CN111290146A - 基于周期性圆环-狭缝复合孔阵列的表面等离子体光开关 - Google Patents

基于周期性圆环-狭缝复合孔阵列的表面等离子体光开关 Download PDF

Info

Publication number
CN111290146A
CN111290146A CN202010217110.9A CN202010217110A CN111290146A CN 111290146 A CN111290146 A CN 111290146A CN 202010217110 A CN202010217110 A CN 202010217110A CN 111290146 A CN111290146 A CN 111290146A
Authority
CN
China
Prior art keywords
slit
optical switch
circular ring
metal film
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010217110.9A
Other languages
English (en)
Inventor
罗晓清
易建基
徐晓峰
张景朝
陈志勇
朱卫华
王新林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of South China
Original Assignee
University of South China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of South China filed Critical University of South China
Priority to CN202010217110.9A priority Critical patent/CN111290146A/zh
Publication of CN111290146A publication Critical patent/CN111290146A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0136Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  for the control of polarisation, e.g. state of polarisation [SOP] control, polarisation scrambling, TE-TM mode conversion or separation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/008Surface plasmon devices

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

基于周期性圆环‑狭缝复合孔阵列的表面等离子体光开关,由电介质基底和金属薄膜组成,金属薄膜设于电介质基底正上方,金属薄膜上设有复数个周期性阵列排布的圆环‑狭缝单元,圆环‑狭缝单元包括贯穿金属薄膜厚度方向的圆环和矩形狭缝,矩形狭缝位于圆环内、垂直于阵列周期方向且矩形狭缝的中心与圆环的圆心重合。通过改变入射光的偏振方向、金属薄膜厚度、圆环‑狭缝单元间隔长度等参数优化表面等离子体光开关的性能。本发明结构简单、制作工艺要求低、尺寸小便于集成;无泵浦光对信号光及后续光路的干扰,能够有效控制可见光波段和近红外波段的开关比,操作方便,表面等离子体光开关的功耗低。

Description

基于周期性圆环-狭缝复合孔阵列的表面等离子体光开关
技术领域
本发明涉及微纳光子器件领域,特别是一种基于周期性圆环-狭缝复合孔阵列的表面等离子体光开关。
背景技术
随着社会发展,电子器件已经很难满足人们对信息传输速度和存储量的需求。由于表面等离子体(Surface Plasmons, SPs)具有亚波长、电场局域以及局域场增强的特优良性,利用表面等离子体可以解决目前存在的衍射极限问题,使得光子器件能够小型化和集成化,极大扩展了光子器件在信息传输领域的应用。且表面等离子体光开关是通过控制外部因素改变开关中SPs的激发或传输,进而调控光的有无强弱,从而实现对光的开关操作,相对于传统的光开关,表面等离子体光开关可在小于衍射极限尺度内实现对光的控制,进而在纳米尺度上实现光开关的集成。
近年来,随着各种微纳制备技术的日渐成熟,众多表面等离子体光开关被先后实现。例如,Pala R.A.等在电介质基底上的金属薄膜表面添加光致变色分子层,并在金属薄膜中设置两个光栅,利用泵浦光照射光致变色分子层实现表面等离子体激元波导光开关。Veronis G等通过在波导中设置半导体增益介质矩形腔,实现由外界泵浦光控制金属-空气-金属波导表面等离子体光开关。中国发明专利ZL201710497191.0公开了一种基于周期性亚波长孔阵列的表面等离子体光开关。然而上述现行的表面等离子体光开关存在结构复杂集成难度大,在纳米尺度下的制作精度增加了制作难度;并且由于需要外界泵浦光控制存在泵浦光对信号光及后续光路的干扰;另外,表面等离子体光开关的开关比低,不超过10dB,使得表面等离子体光开关损耗较大,影响表面等离子体光开关的整体性能参数。
发明内容
本发明的目的是克服现有技术的上述不足而提供一种基于周期性圆环-狭缝复合孔阵列的表面等离子体光开关,该表面等离子体光开关结构简单、易于制作,无泵浦光干扰,并且具有较高的开关比,能够应用于可见光波段和近红外波段的表面等离子体光开关。
本发明的技术方案是:基于周期性圆环-狭缝复合孔阵列的表面等离子体光开关,是由电介质基底和金属薄膜组成的微纳结构,金属薄膜设置于电介质基底的正上方,金属薄膜上设有复数个圆环-狭缝单元,复数个圆环-狭缝单元周期性阵列排布于金属薄膜上,圆环-狭缝单元包括一个贯穿金属薄膜厚度方向的圆环和一个贯穿金属薄膜厚度方向且垂直于横向阵列周期方向的矩形狭缝,矩形狭缝位于圆环内,矩形狭缝的中心与圆环的圆心重合。
本发明进一步的技术方案是:所述电介质基底的电介质材料为石英或苯并环丁烯,所述电介质基底的厚度为150nm~250nm;所述金属薄膜的材料为银或金,所述金属薄膜的厚度为50nm~100nm。
本发明再进一步的技术方案是:所述圆环-狭缝单元的数量不小于9,复数个圆环-狭缝单元排列形成的阵列的形状为正方形或长方形,复数个圆环-狭缝的排列周期为500nm~800nm。
本发明更进一步的技术方案是:所述圆环的内圆半径为100~150nm,圆环的宽度为25~55nm;所述狭缝的长度为100~250nm,宽度为25~60nm;狭缝的长度小于圆环的内圆直径。
本发明与现有技术相比具有如下特点:
1、本发明的表面等离子体光开关仅由电介质基底和具有孔阵列的金属薄膜组成,尺寸小,结构简单且易于制作。
2、本发明的表面等离子体光开关只需改变入射光的偏振方向,便能有效控制可见光波段和近红外波段光的开关,扩大了表面等离子体光开关的应用场所和适应范围,且操作方便,无泵浦光对信号光及后续光路的干扰。
3、本发明的表面等离子体光开关通过改变入射光的偏振方向,能够有效地调节表面等离子体光开关的开关比,使得表面等离子体光开关具有较高的开关比,有效降低表面等离子体光开关的能耗,提高表面等离子体光开关的使用性能。
以下结合附图和具体实施方式对本发明的详细结构作进一步描述。
附图说明
图1为本发明的结构示意图;
图2为圆环-狭缝单元的二维侧视剖面示意图;
图3为圆环-狭缝单元的截面图;
图4为本发明实施例一在可见光波段的透过率谱;
图5为本发明实施例一在近红外波段的透过率谱;
图6为本发明实施例二在可见光波段的透过率谱;
图7为本发明实施例二在近红外波段的透过率谱;
图8为本发明实施例三在可见光波段的透过率谱;
图9为本发明实施例三在近红外波段的透过率谱;
图10为本发明实施例四在光通信波段下的透过率谱。
具体实施方式
实施例一,如图1所示,基于周期性圆环-狭缝复合孔阵列的表面等离子体光开关,是由电介质基底1和金属薄膜2组成的微纳结构,金属薄膜2设置于电介质基底1的正上方。
所述电介质基底的电介质材料为石英,石英的厚度为150nm。电介质基底的电介质材料也可以是其他适合加工的任何电介质,例如苯并环丁烯等。
所述金属薄膜的材料为金,设置金属薄膜的材料金的厚度为50nm。金属薄膜的材料也可以是其他能产生表面等离子体的金属,例如银等。
金属薄膜2上设有9个圆环-狭缝单元3,9个圆环-狭缝单元3周期性阵列排布于金属薄膜2上,9个圆环-狭缝单元3按照3×3的方式呈正方形排列于电介质基底1上,其排列周期为600nm。
圆环-狭缝单元3包括一个贯穿金属薄膜厚度方向的圆环3.1和一个贯穿金属薄膜厚度方向且垂直于圆环-狭缝单元3的横向阵列周期方向的矩形狭缝3.2,矩形狭缝3.2位于圆环3.1内且矩形狭缝3.2的中心与圆环3.1的圆心重合。所述圆环3.1的内圆半径为100nm,圆环3.1的宽度为25nm,即圆环3.1的外圆半径为125nm。狭缝3.2的长度为150nm,宽度为30nm。
将该基于周期性圆环-狭缝复合孔阵列的表面等离子体光开关界定于X、Y、Z笛卡尔正交坐标系,其中X轴、Z轴分别为横向阵列周期方向、纵向阵列周期方向,Y轴垂直于X、Z轴构成的平面,K为入射光,L为透射光,E为入射光的电场强度方向。入射光K从电介质基底1方向垂直入射到金属薄膜2的底侧,并从金属薄膜2的另一侧透射出来形成透射光L,当入射光K的偏振方向沿X轴方向时,该表面等离子体光开关处于“开”状态;当入射光K的偏振方向沿Z轴方向时,该表面等离子体光开关处于“关”状态。改变入射光K的偏振方向,是本领域的公知技术。
另外,本领域技术人员可知,入射光K的偏振方向沿着X轴方向,即矩形狭缝3.2的长度方向垂直于入射光K的偏振方向分布时,矩形狭缝3.2产生表面等离子体(SurfacePlasmon Polariton, SPP)共振,在透射光L传输谱的可见光波段(波长为400nm~750nm)能够观测到SPP共振现象。入射光K的偏振方向沿着Z轴方向,即矩形狭缝3.2的长度方向平行于入射光K的偏振方向分布时,矩形狭缝3.2不能激发SPP共振。透射光L传输谱的可见光波段(波长为400nm~750nm),无论入射光K的偏振方向为哪个方向,圆环3.1都有SPP共振,但是这种SPP共振非常微弱,不足以影响表面等离子体开关效果。
入射光K的偏振方向沿着X轴方向,当矩形狭缝3.2的长度方向垂直于入射光K的偏振方向分布时,矩形狭缝3.2的局域表面等离子体(Localized Surface Plasmon, LSP)共振最强,在透射光L传输谱的近红外波段(波长为750nm~1600nm)能够观测到LSP共振现象;当矩形狭缝3.2的长度方向平行于入射光K的偏振方向分布时,矩形狭缝3.2不存在LSP共振。无论入射光K的偏振方向为哪个方向,在这波段圆环3.1几乎不形成LSP共振。
如图1所示,入射光K从电介质基底1方向垂直入射到金属薄膜2的底侧,在金属薄膜2的圆环-狭缝单元3产生表面等离子体效应,并从金属薄膜2的另一侧透射出来。改变入射光K的偏振方向,进而控制圆环-狭缝单元3内矩形狭缝3.2是否发生SPP或LSP共振,从而使基于周期性圆环-狭缝复合孔阵列的表面等离子体光开关结构上周期性阵列排布的复数个圆环-狭缝单元3在可见光波段和近红外波段的透射率发生改变,实现基于表面等离子体在可见光波段和近红外波段的光开关操作。图4-5分别示出了在可见光波段透射率谱和近红外波段透射率谱。从图4中能看出此时可见光波段的开关波长λ0为619 nm,光开关处于开状态时λ0处的透射峰值Ton为0.5824,光开关处于关状态时λ0处的透过率Toff仅为0.05716,开关比=10lg(Ton/Toff) =10.08dB;此时表面等离子体的光开关的单位时间内储存的总能量与单位时间内损耗的能量比值即品质因数Q约等于30。从图5中能看出此时近红外波段的开关波长λ0为1064nm,光开关处于开状态时λ0处的透射峰值Ton为0.3978,光开关处于关状态时λ0处的透过率Toff仅为0.01057,开关比=10lg(Ton/Toff)=15.6dB。
实施例二,实施例二与实施例一的结构类似,区别在于:电介质基底1的材料为石英,厚度为225 nm;金属薄膜2的材料为银,厚度为55nm。圆环-狭缝单元3的排列周期为700nm,狭缝的长度和宽度分别为100nm和25nm,圆环的内半径和外半径分别为120nm和175nm。图6-7分别示出了实施例二的表面等离子体光开关在可见光波段透射率谱和近红外波段透射率谱。从图6中能看出此时可见光波段的开关波长λ0为631nm,光开关处于开状态时λ0处的透射峰值Ton为0.5697,光开关处于关状态时λ0处的透过率Toff仅为0.05596,开关比=10lg(Ton/Toff)=10dB;此时表面等离子体的光开关的单位时间内储存的总能量与单位时间内损耗的能量比值即品质因数Q约等于31。从图7中能看出此时近红外波段的开关波长λ0为1087nm,光开关处于开状态时λ0处的透射峰值Ton为0.4986,光开关处于关状态时λ0处的透过率Toff仅为0.0119,开关比=10lg(Ton/Toff)=16.23dB。
实施例三,实施例三与实施例一的结构类似,区别在于:电介质基底1的材料为石英,厚度为250nm;金属薄膜2的材料为银,厚度为100nm。圆环-狭缝单元3的排列周期为800nm,狭缝的长度和宽度分别为250nm和60nm,圆环的内半径和外半径分别为150nm和200nm。图8-9示出了实施例三的表面等离子体光开关在可见光波段透射率谱和近红外波段透射率谱。从图8中能看出此时可见光波段的开关波长λ0为640nm,光开关处于开状态时λ0处的透射峰值Ton为0.5536,光开关处于关状态时λ0处的透过率Toff仅为0.05418,开关比=10lg(Ton/Toff)=10.09dB;此时表面等离子体的光开关的单位时间内储存的总能量与单位时间内损耗的能量比值即品质因数Q约等于32。从图9中能看出此时近红外波段的开关波长λ0为1092nm,光开关处于开状态时λ0处的透射峰值Ton为0.5366,光开关处于关状态时λ0处的透过率Toff仅为0.0126,开关比=10lg(Ton/Toff)=16.29dB。
实施例四,实施例四与实施例一的结构类似,区别在于:电介质基底1的材料为石英,厚度为225nm;金属薄膜2的材料为银,厚度为50nm。圆环-狭缝单元3的排列周期为600nm,狭缝的长度和宽度分别为100nm和25nm,圆环的内半径和外半径分别为121nm和175nm。图10示出了实施例四在光通信环境下使用时的透射率谱。从图10中能看出此时可见光波段的开关波长λ0为1310 nm,光开关处于开状态时λ0处的透射峰值Ton为0.9154,光开关处于关状态时λ0处的透过率Toff仅为0.01518,开关比=10lg(Ton/Toff)= 17.8dB,由此可知该实施例的表面等离子体光开关实现了对近红外波段1310nm光的开关操作,表明该实施例的表面等离子体光开关能够在光通信领域进行应用。
对比实验:
为进一步对比基于周期性圆环-狭缝复合孔阵列表面等离子体光开关的性能,在可见光波段和近红外波段下,对现有技术的基于周期性圆环-狭缝复合孔阵列表面等离子体光开关和基于周期性圆四尖端孔阵列表面等离子体光开关,分别在它们开状态下的品质因数和开关比进行实验对比。对比结果如下表1所示。
表1 两种类型表面等离子体光开关的对比分析结果
Figure 38357DEST_PATH_IMAGE002
由表1分析能够知道,基于周期性圆四尖端孔阵列表面等离子体光开关在可见光波段(500nm~750nm)没有光开关的能力,而基于周期性圆环-狭缝复合孔阵列表面等离子体光开关具有高品质因数且具有较高开关比的光开关能力。在近红外波段(750nm~1600nm),基于周期性圆环-狭缝复合孔阵列表面等离子体光开关相较于基于周期性圆四尖端孔阵列表面等离子体光开关,其品质因数高了近7,开关比高了近6dB,大大提高了光开关的性能参数。同时基于周期性圆四尖端孔阵列表面等离子体光开关在微纳领域制作非常复杂,对光刻机的精度需要很高的要求,而基于周期性圆环-狭缝复合孔阵列表面等离子体光开关在形状上的制作相对比较容易,且对设备的要求不高。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (4)

1.基于周期性圆环-狭缝复合孔阵列的表面等离子体光开关,是由电介质基底和金属薄膜组成的微纳结构,金属薄膜设置于电介质基底的正上方,其特征是:金属薄膜上设有复数个圆环-狭缝单元,复数个圆环-狭缝单元周期性阵列排布于金属薄膜上,圆环-狭缝单元包括一个贯穿金属薄膜厚度方向的圆环和一个贯穿金属薄膜厚度方向且垂直于横向阵列周期方向的矩形狭缝,矩形狭缝位于圆环内,矩形狭缝的中心与圆环的圆心重合。
2.如权利要求1所述的基于周期性圆环-狭缝复合孔阵列的表面等离子体光开关,其特征是:所述电介质基底的电介质材料为石英或苯并环丁烯,所述电介质基底的厚度为150nm~250nm;所述金属薄膜的材料为银或金,所述金属薄膜的厚度为50nm~100nm。
3.如权利要求1所述的基于周期性圆环-狭缝复合孔阵列的表面等离子体光开关,其特征是:所述圆环-狭缝单元的数量不小于9,复数个圆环-狭缝单元排列形成的阵列的形状为正方形或长方形,复数个圆环-狭缝的排列周期为500nm~800nm。
4.如权利要求1所述的基于周期性圆环-狭缝复合孔阵列的表面等离子体光开关,其特征是:所述圆环的内圆半径为100~150nm,圆环的宽度为25~55nm;所述狭缝的长度为100~250nm,宽度为25~60nm;狭缝的长度小于圆环的内圆直径。
CN202010217110.9A 2020-03-25 2020-03-25 基于周期性圆环-狭缝复合孔阵列的表面等离子体光开关 Pending CN111290146A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010217110.9A CN111290146A (zh) 2020-03-25 2020-03-25 基于周期性圆环-狭缝复合孔阵列的表面等离子体光开关

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010217110.9A CN111290146A (zh) 2020-03-25 2020-03-25 基于周期性圆环-狭缝复合孔阵列的表面等离子体光开关

Publications (1)

Publication Number Publication Date
CN111290146A true CN111290146A (zh) 2020-06-16

Family

ID=71024793

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010217110.9A Pending CN111290146A (zh) 2020-03-25 2020-03-25 基于周期性圆环-狭缝复合孔阵列的表面等离子体光开关

Country Status (1)

Country Link
CN (1) CN111290146A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112630878A (zh) * 2021-01-12 2021-04-09 西安电子科技大学 基于纳米孔阵列结构的滤光片

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112630878A (zh) * 2021-01-12 2021-04-09 西安电子科技大学 基于纳米孔阵列结构的滤光片

Similar Documents

Publication Publication Date Title
JP5741888B2 (ja) 光学フィルタ及び表示装置
CN105629364B (zh) 一种波长选择型超表面器件
JP2006350232A (ja) 光学材料、それを用いた光学素子およびその作製方法
US9927559B2 (en) Wavelength-controlled directivity of all-dielectric optical nano-antennas
US20200217984A1 (en) Terahertz Metamaterial Waveguide And Device
CN102981205B (zh) 亚波长矩形环阵列四分之一波片及其制作方法
CN108345054B (zh) 一种滤波方法
CN102338894B (zh) 一种等离子体平板透镜及其近场聚焦方法
CN209606646U (zh) 基于周期性亚波长圆环孔阵列的表面等离子体滤光器
Senthil Murugan et al. Position-dependent coupling between a channel waveguide and a distorted microsphere resonator
Serebryannikov et al. Multiband one-way polarization conversion in complementary split-ring resonator based structures by combining chirality and tunneling
CN111290146A (zh) 基于周期性圆环-狭缝复合孔阵列的表面等离子体光开关
CN109683219A (zh) 基于周期性亚波长圆环孔阵列的表面等离子体滤光器
CN211956048U (zh) 基于周期性圆环-狭缝复合孔阵列的表面等离子体光开关
CN114879282A (zh) 一种基于介质超表面的激光防护膜及其制备方法
JP2016051162A (ja) 金属膜に周期的に非対称開口を配設した位相差板
Gan et al. Tailoring the emission polarization with metasurface-based emitters designed on a plasmonic ridge waveguide
CN111045148A (zh) 基于周期性亚波长蹄型结构孔阵列的表面等离子体分光器
CN113568099B (zh) 基于纳米微腔的可见光分束滤波薄膜及其设计方法
CN113589406B (zh) 基于周期性圆环-抛物线型复合孔阵列的数字超表面
CN110031924B (zh) 一种用于实现可调谐表面等离激元分频的方法及系统
CN1327580C (zh) 微型单光子光源
Lu et al. Bidirectional polarization splitting couplers based on dielectric-coated metallic gratings
Wan et al. A space filter possessing polarization separation characteristics realized by 1-D magnetized plasma photonic crystals
CN110579826A (zh) 基于mim矩形腔阵列结构的表面等离子体滤波器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination