定内源、外源变量以及模型阶数,接着通过最大似然估计确定矢量自回归模型参数,最后对旋转机械进行不同预测起始点下的退化趋势估计。有效克服了目前小样本下旋转机械退化趋势预测泛化能力弱、计算时间长以及“黑箱效应”等问题,具有重要经济与社会价值。The purpose of the present invention is to propose a method for predicting the degradation trend of rotating machinery for stationary subspaces-vector autoregressive with exogenous terms (SSVARX). Using two stationary subspace decomposition methods and difference operations, the weak stationary components in the degradation indices in the time domain and frequency domain are extracted as the degradation indices of rotating machinery, respectively. and the model order, then determine the vector autoregressive model parameters through maximum likelihood estimation, and finally estimate the degradation trend of rotating machinery under different prediction starting points. It effectively overcomes the problems of weak generalization ability, long calculation time and "black box effect" of rotating machinery degradation trend prediction under the current small sample, and has important economic and social value.
根据本发明提出的一种平稳子空间外源矢量自回归的旋转机械退化趋势预测方法,包括以下步骤:According to a method for predicting the degradation trend of rotating machinery with stationary subspace exogenous vector autoregression, the method includes the following steps:
步骤1:通过振动加速度计对旋转机械敏感退化位置进行多通道信号采集,并对采集的振动信号进行小波降噪剔除原始信号中的高频成分;Step 1: Use the vibration accelerometer to collect multi-channel signals for the sensitive degradation position of the rotating machinery, and perform wavelet noise reduction on the collected vibration signals to eliminate high-frequency components in the original signals;
步骤2:将降噪后的多通道振动信号进行第一次平稳子空间分解,以综合多通道退化、损伤信息并提取振动弱平稳分量,主要通过平稳子空间分析(stationary subspaceanalysis,SSA)算法以及多通道降噪后的振动信号实现,即:Step 2: Perform the first stationary subspace decomposition of the denoised multi-channel vibration signal to synthesize multi-channel degradation and damage information and extract the weak stationary component of vibration, mainly through stationary subspace analysis (SSA) algorithm and The vibration signal after multi-channel noise reduction is realized, namely:
式中表示通道一采集的所有观测值;和分别表示分解后的振动弱平稳与非平稳分量。in the formula Indicates all observations collected by
步骤3:对生成的振动弱平稳分量分别提取时域、频域退化特征,并通过主成分分析对各域退化特征构成的矩阵进行特征融合,生成时域、频域高维退化指标向量组,包含如下具体步骤:时域、频域退化特征的提取以及基于主成分分析的特征融合,Step 3: Extract the time-domain and frequency-domain degradation features from the generated weakly stationary components of vibration, and perform feature fusion on the matrix formed by the degradation features in each domain through principal component analysis to generate a time-domain and frequency-domain high-dimensional degradation index vector group, It includes the following specific steps: extraction of degradation features in time domain and frequency domain, and feature fusion based on principal component analysis,
步骤3.1:时域特征提取采用的统计学参数公式如下:平均值:标准差:平方根振幅:绝对平均值:偏度:峰度:方差:最大值:DF8=max|x(n)|、最小值:DF9=min|x(n)|、峰均值:DF10=DF8-DF9、均方根:波形指数:峰值指数:脉冲指数:裕度指数:偏度指数:和峰度指数:频域特征提取采用的统计学参数公式如下: 以及其中y(k)是给定信号的快速傅里叶频谱,fk则对应于第k个频谱的频率值,DF18在频域上反映振动能量,DF19~DF21、DF23和DF27~DF30描述频谱的集中和离散程度,DF22和DF24~DF26表示主频带的位置变化。Step 3.1: The statistical parameter formula used in time domain feature extraction is as follows: Average value: Standard deviation: Square root amplitude: Absolute mean: Skewness: Kurtosis: variance: Maximum value: DF 8 =max|x(n)|, minimum value: DF 9 =min|x(n)|, peak mean value: DF 10 =DF 8 -DF 9 , root mean square: Waveform Index: Peak Index: Pulse Index: Margin Index: Skewness Index: and the kurtosis index: The statistical parameter formula used in frequency domain feature extraction is as follows: as well as where y(k) is the fast Fourier spectrum of a given signal, f k corresponds to the frequency value of the k-th spectrum, DF 18 reflects vibrational energy in the frequency domain, DF 19 ~DF 21 , DF 23 and DF 27 ~DF 30 describes the degree of concentration and dispersion of the spectrum, DF 22 and DF 24 ~ DF 26 represent the positional changes of the main frequency band.
步骤3.2:提取的时域、频域退化特征分别构成特征矩阵DF1~17,DF18~30供主成分分析进行特征融合;Step 3.2: The extracted degradation features in time domain and frequency domain respectively form feature matrices DF 1-17 and DF 18-30 for feature fusion by principal component analysis;
步骤3.3:使用主成分分析对DF1~17以及DF18~30进行特征融合提取满足预定贡献率的主成分构成高维退化指标向量组,即Step 3.3: Use principal component analysis to perform feature fusion on DF 1-17 and DF 18-30 , and extract principal components that satisfy the predetermined contribution rate to form a high-dimensional degradation index vector group, namely
式中以及分别表示特征向量,以及分别表示符合预定贡献度值的时域、频域主成分,即高维退化指标向量组。in the formula as well as are the feature vectors, respectively, as well as respectively represent the time-domain and frequency-domain principal components conforming to the predetermined contribution value, that is, the high-dimensional degradation index vector group.
步骤4:对时域、频域高维退化指标向量组进行第二次平稳子空间分解,提取退化指标向量组中弱平稳分量并进行基于频谱分析的差分运算生成满足弱平稳要求的时域、频域退化指标,基本步骤可总结如下:Step 4: Perform the second stationary subspace decomposition on the high-dimensional degradation index vector group in the time domain and frequency domain, extract the weakly stationary component in the degradation index vector group, and perform the differential operation based on spectrum analysis to generate the time domain, The frequency domain degradation index, the basic steps can be summarized as follows:
步骤4.1:通过平稳子空间分解算法对高维退化指标向量组进行第二次平稳子空间分解,即:Step 4.1: Perform the second stationary subspace decomposition on the high-dimensional degradation index vector group through the stationary subspace decomposition algorithm, namely:
式中表示来自第一主元分量的所有时刻退化指标向量,和表示时域高维退化指标向量组的弱平稳与非平稳成分;和表示频域高维退化指标向量组的弱平稳与非平稳成分。in the formula represents the degradation index vector at all times from the first principal component, and Represents the weakly stationary and non-stationary components of the time-domain high-dimensional degradation index vector group; and Represents the weakly stationary and non-stationary components of a high-dimensional degradation index vector group in the frequency domain.
步骤4.2:根据生成的时域、频域高维退化指标向量组,通过频谱分析计算所需的差分步长,差分步长为频谱分析主峰对应频率的倒数,随后进行差分运算生成去除周期性的退化指标以输入接下来的退化趋势预测模型。Step 4.2: According to the generated high-dimensional degradation index vector group in the time domain and frequency domain, calculate the required differential step size through spectrum analysis. Degradation indicator to input the next degradation trend prediction model.
步骤5:最后将时域、频域退化指标输入外源矢量自回归模型进行旋转机械的退化趋势预测。包含:定义外源、内生变量,输入退化指标的平稳性检验,模型阶数确定,脉冲响应分析,参数估计以及退化趋势预测五部分,基本步骤可总结如下:Step 5: Finally, input the time domain and frequency domain degradation indicators into the external vector autoregressive model to predict the degradation trend of the rotating machinery. It includes five parts: defining exogenous and endogenous variables, inputting the stationarity test of the degradation index, determining the model order, impulse response analysis, parameter estimation and degradation trend prediction. The basic steps can be summarized as follows:
步骤5.1:定义寿命周期内各退化阶段中无显著波动的高维退化指标向量组弱平稳成分为内生变量,其余则为外源变量辅助退化趋势预测;Step 5.1: Define the weak stationary component of the high-dimensional degradation index vector group without significant fluctuations in each degradation stage in the life cycle as endogenous variables, and the rest are exogenous variables to assist in the prediction of degradation trend;
步骤5.2:通过增广迪基·富勒方法检测所选输入量是否具有单位根来检验平稳性:H0假设如下所示,即:Step 5.2: Test for stationarity by augmenting Dickey Fuller's method to detect whether the selected input quantity has a unit root: H 0 is assumed to be as follows, namely:
H0:yt=c+yt-1+β1Δyt-1+β2Δyt-2+…+βpΔyp-1+εt H 0 : y t =c+y t-1 +β 1 Δy t-1 +β 2 Δy t-2 +...+β p Δy p-1 +ε t
H1假设如下所示,即:H 1 is assumed to be as follows, namely:
H0:yt=c+dt+θyt-1+β1Δyt-1+β2Δyt-2+…+βpΔyp-1+εt H 0 : y t =c+dt+θy t-1 +β 1 Δy t-1 +β 2 Δy t-2 +…+β p Δy p-1 +ε t
式中,θ<1,[β1,…,βp]和d分别为回归项与趋势项系数,εt代表随机误差,c为常数项。随后通过该方法初步确定具有平稳特性的阶数区间范围:首先确定不含单位根,即拒绝H0的所有阶数合适的区间,定义li和ui分别为第i个区间的上、下界;然后对所有区间做交集运算,即:[l1,…,u1]∪,…,∪[li,…,ui]∪,…,∪[ln,…,un],从而确定具有平稳特性的阶数区间范围。In the formula, θ<1, [β 1 ,…,β p ] and d are the coefficients of the regression term and the trend term, respectively, ε t represents the random error, and c is the constant term. Then, the range of the order interval with stationary characteristics is preliminarily determined by this method: first, determine the interval without a unit root, that is, reject all suitable intervals of order H 0 , and define li and ui as the upper and lower bounds of the ith interval, respectively ; Then perform the intersection operation on all intervals, namely: [l 1 ,…,u 1 ]∪,…,∪[l i ,…,u i ]∪,…,∪[l n ,…,u n ], thus Determines the range of order intervals with stationary properties.
步骤5.3:计算具有平稳特性的阶数区间内Akaike信息准则值,即:Step 5.3: Calculate the value of the Akaike information criterion in the order interval with stationary characteristics, namely:
搜索上式最小值对应的阶数,定义为模型阶数;Search for the order corresponding to the minimum value of the above formula, which is defined as the model order;
步骤5.4:使用脉冲响应分析进一步分析内生变量,即时域、频域退化指标通过矢量自回归模型滞后结构的干扰的影响,并从短期或长期角度检查冲击对所有内生变量的影响;Step 5.4: Use impulse response analysis to further analyze the endogenous variables, the impact of the disturbance of the time domain and frequency domain degradation indicators through the vector autoregressive model lag structure, and check the impact of the shock on all endogenous variables from a short-term or long-term perspective;
步骤5.5:利用最大似然估计对外源矢量自回归模型进行参数估计,随后将模型用于不同起始点下退化趋势预测检验模型泛化能力。Step 5.5: Use maximum likelihood estimation to estimate the parameters of the exogenous vector autoregressive model, and then use the model to predict the degradation trend under different starting points to test the generalization ability of the model.
本发明的有益效果是:The beneficial effects of the present invention are:
1、本发明提出的基于SSVARX退化趋势预测方法是矢量自回归理论应用于旋转机械领域的首次尝试,为数据驱动下预测、预报研究提供了完善的数学理论依据;1. The SSVARX degradation trend prediction method proposed by the present invention is the first attempt to apply the vector autoregressive theory to the field of rotating machinery, and provides a perfect mathematical theoretical basis for data-driven prediction and prediction research;
2、本发明提出的退化趋势预测方法不仅具有自然外推结构,计算速度快,并且在小样本情况下,提供了高精度的预测结果,非常适用于某些状态数据稀少的高端应用场景;2. The degradation trend prediction method proposed by the present invention not only has a natural extrapolation structure, fast calculation speed, but also provides high-precision prediction results in the case of small samples, which is very suitable for some high-end application scenarios with scarce state data;
3、本发明提出的退化趋势预测方法为非平稳振动信号转化为弱平稳退化指标提供了一种可行的途径,同时考虑了来自不同领域的内生变量之间的潜在因果关系和关系,从而进一步提高退化趋势预测的精度。3. The degradation trend prediction method proposed in the present invention provides a feasible way for the non-stationary vibration signal to be converted into a weakly stationary degradation index, and at the same time considers the potential causal relationship and relationship between endogenous variables from different fields, so as to further Improve the accuracy of degradation trend prediction.
附图说明Description of drawings
图1是本发明方法的实施流程图。Fig. 1 is the implementation flow chart of the method of the present invention.
图2是本发明中采集的多通道振动原始信号。Fig. 2 is a multi-channel vibration original signal collected in the present invention.
图3是通过本发明方法得到的第一次平稳子空间分解分量。Figure 3 shows the first stationary subspace decomposition components obtained by the method of the present invention.
图4是本发明中振动信号弱平稳分量的时域、频域特征提取。FIG. 4 is the time domain and frequency domain feature extraction of the weak stationary component of the vibration signal in the present invention.
图5是本发明中时域、频域下的HDDIVs。FIG. 5 shows HDDIVs in time domain and frequency domain in the present invention.
图6是通过本发明方法得到的第二次平稳子空间分解与差分运算后的退化指标。Fig. 6 is the degradation index after the second stationary subspace decomposition and difference operation obtained by the method of the present invention.
图7是本发明中退化指标间的脉冲响应分析结果。FIG. 7 is an impulse response analysis result between degradation indexes in the present invention.
图8是通过本发明方法得到的不同其实预测点下滚动轴承退化趋势预测结果。FIG. 8 is the prediction result of the degradation trend of the rolling bearing under different actual prediction points obtained by the method of the present invention.
图9是通过本发明方法得到的退化趋势预测结果与对比试验A,B,C的对比图。FIG. 9 is a comparison diagram of the degradation trend prediction result obtained by the method of the present invention and the comparative tests A, B, and C. FIG.
具体实施方式Detailed ways
下面结合附图与具体实施方式对本发明作进一步详细描述。The present invention will be described in further detail below with reference to the accompanying drawings and specific embodiments.
一种平稳子空间外源矢量自回归的旋转机械退化趋势预测方法流程如图1所示,步骤可总结如下:A method for predicting the degradation trend of rotating machinery by exogenous vector autoregression in stationary subspace is shown in Figure 1. The steps can be summarized as follows:
步骤1、本实例采用HRB6308滚动轴承,配合ABLT-1A型轴承寿命强化试验机进行全寿命疲劳加速试验。首先通过PCB 608A11振动加速度计配合National Instruments 9234数采卡对旋转机械敏感退化位置进行两通道信号采集,原始信号参见图2,并对采集的振动信号进行小波降噪剔除原始信号中的高频成分;
步骤2、将降噪后的多通道振动信号通过平稳子空间分析(stationary subspaceanalysis,SSA)算法以及降噪后多通道的振动信号实现进行第一次平稳子空间分解,综合多通道退化、损伤信息并提取振动弱平稳分量,具体参见图3。即:
式中表示通道一采集的所有观测值;和分别表示分解后的振动弱平稳与非平稳分量。in the formula Indicates all observations collected by
步骤3、对生成的振动弱平稳分量分别提取17个时域DF1-17、13个频域退化特征DF18-30,归一化后的特征如图4所示。随后通过主成分分析对各域退化特征构成的矩阵,即:[DF1,DF2,...,DF17]与[DF18,DF19,...,DF30]进行特征融合,其中贡献率阈值设为98%以保证较大程度涵盖退化、损伤信息。图5为生成的时域、频域高维退化指标向量组(highdimensional degradation indicator vectors,HDDIVs)。具体包含如下步骤:时域、频域退化特征的提取以及基于主成分分析的特征融合,Step 3: Extract 17 time-domain DF 1-17 and 13 frequency-domain degradation features DF 18-30 from the generated weakly stationary components of vibration, and the normalized features are shown in Figure 4 . Then, through principal component analysis, the matrix composed of degenerate features of each domain, namely: [DF 1 , DF 2 , ..., DF 17 ] and [DF 18 , DF 19 , ..., DF 30 ], perform feature fusion, where The contribution rate threshold is set to 98% to ensure that degradation and damage information is covered to a greater extent. Figure 5 shows the generated high-dimensional degradation indicator vectors (HDDIVs) in time domain and frequency domain. Specifically, it includes the following steps: extraction of degradation features in time and frequency domains, and feature fusion based on principal component analysis,
步骤3.1、时域特征提取采用的统计学参数公式如下:平均值:标准差:平方根振幅:绝对平均值:偏度:峰度:方差:最大值:DF8=max|x(n)|、最小值:DF9=min|x(n)|、峰均值:DF10=DF8-DF9、均方根:波形指数:峰值指数:脉冲指数:裕度指数:偏度指数:和峰度指数:频域特征提取采用的统计学参数公式如下: 以及其中y(k)是给定信号的快速傅里叶频谱,fk则对应于第k个频谱的频率值,DF18在频域上反映振动能量,DF19~DF21、DF23和DF27~DF30描述频谱的集中和离散程度,DF22和DF24~DF26表示主频带的位置变化。Step 3.1. The statistical parameter formula used in time domain feature extraction is as follows: Average value: Standard deviation: Square root amplitude: Absolute mean: Skewness: Kurtosis: variance: Maximum value: DF 8 =max|x(n)|, minimum value: DF 9 =min|x(n)|, peak mean value: DF 10 =DF 8 -DF 9 , root mean square: Waveform Index: Peak Index: Pulse Index: Margin Index: Skewness Index: and the kurtosis index: The statistical parameter formula used in frequency domain feature extraction is as follows: as well as where y(k) is the fast Fourier spectrum of a given signal, f k corresponds to the frequency value of the k-th spectrum, DF 18 reflects vibrational energy in the frequency domain, DF 19 ~DF 21 , DF 23 and DF 27 ~DF 30 describes the degree of concentration and dispersion of the spectrum, and DF 22 and DF 24 to DF 26 represent the positional changes of the main frequency band.
步骤3.2、提取的时域、频域退化特征分别构成特征矩阵DF1~17,DF18~30供主成分分析进行特征融合;Step 3.2, the extracted degradation features in time domain and frequency domain respectively form feature matrices DF 1-17 and DF 18-30 for feature fusion by principal component analysis;
步骤3.3、使用主成分分析对DF1~17以及DF18~30进行特征融合提取满足预定贡献率的主成分构成高维退化指标向量组,即Step 3.3. Use principal component analysis to perform feature fusion on DF 1-17 and DF 18-30 to extract principal components that satisfy the predetermined contribution rate to form a high-dimensional degradation index vector group, namely
式中以及分别表示特征向量,以及分别表示符合预定贡献度值的时域、频域主成分,即高维退化指标向量组。in the formula as well as are the feature vectors, respectively, as well as respectively represent the time-domain and frequency-domain principal components conforming to the predetermined contribution value, that is, the high-dimensional degradation index vector group.
步骤4、对时域、频域高维退化指标向量组进行第二次平稳子空间分解,提取退化指标向量组中弱平稳分量DITime和DIFrequency并进行基于频谱分析的差分运算生成满足弱平稳要求的时域、频域退化指标。基本步骤可总结如下:
步骤4.1、通过平稳子空间分解算法对高维退化指标向量组进行第二次平稳子空间分解,即:Step 4.1. Perform the second stationary subspace decomposition on the high-dimensional degradation index vector group through the stationary subspace decomposition algorithm, namely:
式中表示来自第一主元分量的所有时刻退化指标向量,和表示时域高维退化指标向量组的弱平稳与非平稳成分;和表示频域高维退化指标向量组的弱平稳与非平稳成分。in the formula represents the degradation index vector at all times from the first principal component, and Represents the weakly stationary and non-stationary components of the time-domain high-dimensional degradation index vector group; and Represents the weakly stationary and non-stationary components of a high-dimensional degradation index vector group in the frequency domain.
步骤4.2、根据生成的时域、频域高维退化指标向量组,通过频谱分析计算所需的差分步长,差分步长为频谱分析主峰对应频率的倒数,随后进行差分运算生成去除周期性的退化指标并输入接下来的退化趋势预测模型。Step 4.2. According to the generated high-dimensional degradation index vector group in the time domain and frequency domain, calculate the required differential step size through spectrum analysis. The differential step size is the reciprocal of the frequency corresponding to the main peak of the spectrum analysis, and then perform a differential operation to generate a periodic Degradation indicator and input into the next degradation trend prediction model.
步骤5、最后将差分后的时域、频域退化指标输入外源矢量自回归模型进行旋转机械的退化趋势预测。包含:定义外源、内生变量,输入退化指标的平稳性检验,模型阶数确定,脉冲响应分析,参数估计以及退化趋势预测五部分,基本步骤可总结如下:
步骤5.1、定义寿命周期内各个退化阶段中无显著波动的高维退化指标向量组弱平稳成分为内生变量,具体如图6所示,其余则为外源变量辅助退化趋势预测;Step 5.1. Define the weak stationary component of the high-dimensional degradation index vector group without significant fluctuations in each degradation stage in the life cycle as the endogenous variable, as shown in Figure 6, and the rest are exogenous variables to assist the degradation trend prediction;
步骤5.2、通过增广迪基·富勒方法检测所选输入量是否具有单位根来检验平稳性:H0假设如下所示,即:Step 5.2. Check stationarity by augmenting the Dickey Fuller method to detect whether the selected input quantity has a unit root: H 0 is assumed to be as follows, namely:
H0:yt=c+yt-1+β1Δyt-1+β2Δyt-2+…+βpΔyp-1+εt H 0 : y t =c+y t-1 +β 1 Δy t-1 +β 2 Δy t-2 +...+β p Δy p-1 +ε t
H1假设如下所示,即:H 1 is assumed to be as follows, namely:
H0:yt=c+dt+θyt-1+β1Δyt-1+β2Δyt-2+…+βpΔyp-1+εt H 0 : y t =c+dt+θy t-1 +β 1 Δy t-1 +β 2 Δy t-2 +…+β p Δy p-1 +ε t
式中,θ<1,[β1,…,βp]和d分别为回归项与趋势项系数,εt代表随机误差,c为常数项。随后通过该方法初步确定具有平稳特性的阶数区间范围:首先确定不含单位根,即拒绝H0的所有阶数合适的区间,定义li和ui分别为第i个区间的上、下界;然后对所有区间做交集运算,即:[l1,…,u1]∪,…,∪[li,…,ui]∪,…,∪[ln,…,un],从而确定具有平稳特性的阶数区间范围。In the formula, θ<1, [β 1 ,…,β p ] and d are the coefficients of the regression term and the trend term, respectively, ε t represents the random error, and c is the constant term. Then, the range of the order interval with stationary characteristics is preliminarily determined by this method: first, determine the interval without a unit root, that is, reject all suitable intervals of order H 0 , and define li and ui as the upper and lower bounds of the ith interval, respectively ; Then perform the intersection operation on all intervals, namely: [l 1 ,…,u 1 ]∪,…,∪[l i ,…,u i ]∪,…,∪[l n ,…,u n ], thus Determines the range of order intervals with stationary properties.
步骤5.3、计算具有平稳特性的阶数区间内Akaike信息准则值,即:Step 5.3, calculate the Akaike information criterion value in the order interval with stationary characteristics, namely:
搜索上式最小值对应的阶数定义为模型阶数,其单位根检验结果如表1所示;The order corresponding to the minimum value of the search formula is defined as the model order, and the unit root test results are shown in Table 1;
表1时、频域退化指标的单位根检验结果Table 1, the unit root test results of the degradation index in the frequency domain
步骤5.4、使用脉冲响应分析进一步分析内生变量,即时域、频域退化指标通过矢量自回归模型滞后结构的干扰的影响,并从短期或长期角度检查冲击对所有内生变量的影响,具体结果如图7所示;Step 5.4. Use impulse response analysis to further analyze the endogenous variables, the impact of the disturbance of the time domain and frequency domain degradation indicators through the vector autoregressive model lag structure, and check the impact of the shock on all endogenous variables from a short-term or long-term perspective, specific results As shown in Figure 7;
步骤5.5、利用最大似然估计对外源矢量自回归模型进行参数估计,本发明提出的平稳子空间外源矢量自回归退化趋势预测模型如下所示。随后该模型用于不同起始点下退化趋势预测,检验模型泛化能力,其预测结果如图8所示。Step 5.5, using maximum likelihood estimation to estimate the parameters of the exogenous vector autoregressive model, the stationary subspace exogenous vector autoregressive degradation trend prediction model proposed by the present invention is as follows. Then the model was used to predict the degradation trend under different starting points to test the generalization ability of the model. The prediction results are shown in Figure 8.
步骤6、为凸显本发明所述方法的有效性与必要性,构造对比试验:A,缺少第一次平稳子空间分解;B,缺少第二次平稳子空间分解以及C,基于经典自回归模型且缺少本发明方法中的二次平稳子空间分解,分别对三次对比试验进行20次不同预测起始点下退化趋势预测。由图9和表2可见:本发明所提出的方法中二次平稳子空间分解以及矢量自回归建模方法可以有效提高退化趋势精度,具有显著工程应用价值。Step 6. In order to highlight the effectiveness and necessity of the method of the present invention, a comparative experiment is constructed: A, lacking the first stationary subspace decomposition; B, lacking the second stationary subspace decomposition and C, based on the classical autoregressive model And lack of the quadratic stationary subspace decomposition in the method of the present invention, the three comparative experiments are respectively carried out 20 times to predict the degradation trend under different prediction starting points. It can be seen from Figure 9 and Table 2 that the quadratic stationary subspace decomposition and the vector autoregressive modeling method in the method proposed by the present invention can effectively improve the accuracy of the degradation trend and have significant engineering application value.
表2本发明方法的对比试验Table 2 Comparative test of the method of the present invention
步骤7、为凸显本发明方法对比其他现有预测技术的优势,分别构造不同预测起始点下长短期记忆网络(Long Short-Term Memory,LSTM)与门控循环单元(Gated RecurrentUnit,GRU)的预测情况,具体见表3所示:其中本发明方法在不同预测起始点下具有较低预测误差并且计算耗时远低于LSTM以及GRU模型。Step 7. In order to highlight the advantages of the method of the present invention compared with other existing prediction technologies, respectively construct predictions of Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) under different prediction starting points The details are shown in Table 3: the method of the present invention has lower prediction errors under different prediction starting points, and the calculation time is much lower than that of the LSTM and GRU models.
表3本发明方法与其他方法的对比Table 3 Comparison of the method of the present invention and other methods
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围内。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited thereto. Any person skilled in the art who is familiar with the technical scope disclosed by the present invention can easily think of changes or substitutions. All should be covered within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010010925.XA CN111291918B (en) | 2020-01-06 | 2020-01-06 | Rotating machine degradation trend prediction method based on stationary subspace exogenous vector autoregression |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010010925.XA CN111291918B (en) | 2020-01-06 | 2020-01-06 | Rotating machine degradation trend prediction method based on stationary subspace exogenous vector autoregression |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111291918A true CN111291918A (en) | 2020-06-16 |
CN111291918B CN111291918B (en) | 2023-04-18 |
Family
ID=71022260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010010925.XA Active CN111291918B (en) | 2020-01-06 | 2020-01-06 | Rotating machine degradation trend prediction method based on stationary subspace exogenous vector autoregression |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111291918B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111680661A (en) * | 2020-06-19 | 2020-09-18 | 哈尔滨工业大学 | A performance degradation tracking method for mechanical rotating parts based on multi-feature fusion |
CN111985380A (en) * | 2020-08-13 | 2020-11-24 | 山东大学 | Bearing degradation process state monitoring method, system, equipment and storage medium |
CN112241608A (en) * | 2020-10-13 | 2021-01-19 | 国网湖北省电力有限公司电力科学研究院 | A Lithium Battery Life Prediction Method Based on LSTM Network and Transfer Learning |
CN115236520A (en) * | 2022-07-20 | 2022-10-25 | 山东工商学院 | Prediction method and system of battery remaining service life based on ISSA-LSTM algorithm |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102661783A (en) * | 2012-04-24 | 2012-09-12 | 北京信息科技大学 | Characteristic extracting method for prediction of rotating mechanical failure trend |
CN109359791A (en) * | 2018-12-26 | 2019-02-19 | 湖南科技大学 | A method and system for predicting degradation trend of mechanical system |
CN109580222A (en) * | 2018-12-04 | 2019-04-05 | 河北科技大学 | Based on variation mode decomposition-transfer entropy bearing degradation state recognition prediction technique |
-
2020
- 2020-01-06 CN CN202010010925.XA patent/CN111291918B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102661783A (en) * | 2012-04-24 | 2012-09-12 | 北京信息科技大学 | Characteristic extracting method for prediction of rotating mechanical failure trend |
CN109580222A (en) * | 2018-12-04 | 2019-04-05 | 河北科技大学 | Based on variation mode decomposition-transfer entropy bearing degradation state recognition prediction technique |
CN109359791A (en) * | 2018-12-26 | 2019-02-19 | 湖南科技大学 | A method and system for predicting degradation trend of mechanical system |
Non-Patent Citations (1)
Title |
---|
刘玉茹等: "基于AR和PSO_SVR的故障趋势预测", 《计算机测量与控制》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111680661A (en) * | 2020-06-19 | 2020-09-18 | 哈尔滨工业大学 | A performance degradation tracking method for mechanical rotating parts based on multi-feature fusion |
CN111985380A (en) * | 2020-08-13 | 2020-11-24 | 山东大学 | Bearing degradation process state monitoring method, system, equipment and storage medium |
CN111985380B (en) * | 2020-08-13 | 2022-07-05 | 山东大学 | Method, system, device and storage medium for state monitoring of bearing degradation process |
CN112241608A (en) * | 2020-10-13 | 2021-01-19 | 国网湖北省电力有限公司电力科学研究院 | A Lithium Battery Life Prediction Method Based on LSTM Network and Transfer Learning |
CN112241608B (en) * | 2020-10-13 | 2022-08-26 | 国网湖北省电力有限公司电力科学研究院 | Lithium battery life prediction method based on LSTM network and transfer learning |
CN115236520A (en) * | 2022-07-20 | 2022-10-25 | 山东工商学院 | Prediction method and system of battery remaining service life based on ISSA-LSTM algorithm |
Also Published As
Publication number | Publication date |
---|---|
CN111291918B (en) | 2023-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wu et al. | Fault-attention generative probabilistic adversarial autoencoder for machine anomaly detection | |
Zou et al. | Bearing fault diagnosis based on combined multi-scale weighted entropy morphological filtering and bi-LSTM | |
CN111291918B (en) | Rotating machine degradation trend prediction method based on stationary subspace exogenous vector autoregression | |
CN111353482B (en) | An LSTM-based method for detecting and diagnosing hidden anomalies of fatigue factors | |
CN107316046B (en) | Fault diagnosis method based on incremental compensation dynamic self-adaptive enhancement | |
CN107677472B (en) | Bearing state noise diagnosis algorithm for network variable selection and feature entropy fusion | |
Arul et al. | Data anomaly detection for structural health monitoring of bridges using shapelet transform | |
CN105678343A (en) | Adaptive-weighted-group-sparse-representation-based diagnosis method for noise abnormity of hydroelectric generating set | |
Lin et al. | Matching pursuit network: An interpretable sparse time–frequency representation method toward mechanical fault diagnosis | |
CN113705869A (en) | Electromechanical equipment few-sample degradation trend prediction method of unsupervised meta-learning network | |
Sun et al. | Data-driven fault diagnosis method based on second-order time-reassigned multisynchrosqueezing transform and evenly mini-batch training | |
CN117540285A (en) | Bearing running state evaluation method based on energy entropy and regression type support vector machine | |
CN114563671A (en) | High-voltage cable partial discharge diagnosis method based on CNN-LSTM-Attention neural network | |
CN112067298A (en) | A Fault Diagnosis Method for Rolling Bearings Based on Hierarchical Global Fuzzy Entropy | |
Li et al. | Intelligent fault diagnosis of aeroengine sensors using improved pattern gradient spectrum entropy | |
Zhang et al. | Complementary ensemble adaptive local iterative filtering and its application to rolling bearing fault diagnosis | |
CN112069621B (en) | Method for predicting residual service life of rolling bearing based on linear reliability index | |
Yuhang et al. | Prediction of bearing degradation trend based on LSTM | |
Qi et al. | Feature classification method of frequency cepstrum coefficient based on weighted extreme gradient boosting | |
He et al. | Intelligent Fault Analysis With AIOps Technology | |
Wang et al. | Explainable machine learning for motor fault diagnosis | |
Zhong et al. | A data-driven method for remaining useful life prediction of rolling bearings under different working conditions | |
Fan et al. | A Hankel matrix-based multivariate control chart with shrinkage estimator for condition monitoring of rolling bearings | |
CN111721534A (en) | A method and system for online assessment of rolling bearing health status | |
Jauhari et al. | A feature extraction method for intelligent chatter detection in the milling process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |