CN111269570A - Preparation method of carbonized towel gourd/graphene-carbon nanotube composite material - Google Patents
Preparation method of carbonized towel gourd/graphene-carbon nanotube composite material Download PDFInfo
- Publication number
- CN111269570A CN111269570A CN202010214953.3A CN202010214953A CN111269570A CN 111269570 A CN111269570 A CN 111269570A CN 202010214953 A CN202010214953 A CN 202010214953A CN 111269570 A CN111269570 A CN 111269570A
- Authority
- CN
- China
- Prior art keywords
- graphene
- composite material
- carbon nanotube
- carbonized
- loofah
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 69
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 67
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 66
- 238000002360 preparation method Methods 0.000 title claims abstract description 24
- 235000009852 Cucurbita pepo Nutrition 0.000 title claims abstract 7
- 241000219122 Cucurbita Species 0.000 title claims 6
- 244000280244 Luffa acutangula Species 0.000 claims abstract description 65
- 235000009814 Luffa aegyptiaca Nutrition 0.000 claims abstract description 65
- 239000004372 Polyvinyl alcohol Substances 0.000 claims abstract description 49
- 229920002451 polyvinyl alcohol Polymers 0.000 claims abstract description 49
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 38
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 21
- 238000003756 stirring Methods 0.000 claims abstract description 19
- 239000000463 material Substances 0.000 claims abstract description 16
- 238000003763 carbonization Methods 0.000 claims abstract description 15
- 239000003822 epoxy resin Substances 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 12
- 239000000203 mixture Substances 0.000 claims abstract description 12
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 12
- XLJMAIOERFSOGZ-UHFFFAOYSA-M cyanate Chemical compound [O-]C#N XLJMAIOERFSOGZ-UHFFFAOYSA-M 0.000 claims abstract description 9
- 239000000805 composite resin Substances 0.000 claims abstract description 5
- 238000005266 casting Methods 0.000 claims abstract description 3
- 238000002156 mixing Methods 0.000 claims abstract description 3
- 238000001035 drying Methods 0.000 claims abstract 3
- 239000004643 cyanate ester Substances 0.000 claims description 37
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- 239000008367 deionised water Substances 0.000 claims description 8
- 229910021641 deionized water Inorganic materials 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 241000219138 Luffa Species 0.000 claims description 6
- 235000003956 Luffa Nutrition 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims 1
- 238000001816 cooling Methods 0.000 claims 1
- 238000005520 cutting process Methods 0.000 claims 1
- 238000004100 electronic packaging Methods 0.000 abstract description 2
- 240000001980 Cucurbita pepo Species 0.000 abstract 1
- 239000000835 fiber Substances 0.000 description 6
- 239000012299 nitrogen atmosphere Substances 0.000 description 5
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000002028 Biomass Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229920002488 Hemicellulose Polymers 0.000 description 1
- 239000002042 Silver nanowire Substances 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 150000001913 cyanates Chemical class 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010411 electrocatalyst Substances 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 239000002135 nanosheet Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/001—Conductive additives
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
技术领域technical field
本发明属于复合材料制备技术领域,具体涉及一种碳化丝瓜/石墨烯-碳纳米管复合材料的制备方法。The invention belongs to the technical field of composite material preparation, and in particular relates to a preparation method of a carbonized loofah/graphene-carbon nanotube composite material.
背景技术Background technique
随着电子器件和电磁波技术在民用和军用领域的发展,电磁波污染已日益成为威胁人类健康和附近器件固有性能的严重威胁。因此,设计和制备具有较强屏蔽性能和环境适应性的高效电磁干扰(EMI)屏蔽材料对解决这一问题具有十分重要的意义。With the development of electronic devices and electromagnetic wave technology in civil and military fields, electromagnetic wave pollution has increasingly become a serious threat to human health and the inherent performance of nearby devices. Therefore, the design and preparation of high-efficiency electromagnetic interference (EMI) shielding materials with strong shielding performance and environmental adaptability are of great significance to solve this problem.
多孔结构的形成是显著缓解电磁波从空气中传播到电磁屏蔽材料中的一个重大技术进步,使二次电磁辐射污染显著降低。近年来,生物质炭以其优异的性能和环保的特性,在电催化剂、CO2吸附剂、超级电容器、电磁波吸收剂等领域有着广阔的应用前景。丝瓜是世界上最常见的生物原料之一,广泛种植于温带和热带地区,具有一定的食用和药用价值。它由纤维素、半纤维素和木质素组成。其关键是天然丝瓜经炭化后,呈现出微观的细胞结构,并保持原有的形态特征,这有利于构建完整的三维互连导电网络,并因其独特的蜂窝状多孔结构而被视为电磁屏蔽的先进候选材料。为了进一步提高炭化生物质基原材料的导电性,从而提高其EMI-SE值,可以将AgNWs、碳纳米管(CNT)和石墨烯纳米片(GNSs)等二次导电填料引入到所制备的复合材料中。其中,CNT和GNSs具有超高导电性、重量轻、耐腐蚀、热稳定性高等特点,已被证明是一种优良的电磁屏蔽材料。研究表明,复合材料的三维高连通导电网络对其导电性和电磁屏蔽效果起着至关重要的作用。考虑到快速发展的航空航天和国防应用的迫切需求,氰酸酯(CE)以其极低的吸湿性、良好的力学性能、优异的抗辐射性能和优异的尺寸稳定性被用作聚合物基体。The formation of porous structures is a major technological advance in significantly mitigating the propagation of electromagnetic waves from the air into electromagnetic shielding materials, resulting in a significant reduction in secondary electromagnetic radiation pollution. In recent years, biomass carbon has broad application prospects in the fields of electrocatalysts, CO2 adsorbents, supercapacitors, electromagnetic wave absorbers, etc. due to its excellent performance and environmental protection characteristics. Luffa is one of the most common biological raw materials in the world. It is widely grown in temperate and tropical regions and has certain edible and medicinal value. It consists of cellulose, hemicellulose and lignin. The key is that after carbonization, natural loofah exhibits a microscopic cellular structure and maintains the original morphological characteristics, which is conducive to the construction of a complete three-dimensional interconnected conductive network, and is regarded as electromagnetic due to its unique honeycomb-like porous structure. Advanced candidate materials for shielding. In order to further enhance the electrical conductivity of carbonized biomass-based raw materials, thereby enhancing their EMI-SE values, secondary conductive fillers such as AgNWs, carbon nanotubes (CNTs), and graphene nanosheets (GNSs) can be introduced into the as-prepared composites middle. Among them, CNTs and GNSs have the characteristics of ultra-high electrical conductivity, light weight, corrosion resistance, and high thermal stability, and have been proven to be excellent electromagnetic shielding materials. The study shows that the three-dimensional highly connected conductive network of the composite material plays a crucial role in its electrical conductivity and electromagnetic shielding effect. Considering the urgent needs of rapidly developing aerospace and defense applications, cyanate esters (CE) are used as polymer matrices due to their extremely low hygroscopicity, good mechanical properties, excellent radiation resistance and excellent dimensional stability .
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种碳化丝瓜/石墨烯-碳纳米管(CL/GNSs-CNT/CE)复合材料的制备方法,解决了现有技术中复合材料电磁屏蔽性能低的问题。The purpose of the present invention is to provide a preparation method of a carbonized loofah/graphene-carbon nanotube (CL/GNSs-CNT/CE) composite material, which solves the problem of low electromagnetic shielding performance of the composite material in the prior art.
本发明所采用的技术方案是,一种碳化丝瓜/石墨烯-碳纳米管复合材料的制备方法,具体步骤如下:The technical solution adopted in the present invention is, a preparation method of a carbonized loofah/graphene-carbon nanotube composite material, the specific steps are as follows:
步骤1,将聚乙烯醇颗粒溶于去离子水中,于90℃水浴锅中反应1~2h,得到质量浓度为80mg/mL的聚乙烯醇溶液;Step 1, dissolving the polyvinyl alcohol particles in deionized water, and reacting in a 90° C. water bath for 1-2 hours to obtain a polyvinyl alcohol solution with a mass concentration of 80 mg/mL;
步骤2,将石墨烯和碳纳米管分散在聚乙烯醇溶液中,超声搅拌,得到石墨烯-碳纳米管/聚乙烯醇溶液;Step 2, dispersing graphene and carbon nanotubes in a polyvinyl alcohol solution, and ultrasonically stirring to obtain a graphene-carbon nanotube/polyvinyl alcohol solution;
步骤3,制备碳化丝瓜/石墨烯-碳纳米管复合材料;Step 3, preparing carbonized loofah/graphene-carbon nanotube composite material;
步骤4,制备碳化丝瓜/石墨烯-碳纳米管/氰酸酯树脂复合材料。Step 4, preparing the carbonized loofah/graphene-carbon nanotube/cyanate resin composite material.
本发明的特点还在于,The present invention is also characterized in that,
步骤2中,石墨烯、碳纳米管和聚乙烯醇溶液的质量比为0.025-0.062:0.008:10;搅拌时间为30min~60min。In step 2, the mass ratio of graphene, carbon nanotubes and polyvinyl alcohol solution is 0.025-0.062:0.008:10; the stirring time is 30min-60min.
步骤3中,制备碳化丝瓜/石墨烯-碳纳米管复合材料,具体步骤如下:In step 3, the carbonized loofah/graphene-carbon nanotube composite material is prepared, and the specific steps are as follows:
步骤3.1,将丝瓜络清洗干净,切成尺寸为40×30mm的矩形丝瓜络,放置在60℃的真空烘箱中干燥4h,将石墨烯-碳纳米管/聚乙烯醇溶液浇在矩形丝瓜络上,放置在60℃真空烘箱中干燥4h后压实;Step 3.1, clean the loofah, cut it into a rectangular loofah with a size of 40×30mm, place it in a vacuum oven at 60°C for 4 hours, and pour the graphene-carbon nanotube/polyvinyl alcohol solution on the rectangular loofah , placed in a 60°C vacuum oven to dry for 4 hours and then compacted;
矩形丝瓜络和石墨烯-碳纳米管/聚乙烯醇溶液的质量比为3:10;The mass ratio of rectangular loofah and graphene-carbon nanotube/polyvinyl alcohol solution is 3:10;
步骤3.2,将压实的矩形丝瓜络放入管式炉中进行碳化,得到碳化丝瓜/石墨烯-碳纳米管复合材料。Step 3.2, putting the compacted rectangular loofah into a tube furnace for carbonization to obtain a carbonized loofah/graphene-carbon nanotube composite material.
步骤3.2中,碳化条件具体为:以50~100mL/s的速率通入氮气,以5℃/min的速率升温至800~1200℃并保温2h,冷却至室温。In step 3.2, the carbonization conditions are as follows: nitrogen is introduced at a rate of 50-100 mL/s, the temperature is raised to 800-1200° C. at a rate of 5° C./min, kept for 2 hours, and cooled to room temperature.
步骤4中,具体为:将氰酸酯和环氧树脂混合,在80℃的条件下搅拌30min,之后浇铸在碳化丝瓜/石墨烯-碳纳米管复合材料上,先于120℃的条件下固化1h,再于150℃的条件下固化2h,之后再于180℃的条件下固化2h,最后于200℃的条件下固化2h,得到碳化丝瓜/石墨烯-碳纳米管/氰酸酯树脂复合材料。In step 4, specifically: mixing cyanate ester and epoxy resin, stirring at 80°C for 30 minutes, then casting on the carbonized loofah/graphene-carbon nanotube composite material, and curing at 120°C first 1h, then cured at 150°C for 2h, then cured at 180°C for 2h, and finally cured at 200°C for 2h to obtain the carbonized loofah/graphene-carbon nanotube/cyanate resin composite material .
氰酸酯、环氧树脂和碳化丝瓜/石墨烯-碳纳米管复合材料的质量比为4:1:8。The mass ratio of cyanate ester, epoxy resin and carbonized loofah/graphene-carbon nanotube composite was 4:1:8.
本发明的有益效果是,通过高度互联三维导电网络的设计,制备出了低填料、低厚度、高电磁屏蔽性能的复合材料;同时,该制备方法简便可行,具有较低的生产成本,易于批量化生产。The beneficial effect of the present invention is that, through the design of a highly interconnected three-dimensional conductive network, a composite material with low filler, low thickness and high electromagnetic shielding performance is prepared; at the same time, the preparation method is simple and feasible, has low production cost, and is easy to batch. production.
附图说明Description of drawings
图1是本发明方法中不同石墨烯含量下CL/GNSs-CNT/CE复合材料的总电磁屏蔽效能(SET)图;Fig. 1 is the total electromagnetic shielding effectiveness (SET) figure of CL/ GNSs -CNT/CE composite material under different graphene contents in the method of the present invention;
图2是本发明方法中不同石墨烯含量下CL/GNSs-CNT/CE复合材料的SER、SEA图;Fig. 2 is the SER, SE A figure of CL/ GNSs -CNT/CE composite material under different graphene contents in the method of the present invention;
图3是本发明方法中不同碳化温度下CL/GNSs-CNT/CE复合材料的总电磁屏蔽效能(SET)图;3 is a graph of the total electromagnetic shielding effectiveness (SET ) of CL/ GNSs -CNT/CE composites at different carbonization temperatures in the method of the present invention;
图4是本发明方法中不同碳化温度下CL/GNSs-CNT/CE复合材料的SER、SEA图。4 is the SER and SE A diagrams of the CL/GNSs-CNT/CE composite material at different carbonization temperatures in the method of the present invention .
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明进行详细说明。The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments.
本发明一种碳化丝瓜/石墨烯-碳纳米管(CL/GNSs-CNT/CE)复合材料的制备方法,具体步骤如下:The present invention is a preparation method of carbonized loofah/graphene-carbon nanotube (CL/GNSs-CNT/CE) composite material, and the specific steps are as follows:
步骤1,将聚乙烯醇颗粒溶于去离子水中,于90℃水浴锅中反应1~2h,得到质量浓度为80mg/mL的聚乙烯醇溶液;Step 1, dissolving the polyvinyl alcohol particles in deionized water, and reacting in a 90° C. water bath for 1-2 hours to obtain a polyvinyl alcohol solution with a mass concentration of 80 mg/mL;
步骤2,将石墨烯和碳纳米管分散在聚乙烯醇溶液中,超声搅拌30min~60min,得到石墨烯-碳纳米管/聚乙烯醇溶液;Step 2, dispersing graphene and carbon nanotubes in a polyvinyl alcohol solution, and ultrasonically stirring for 30-60 minutes to obtain a graphene-carbon nanotube/polyvinyl alcohol solution;
石墨烯、碳纳米管和聚乙烯醇溶液的质量比为0.025-0.062:0.008:10;The mass ratio of graphene, carbon nanotubes and polyvinyl alcohol solution is 0.025-0.062:0.008:10;
石墨烯的生产产家分别为厦门Knano石墨烯公司;碳纳米管的生产产家为比利时Nanocyl S.A.Nanocyl NC7000。The producers of graphene are Xiamen Knano Graphene Company; the producer of carbon nanotubes is Belgian Nanocyl S.A. Nanocyl NC7000.
石墨烯的厚度<30nm;碳纳米管的平均直径是9.5nm;The thickness of graphene is <30nm; the average diameter of carbon nanotubes is 9.5nm;
步骤3,制备碳化丝瓜/石墨烯-碳纳米管(CL/GNSs-CNT)复合材料,具体步骤如下:Step 3, preparing the carbonized loofah/graphene-carbon nanotube (CL/GNSs-CNT) composite material, the specific steps are as follows:
步骤3.1,将丝瓜络清洗干净,切成尺寸为40×30mm的矩形丝瓜络,放置在60℃的真空烘箱中干燥4h,将石墨烯-碳纳米管/聚乙烯醇溶液浇在矩形丝瓜络上,使溶液均匀包裹在矩形丝瓜络纤维上,放置在60℃真空烘箱中干燥4h后压实;Step 3.1, clean the loofah, cut it into a rectangular loofah with a size of 40×30mm, place it in a vacuum oven at 60°C for 4 hours, and pour the graphene-carbon nanotube/polyvinyl alcohol solution on the rectangular loofah , so that the solution is evenly wrapped on the rectangular loofah fibers, placed in a vacuum oven at 60 °C for 4 hours, and then compacted;
矩形丝瓜络和石墨烯-碳纳米管/聚乙烯醇溶液的质量比为3:10;The mass ratio of rectangular loofah and graphene-carbon nanotube/polyvinyl alcohol solution is 3:10;
步骤3.2,将压实的矩形丝瓜络放入管式炉中进行碳化,得到碳化丝瓜/石墨烯-碳纳米管(CL/GNSs-CNT)复合材料;Step 3.2, putting the compacted rectangular loofah into a tube furnace for carbonization to obtain a carbonized loofah/graphene-carbon nanotube (CL/GNSs-CNT) composite material;
碳化条件具体为:以50~100mL/s的速率通入氮气,以5℃/min的速率升温至800~1200℃并保温2h,冷却至室温;The carbonization conditions are as follows: nitrogen is introduced at a rate of 50-100 mL/s, heated to 800-1200°C at a rate of 5°C/min, kept for 2 hours, and cooled to room temperature;
步骤4,制备碳化丝瓜/石墨烯-碳纳米管/氰酸酯树脂(CL/GNSs-CNT/CE)复合材料;Step 4, preparing carbonized loofah/graphene-carbon nanotube/cyanate resin (CL/GNSs-CNT/CE) composite material;
具体为:将氰酸酯(BADCy)和环氧树脂(E-51)混合,在80℃的条件下搅拌30min,之后浇铸在CL/GNSs-CNT复合材料上,先于120℃的条件下固化1h,再于150℃的条件下固化2h,之后再于180℃的条件下固化2h,最后于200℃的条件下固化2h,得到碳化丝瓜/石墨烯-碳纳米管/氰酸酯树脂(CL/GNSs-CNT/CE)复合材料。Specifically: mix cyanate ester (BADCy) and epoxy resin (E-51), stir at 80°C for 30min, cast on CL/GNSs-CNT composite material, and cure at 120°C first 1 h, then cured at 150 °C for 2 h, then cured at 180 °C for 2 h, and finally cured at 200 °C for 2 h to obtain carbonized loofah/graphene-carbon nanotubes/cyanate resin (CL /GNSs-CNT/CE) composites.
氰酸酯、环氧树脂和CL/GNSs-CNT复合材料的质量比为4:1:8。The mass ratio of cyanate ester, epoxy resin and CL/GNSs-CNT composite was 4:1:8.
实施例1Example 1
一种CL/GNSs-CNT/CE复合材料的制备方法,具体步骤如下:A preparation method of CL/GNSs-CNT/CE composite material, the specific steps are as follows:
步骤1,将8g聚乙烯醇颗粒溶于92ml去离子水中,于90℃水浴锅中反应1h,得到质量浓度为80mg/mL的聚乙烯醇溶液;Step 1, dissolve 8g of polyvinyl alcohol particles in 92ml of deionized water, and react in a 90°C water bath for 1 hour to obtain a polyvinyl alcohol solution with a mass concentration of 80mg/mL;
步骤2,将3wt%石墨烯和1wt%碳纳米管分散在10ml上述聚乙烯醇溶液中,超声搅拌30min~60min,得到石墨烯-碳纳米管/聚乙烯醇溶液;Step 2, dispersing 3wt% graphene and 1wt% carbon nanotubes in 10ml of the above polyvinyl alcohol solution, and ultrasonically stirring for 30min-60min to obtain a graphene-carbon nanotube/polyvinyl alcohol solution;
步骤3,制备CL/GNSs-CNT复合材料,具体步骤如下:Step 3, prepare the CL/GNSs-CNT composite material, and the specific steps are as follows:
步骤3.1,将丝瓜络洗净,切取40×30mm大小的矩形,放置在60℃真空烘箱中烘干,将石墨烯-碳纳米管/聚乙烯醇溶液浇在丝瓜络上,使溶液均匀包裹在丝瓜络纤维上,放置在60℃真空烘箱中烘干后压实;Step 3.1, wash the loofah, cut a rectangle of
步骤3.2,将上述被压实的丝瓜放入管式炉专用的矩形船中,在均匀的氮气气氛中,800℃下保温2h,升温速率为5℃/min,得到CL/GNSs-CNT复合材料;Step 3.2, put the above-mentioned compacted loofah into a rectangular boat dedicated to the tube furnace, and keep it at 800 °C for 2 h in a uniform nitrogen atmosphere, with a heating rate of 5 °C/min to obtain a CL/GNSs-CNT composite material ;
步骤4,制备CL/GNSs-CNT/CE复合材料;Step 4, preparing CL/GNSs-CNT/CE composite material;
具体为:将2g氰酸酯(BADCy)和0.5g环氧树脂(E-51)在80℃下混合,搅拌30min,然后浇铸在CL/GNSs-CNT上,先于120℃的条件下固化1h,再于150℃的条件下固化2h,之后再于180℃的条件下固化2h,最后于200℃的条件下固化2h,得到CL/GNSs-CNT/CE复合材料。Specifically: mix 2g cyanate ester (BADCy) and 0.5g epoxy resin (E-51) at 80°C, stir for 30min, then cast on CL/GNSs-CNT, and cure at 120°C for 1h first , and then cured at 150 °C for 2 h, then at 180 °C for 2 h, and finally at 200 °C for 2 h to obtain CL/GNSs-CNT/CE composites.
相比于商用的电磁屏蔽材料(20dB),实施例1制备的CL/GNSs-CNT/CE复合材料的电磁屏蔽效能为23.6dB,相应的提高了18%。Compared with the commercial electromagnetic shielding material (20dB), the electromagnetic shielding efficiency of the CL/GNSs-CNT/CE composite prepared in Example 1 is 23.6dB, a corresponding increase of 18%.
实施例2Example 2
一种CL/GNSs-CNT/CE复合材料的制备方法,具体步骤如下:A preparation method of CL/GNSs-CNT/CE composite material, the specific steps are as follows:
步骤1,将8g聚乙烯醇颗粒溶于92ml去离子水中,于90℃水浴锅中反应1~2h,得到质量浓度为80mg/ml的聚乙烯醇溶液;Step 1, dissolve 8g of polyvinyl alcohol particles in 92ml of deionized water, and react in a 90°C water bath for 1 to 2 hours to obtain a polyvinyl alcohol solution with a mass concentration of 80mg/ml;
步骤2,将5wt%石墨烯和1wt%碳纳米管分散在10ml上述聚乙烯醇溶液中,超声搅拌40min,得到石墨烯-碳纳米管/聚乙烯醇溶液;Step 2, dispersing 5wt% graphene and 1wt% carbon nanotubes in 10ml of the above polyvinyl alcohol solution, and ultrasonically stirring for 40min to obtain a graphene-carbon nanotube/polyvinyl alcohol solution;
步骤3,制备CL/GNSs-CNT复合材料,具体步骤如下:Step 3, prepare the CL/GNSs-CNT composite material, and the specific steps are as follows:
步骤3.1,将丝瓜络洗净,切取40×30mm大小的矩形,放置在60℃真空烘箱中烘干,将石墨烯-碳纳米管/聚乙烯醇溶液浇在丝瓜络上,使溶液均匀包裹在丝瓜络纤维上,放置在60℃真空烘箱中烘干后压实;Step 3.1, wash the loofah, cut a rectangle of
步骤3.2,将上述被压实的丝瓜放入管式炉专用的矩形船中,在均匀的氮气气氛中,800℃下保温2h,升温速率为5℃/min,得到CL/GNSs-CNT复合材料;Step 3.2, put the above-mentioned compacted loofah into a rectangular boat dedicated to the tube furnace, and keep it at 800 °C for 2 h in a uniform nitrogen atmosphere, with a heating rate of 5 °C/min to obtain a CL/GNSs-CNT composite material ;
步骤4,制备CL/GNSs-CNT/CE复合材料:Step 4, preparation of CL/GNSs-CNT/CE composites:
具体为:将2g氰酸酯(BADCy)和0.5g环氧树脂(E-51)在80℃下混合,搅拌30min,然后浇铸在CL/GNSs-CNT上,先于120℃的条件下固化1h,再于150℃的条件下固化2h,之后再于180℃的条件下固化2h,最后于200℃的条件下固化2h,得到CL/GNSs-CNT/CE复合材料。Specifically: mix 2g cyanate ester (BADCy) and 0.5g epoxy resin (E-51) at 80°C, stir for 30min, then cast on CL/GNSs-CNT, and cure at 120°C for 1h first , and then cured at 150 °C for 2 h, then at 180 °C for 2 h, and finally at 200 °C for 2 h to obtain CL/GNSs-CNT/CE composites.
相比于商用的电磁屏蔽材料(20dB),实施例2制备的CL/GNSs-CNT/CE复合材料的电磁屏蔽效能为25.9dB,相应的提高了29.5%。Compared with the commercial electromagnetic shielding material (20dB), the electromagnetic shielding efficiency of the CL/GNSs-CNT/CE composite prepared in Example 2 is 25.9dB, a corresponding increase of 29.5%.
实施例3Example 3
一种CL/GNSs-CNT/CE复合材料的制备方法,具体步骤如下:A preparation method of CL/GNSs-CNT/CE composite material, the specific steps are as follows:
步骤1,将8g聚乙烯醇颗粒溶于92ml去离子水中,于90℃水浴锅中反应1~2h,得到质量浓度为80mg/ml的聚乙烯醇溶液;Step 1, dissolve 8g of polyvinyl alcohol particles in 92ml of deionized water, and react in a 90°C water bath for 1 to 2 hours to obtain a polyvinyl alcohol solution with a mass concentration of 80mg/ml;
步骤2,将7wt%石墨烯和1wt%碳纳米管分散在10ml上述聚乙烯醇溶液中,超声搅拌45min,得到石墨烯-碳纳米管/聚乙烯醇溶液;Step 2, dispersing 7wt% graphene and 1wt% carbon nanotubes in 10ml of the above polyvinyl alcohol solution, and ultrasonically stirring for 45min to obtain a graphene-carbon nanotube/polyvinyl alcohol solution;
步骤3,制备CL/GNSs-CNT复合材料,具体步骤如下:Step 3, prepare the CL/GNSs-CNT composite material, and the specific steps are as follows:
步骤3.1,将丝瓜络洗净,切取40×30mm大小的矩形,放置在60℃真空烘箱中烘干,将石墨烯-碳纳米管/聚乙烯醇溶液浇在丝瓜络上,使溶液均匀包裹在丝瓜络纤维上,放置在60℃真空烘箱中烘干后压实;Step 3.1, wash the loofah, cut a rectangle of
步骤3.2,将上述被压实的丝瓜放入管式炉专用的矩形船中,在均匀的氮气气氛中,800℃下保温2h,升温速率为5℃/min,得到CL/GNSs-CNT复合材料;Step 3.2, put the above-mentioned compacted loofah into a rectangular boat dedicated to the tube furnace, and keep it at 800 °C for 2 h in a uniform nitrogen atmosphere, with a heating rate of 5 °C/min to obtain a CL/GNSs-CNT composite material ;
步骤4,制备CL/GNSs-CNT/CE复合材料:Step 4, preparation of CL/GNSs-CNT/CE composites:
具体为:将2g氰酸酯(BADCy)和0.5g环氧树脂(E-51)在80℃下混合,搅拌30min,然后浇铸在CL/GNSs-CNT上,先于120℃的条件下固化1h,再于150℃的条件下固化2h,之后再于180℃的条件下固化2h,最后于200℃的条件下固化2h,得到CL/GNSs-CNT/CE复合材料。Specifically: mix 2g cyanate ester (BADCy) and 0.5g epoxy resin (E-51) at 80°C, stir for 30min, then cast on CL/GNSs-CNT, and cure at 120°C for 1h first , and then cured at 150 °C for 2 h, then at 180 °C for 2 h, and finally at 200 °C for 2 h to obtain CL/GNSs-CNT/CE composites.
相比于商用的电磁屏蔽材料(20dB),实施例3制备的CL/GNSs-CNT/CE复合材料的电磁屏蔽效能为28.2dB,相应的提高了41%。Compared with the commercial electromagnetic shielding material (20dB), the electromagnetic shielding efficiency of the CL/GNSs-CNT/CE composite prepared in Example 3 is 28.2dB, a corresponding increase of 41%.
实施例4Example 4
一种CL/GNSs-CNT/CE复合材料的制备方法,具体步骤如下:A preparation method of CL/GNSs-CNT/CE composite material, the specific steps are as follows:
步骤1,将8g聚乙烯醇颗粒溶于92ml去离子水中,于90℃水浴锅中反应1~2h,得到质量浓度为80mg/ml的聚乙烯醇溶液;Step 1, dissolve 8g of polyvinyl alcohol particles in 92ml of deionized water, and react in a 90°C water bath for 1 to 2 hours to obtain a polyvinyl alcohol solution with a mass concentration of 80mg/ml;
步骤2,将7wt%石墨烯和1wt%碳纳米管分散在10ml上述聚乙烯醇溶液中,超声搅拌50min,得到石墨烯-碳纳米管/聚乙烯醇溶液;Step 2, disperse 7wt% graphene and 1wt% carbon nanotubes in 10ml of the above polyvinyl alcohol solution, and ultrasonically stir for 50min to obtain a graphene-carbon nanotube/polyvinyl alcohol solution;
步骤3,制备CL/GNSs-CNT复合材料,具体步骤如下:Step 3, prepare the CL/GNSs-CNT composite material, and the specific steps are as follows:
步骤3.1,将丝瓜络洗净,切取40×30mm大小的矩形,放置在60℃真空烘箱中烘干,将石墨烯-碳纳米管/聚乙烯醇溶液浇在丝瓜络上,使溶液均匀包裹在丝瓜络纤维上,放置在60℃真空烘箱中烘干后压实;Step 3.1, wash the loofah, cut a rectangle of
步骤3.2,将上述被压实的丝瓜放入管式炉专用的矩形船中,在均匀的氮气气氛中,1000℃下保温2h,升温速率为5℃/min,得到CL/GNSs-CNT复合材料;Step 3.2, put the above-mentioned compacted loofah into a rectangular boat dedicated to the tube furnace, and keep it at 1000 °C for 2 h in a uniform nitrogen atmosphere, with a heating rate of 5 °C/min to obtain a CL/GNSs-CNT composite material ;
步骤4,制备CL/GNSs-CNT/CE复合材料:Step 4, preparation of CL/GNSs-CNT/CE composites:
具体为:将2g氰酸酯(BADCy)和0.5g环氧树脂(E-51)在80℃下混合,搅拌30min,然后浇铸在CL/GNSs-CNT上,先于120℃的条件下固化1h,再于150℃的条件下固化2h,之后再于180℃的条件下固化2h,最后于200℃的条件下固化2h,得到CL/GNSs-CNT/CE复合材料。Specifically: mix 2g cyanate ester (BADCy) and 0.5g epoxy resin (E-51) at 80°C, stir for 30min, then cast on CL/GNSs-CNT, and cure at 120°C for 1h first , and then cured at 150 °C for 2 h, then at 180 °C for 2 h, and finally at 200 °C for 2 h to obtain CL/GNSs-CNT/CE composites.
相比于商用的电磁屏蔽材料(20dB),实施例4制备的CL/GNSs-CNT/CE复合材料的电磁屏蔽效能为30.7dB,相应的提高了53.5%。Compared with the commercial electromagnetic shielding material (20dB), the electromagnetic shielding efficiency of the CL/GNSs-CNT/CE composite prepared in Example 4 is 30.7dB, a corresponding increase of 53.5%.
实施例5Example 5
一种CL/GNSs-CNT/CE复合材料的制备方法,具体步骤如下:A preparation method of CL/GNSs-CNT/CE composite material, the specific steps are as follows:
步骤1,将8g聚乙烯醇颗粒溶于92ml去离子水中,于90℃水浴锅中反应1~2h,得到质量浓度为80mg/ml的聚乙烯醇溶液;Step 1, dissolve 8g of polyvinyl alcohol particles in 92ml of deionized water, and react in a 90°C water bath for 1 to 2 hours to obtain a polyvinyl alcohol solution with a mass concentration of 80mg/ml;
步骤2,将7wt%石墨烯和1wt%碳纳米管分散在10ml上述聚乙烯醇溶液中,超声搅拌60min,得到石墨烯-碳纳米管/聚乙烯醇溶液;Step 2, dispersing 7wt% graphene and 1wt% carbon nanotubes in 10ml of the above polyvinyl alcohol solution, and ultrasonically stirring for 60min to obtain a graphene-carbon nanotube/polyvinyl alcohol solution;
步骤3,制备CL/GNSs-CNT复合材料,具体步骤如下:Step 3, prepare the CL/GNSs-CNT composite material, and the specific steps are as follows:
步骤3.1,将丝瓜络洗净,切取40×30mm大小的矩形,放置在60℃真空烘箱中烘干,将石墨烯-碳纳米管/聚乙烯醇溶液浇在丝瓜络上,使溶液均匀包裹在丝瓜络纤维上,放置在60℃真空烘箱中烘干后压实;Step 3.1, wash the loofah, cut a rectangle of
步骤3.2,将上述被压实的丝瓜放入管式炉专用的矩形船中,在均匀的氮气气氛中,1200℃下保温2h,升温速率为5℃/min,得到CL/GNSs-CNT复合材料;Step 3.2, put the above-mentioned compacted loofah into a rectangular boat dedicated to the tube furnace, in a uniform nitrogen atmosphere, keep it at 1200 ° C for 2 hours, and the heating rate is 5 ° C/min, to obtain a CL/GNSs-CNT composite material ;
步骤4,制备CL/GNSs-CNT/CE复合材料:Step 4, preparation of CL/GNSs-CNT/CE composites:
具体为:将2g氰酸酯(BADCy)和0.5g环氧树脂(E-51)在80℃下混合,搅拌30min,然后浇铸在CL/GNSs-CNT上,先于120℃的条件下固化1h,再于150℃的条件下固化2h,之后再于180℃的条件下固化2h,最后于200℃的条件下固化2h,得到CL/GNSs-CNT/CE复合材料。Specifically: mix 2g cyanate ester (BADCy) and 0.5g epoxy resin (E-51) at 80°C, stir for 30min, then cast on CL/GNSs-CNT, and cure at 120°C for 1h first , and then cured at 150 °C for 2 h, then at 180 °C for 2 h, and finally at 200 °C for 2 h to obtain CL/GNSs-CNT/CE composites.
相比于商用的电磁屏蔽材料(20dB),实施例5制备的CL/GNSs-CNT/CE复合材料的电磁屏蔽效能为35.8dB,相应的提高了79%。Compared with the commercial electromagnetic shielding material (20dB), the electromagnetic shielding efficiency of the CL/GNSs-CNT/CE composite prepared in Example 5 is 35.8dB, a corresponding increase of 79%.
本发明制备的不同石墨烯含量下,CL/GNSs-CNT/CE复合材料的SET图,如图1所示,随着石墨烯含量的增加,屏蔽效能也随之提高;不同碳化温度下,CL/GNSs-CNT/CE复合材料的SET图,如图3所示,随着碳化温度的增加,屏蔽效能随之增加。图2与图4分别为复合材料不同填料含量与碳化温度下的SER、SEA图,可以明显看出,屏蔽机制以吸收为主,反射极小,均<5dB,CL/GNSs-CNT/CE复合材料展现出优异的电磁屏蔽性能。Under different graphene contents prepared by the present invention, the SET images of CL/ GNSs -CNT/CE composite materials are shown in Figure 1. With the increase of graphene content, the shielding effectiveness also increases; under different carbonization temperatures, the The SET images of CL/ GNSs -CNT/CE composites, as shown in Fig. 3, show that the shielding effectiveness increases with the increase of carbonization temperature. Figures 2 and 4 are the SER and SE A diagrams of the composites under different filler contents and carbonization temperatures, respectively . It can be clearly seen that the shielding mechanism is mainly absorption, and the reflection is extremely small, both <5dB, CL/GNSs-CNT/ CE composites exhibit excellent electromagnetic shielding properties.
本发明方法的作用机理为:利用三维网络结构的CL/GNSs-CNT/CE复合材料,当电磁波进入时,入射电磁波与表面由于具有优良的阻抗匹配,使得电磁波易于进入材料内部。在这种特殊的多孔结构具有密集的交联管和大量的二面角,随后,入射的电磁波通过在多孔结构内的多次反射和散射来衰减入射波,从而获得较为优异的电磁屏蔽性能。The action mechanism of the method of the invention is: using the CL/GNSs-CNT/CE composite material with a three-dimensional network structure, when the electromagnetic wave enters, the incident electromagnetic wave and the surface have excellent impedance matching, so that the electromagnetic wave can easily enter the material. In this special porous structure, which has densely cross-linked tubes and a large number of dihedral angles, the incident electromagnetic waves are then attenuated by multiple reflections and scattering within the porous structure, thereby obtaining excellent electromagnetic shielding performance.
在本发明中,制备了一种多层CL/GNSs-CNT/CE复合材料。这种复合材料三维结构的独特设计使电磁波更容易进入,在多孔结构内的多次反射和散射来衰减入射波,从而获得优异的电磁屏蔽性能。氰酸酯树脂因其极低的吸湿性、良好的力学性能、优异的抗辐射性能和优异的尺寸稳定性在各个领域的广泛应用而被选为聚合物基体。制备的复合材料在聚乙烯醇溶液中石墨烯含量为7wt%、碳纳米管含量为1wt%时,碳化温度为1200℃时,电磁屏蔽效能为35.8dB。这为制作具有一定力学性能和优异电磁屏蔽性能的电磁屏蔽材料提供了可行方案。In the present invention, a multilayer CL/GNSs-CNT/CE composite was prepared. The unique design of the three-dimensional structure of this composite material makes it easier for electromagnetic waves to enter, and multiple reflections and scattering within the porous structure attenuate the incident waves, resulting in excellent electromagnetic shielding performance. Cyanate ester resin is chosen as the polymer matrix for its extremely low hygroscopicity, good mechanical properties, excellent radiation resistance and excellent dimensional stability in a wide range of applications in various fields. When the graphene content of the prepared composite material is 7wt%, the carbon nanotube content is 1wt% in the polyvinyl alcohol solution, and the carbonization temperature is 1200°C, the electromagnetic shielding efficiency is 35.8dB. This provides a feasible solution for making electromagnetic shielding materials with certain mechanical properties and excellent electromagnetic shielding properties.
本发明一种CL/GNSs-CNT/CE复合材料的制备方法,利用高温碳化法制备得到的高效电磁屏蔽性能CL/GNSs-CNT/CE复合材料,制备过程安全环保,制备工艺简单且成本低廉,具有广泛的实用性和推广价值;本发明制备方法制备的CL/GNSs-CNT/CE复合材料,电磁屏蔽性能优异,能够满足航空航天、电子包装等领域的应用要求。The invention provides a preparation method of a CL/GNSs-CNT/CE composite material. The high-efficiency electromagnetic shielding performance CL/GNSs-CNT/CE composite material is prepared by using a high-temperature carbonization method. The preparation process is safe and environmentally friendly, and the preparation process is simple and low in cost. The invention has wide practicability and popularization value; the CL/GNSs-CNT/CE composite material prepared by the preparation method of the invention has excellent electromagnetic shielding performance and can meet the application requirements in the fields of aerospace, electronic packaging and the like.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010214953.3A CN111269570B (en) | 2020-03-24 | 2020-03-24 | Preparation method of carbonized towel gourd/graphene-carbon nanotube composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010214953.3A CN111269570B (en) | 2020-03-24 | 2020-03-24 | Preparation method of carbonized towel gourd/graphene-carbon nanotube composite material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111269570A true CN111269570A (en) | 2020-06-12 |
CN111269570B CN111269570B (en) | 2022-07-29 |
Family
ID=70997931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010214953.3A Active CN111269570B (en) | 2020-03-24 | 2020-03-24 | Preparation method of carbonized towel gourd/graphene-carbon nanotube composite material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111269570B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112911919A (en) * | 2021-02-04 | 2021-06-04 | 四川大学 | Carbonized loofah sponge/nano nickel/rGO electromagnetic shielding material and preparation method thereof |
CN112911920A (en) * | 2021-02-08 | 2021-06-04 | 西安理工大学 | Preparation method of MXene-carbon aerogel/TPU composite material |
CN113831686A (en) * | 2021-09-18 | 2021-12-24 | 安徽农业大学 | Preparation method of porous network composite material with shielding and sound absorption functions |
CN113980427A (en) * | 2021-11-01 | 2022-01-28 | 陕西工业职业技术学院 | Epoxy resin-based biomass charcoal electromagnetic shielding composite material and preparation method thereof |
CN114247417A (en) * | 2021-12-02 | 2022-03-29 | 北京市科学技术研究院城市安全与环境科学研究所 | Compaction-preventing loofah sponge composite filler and preparation method and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102911531A (en) * | 2012-10-22 | 2013-02-06 | 中国科学院宁波材料技术与工程研究所 | Method for stably dispersing graphene or/and carbon nanotubes in organic solvent |
CN108329468A (en) * | 2018-02-02 | 2018-07-27 | 中国科学院大学 | A kind of preparation method of electromagnetic shielding composite material |
CN108659470A (en) * | 2018-05-21 | 2018-10-16 | 芜湖市宝艺游乐科技设备有限公司 | Preparation method of epoxy resin-based porous electromagnetic shielding composite material |
CN109473288A (en) * | 2018-10-22 | 2019-03-15 | 江苏大学 | A method for preparing three-dimensional graphene/nickel foam composite material with loofah as raw material |
-
2020
- 2020-03-24 CN CN202010214953.3A patent/CN111269570B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102911531A (en) * | 2012-10-22 | 2013-02-06 | 中国科学院宁波材料技术与工程研究所 | Method for stably dispersing graphene or/and carbon nanotubes in organic solvent |
CN108329468A (en) * | 2018-02-02 | 2018-07-27 | 中国科学院大学 | A kind of preparation method of electromagnetic shielding composite material |
CN108659470A (en) * | 2018-05-21 | 2018-10-16 | 芜湖市宝艺游乐科技设备有限公司 | Preparation method of epoxy resin-based porous electromagnetic shielding composite material |
CN109473288A (en) * | 2018-10-22 | 2019-03-15 | 江苏大学 | A method for preparing three-dimensional graphene/nickel foam composite material with loofah as raw material |
Non-Patent Citations (3)
Title |
---|
CHUNBAO ZHAO ET.AL.: "Thermally conductive cyanate ester nanocomposites filled with graphene nanosheets and multiwalled carbon nanotubes", 《POLYM. ADV. TECHNOL.》 * |
REN, F ET.AL.: "Effects of surfactant treatment on mechanical and microwave absorbing properties of graphene nanosheets/multiwalled carbon nanotubes/cyanate ester composites", 《 POLYMER COMPOSITES》 * |
ZE ZONG ET.AL.: "Dual-functional carbonized loofah@GNSs-CNTs reinforced by cyanate ester composite with highly efficient electromagnetic interference shielding and thermal management", 《COMPOSITES PART B 》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112911919A (en) * | 2021-02-04 | 2021-06-04 | 四川大学 | Carbonized loofah sponge/nano nickel/rGO electromagnetic shielding material and preparation method thereof |
CN112911920A (en) * | 2021-02-08 | 2021-06-04 | 西安理工大学 | Preparation method of MXene-carbon aerogel/TPU composite material |
CN113831686A (en) * | 2021-09-18 | 2021-12-24 | 安徽农业大学 | Preparation method of porous network composite material with shielding and sound absorption functions |
CN113831686B (en) * | 2021-09-18 | 2024-05-24 | 安徽农业大学 | Preparation method of porous network composite material with shielding and sound absorbing functions |
CN113980427A (en) * | 2021-11-01 | 2022-01-28 | 陕西工业职业技术学院 | Epoxy resin-based biomass charcoal electromagnetic shielding composite material and preparation method thereof |
CN114247417A (en) * | 2021-12-02 | 2022-03-29 | 北京市科学技术研究院城市安全与环境科学研究所 | Compaction-preventing loofah sponge composite filler and preparation method and application thereof |
CN114247417B (en) * | 2021-12-02 | 2024-03-29 | 北京市科学技术研究院城市安全与环境科学研究所 | Anti-compaction loofah sponge composite filler and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN111269570B (en) | 2022-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111269570A (en) | Preparation method of carbonized towel gourd/graphene-carbon nanotube composite material | |
Li et al. | 3D porous biomass-derived carbon materials: biomass sources, controllable transformation and microwave absorption application | |
CN112911920B (en) | Preparation method of MXene-carbon aerogel/TPU composite material | |
CN113645820B (en) | Preparation method of MXene-CNT/carbon aerogel composite material | |
CN113873859B (en) | Preparation method of CoFe@MXene/carbon aerogel composite material | |
CN113831686B (en) | Preparation method of porous network composite material with shielding and sound absorbing functions | |
CN101451057A (en) | Bamboo charcoal base electro-magnetic screen composite material and preparation method thereof | |
CN111534016A (en) | Electronic packaging material with heat conduction and electromagnetic shielding performance and preparation method thereof | |
CN115568199A (en) | Preparation method of double-shell molybdenum carbide/carbon nanosphere composite wave-absorbing material | |
CN112980056A (en) | Composite flexible film with electromagnetic shielding and heat conducting functions and preparation method thereof | |
CN115521635B (en) | Heat conduction shielding composite material with double-isolation network structure and preparation method thereof | |
CN116261317B (en) | A three-dimensional graphene thermal conductive wave absorbing material and preparation method thereof | |
Rong et al. | MOFs meets wood: Renewable, self-supporting carbon-based composites for electromagnetic interference shielding with heat-resistant and electrothermal management | |
CN113829686B (en) | Degradable polymer-based biochar electromagnetic shielding composite material and preparation method thereof | |
CN114804078B (en) | Poly-dicyclopentadienyl carbon nano tube/graphene nano sheet aerogel flame-retardant electromagnetic shielding composite material and preparation method thereof | |
CN117165055A (en) | 3D printing sound absorption composite material and preparation method and application thereof | |
CN113980427B (en) | Epoxy resin-based biomass charcoal electromagnetic shielding composite material and preparation method thereof | |
CN112047323B (en) | Carbonized grapefruit pulp @ silicon @ rGO natural electromagnetic shielding material and preparation method and application thereof | |
CN115386337A (en) | Chiral polyaniline/biomass-derived porous carbon composite wave-absorbing material and preparation method thereof | |
CN114768763A (en) | Activated carbon attapulgite composite adsorption material and preparation method thereof | |
CN115124843A (en) | Electromagnetic shielding composite material with low reflection characteristics and preparation method thereof | |
CN111234526A (en) | A kind of preparation method of coffee grounds/graphene/cyanate ester composite material | |
CN114804108A (en) | N, S preparation method of co-doped MXene/cellulose derived carbon aerogel | |
CN113480831A (en) | Preparation of light electronic packaging material with double functions of heat conduction and electromagnetic wave absorption | |
CN112911919A (en) | Carbonized loofah sponge/nano nickel/rGO electromagnetic shielding material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20220609 Address after: 710000 No. 9, Jinghuan North Road, Jingwei new city, Xi'an Economic and Technological Development Zone, Shaanxi Province Applicant after: Xi'an HaoYou Aerospace Composite Material Co.,Ltd. Address before: 710048 Shaanxi province Xi'an Beilin District Jinhua Road No. 5 Applicant before: XI'AN University OF TECHNOLOGY |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant |