CN111260676A - 一种船载雷达图像海上目标空间数据的共享方法 - Google Patents

一种船载雷达图像海上目标空间数据的共享方法 Download PDF

Info

Publication number
CN111260676A
CN111260676A CN202010036366.XA CN202010036366A CN111260676A CN 111260676 A CN111260676 A CN 111260676A CN 202010036366 A CN202010036366 A CN 202010036366A CN 111260676 A CN111260676 A CN 111260676A
Authority
CN
China
Prior art keywords
target
image
coordinate system
marine
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010036366.XA
Other languages
English (en)
Other versions
CN111260676B (zh
Inventor
徐进
王海霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Maritime University
Original Assignee
Dalian Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Maritime University filed Critical Dalian Maritime University
Priority to CN202010036366.XA priority Critical patent/CN111260676B/zh
Publication of CN111260676A publication Critical patent/CN111260676A/zh
Application granted granted Critical
Publication of CN111260676B publication Critical patent/CN111260676B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/136Segmentation; Edge detection involving thresholding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/181Segmentation; Edge detection involving edge growing; involving edge linking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing
    • G06T2207/10044Radar image

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Image Processing (AREA)

Abstract

本发明提供一种船载雷达图像海上目标空间数据的共享方法。本发明方法,包括:S1、提取船载雷达图像中的海上目标;将原始船载雷达图像从极坐标系转换至笛卡尔坐标系;在转换坐标系后的图像中设定捕获区;采用灰度阈值法与连续像元面积阈值法,提取图像中的海上目标。S2、提取船载雷达图像中的海上目标的轮廓;将提取的海上目标图像从笛卡尔坐标系转换至极坐标系;根据船首向,对识别的目标进行图像旋转,提取目标轮廓的平面直角坐标数据。S3、海上目标轮廓边界点空间数据输出。计算目标轮廓边界点的平面直角坐标数据;逐步将目标轮廓每个边界点的平面直角坐标系统,通过投影变换,变换至以经纬度为单位的地理坐标,输出目标轮廓的地理坐标数据。

Description

一种船载雷达图像海上目标空间数据的共享方法
技术领域
本发明涉及海洋数据共享应用领域,具体而言,尤其涉及一种船载雷达图像海上目标空间数据的共享方法。
背景技术
德国、英国、加拿大、俄罗斯和中国的公司不断尝试船载雷达图像与电子海图数据的共享应用。例如,1994年加拿大近海ECDIS-3000系统实现了电子海图与船载雷达的图像叠加,保证了大雾天气下的安全航行。由于技术水平低、硬件设施差、电子海图信息量大、雷达信号处理量大等因素,当时的数据融合效率较低。后来,挪威的Hamilton公司和英国的Transas公司在这一领域不断取得突破,提高了电子海图与船载雷达图像数据融合的效率。目前,一些产品可以实现舰载雷达与电子海图的快速信息集成,如美国的dKartnavigator。然而,由于商业竞争,他们的技术还没有公开。此外,Transas和Sperry还开发了成熟的雷达信号处理卡,可直接安装在通用PC的PCI插槽中,当雷达信号处理卡与雷达收发天线单元连接时,可直接处理雷达视频信号,记录和跟踪运动目标,控制收发器等。这样,雷达视频信号就可以通过二次开发转化为图像并保存下来。但是上述保存的船载雷达视频图像数据并不能共享应用。
发明内容
根据上述提出的技术问题,而提供一种船载雷达图像海上目标空间数据的共享方法。本发明将船载雷达原始图像中的目标空间数据导出,共享应用到地理信息系统相关平台。
本发明采用的技术手段如下:
一种船载雷达图像海上目标空间数据的共享方法,包括如下步骤:
S1、提取船载雷达图像中的海上目标;
S2、提取船载雷达图像中的海上目标的轮廓;
S3、海上目标轮廓边界点空间数据输出。
进一步地,所述步骤S1具体为:
S11、坐标系转换,将原始船载雷达图像从极坐标系转换至笛卡尔坐标系;
S12、在转换坐标系后的图像中设定捕获区;
S13、采用灰度阈值法与连续像元面积阈值法,提取图像中的海上目标。
进一步地,所述步骤S2具体为:
S21、坐标系转换,将提取的海上目标图像从笛卡尔坐标系转换至极坐标系;
S22、根据船首向,对识别的目标进行图像旋转,提取目标轮廓的平面直角坐标数据。
进一步地,所述步骤S3具体为:
S31、通过投影变换,将本船的GPS地理坐标数据变换成平面直角坐标数据;
S32、根据目标轮廓边界点的极坐标数据(R,θ)与本船的平面直角坐标数据(X本船,Y本船),计算得到目标轮廓边界点的平面直角坐标数据(X,Y);其计算公式如下:
Figure BDA0002366157340000021
S33、通过投影变换,逐步将目标轮廓每个边界点的平面直角坐标变换至以经纬度为单位的地理坐标,输出目标轮廓的地理坐标数据。
进一步地,所述步骤S13具体为:
S131、先采用灰度阈值法,对图像进行二值化,初步提取海上目标;
S132、再采用连续像元面积阈值法,提取图像中准确的海上目标。
较现有技术相比,本发明具有以下优点:
1、本发明提供的船载雷达图像中的海上目标,通过在船载雷达数据采集的原始笛卡尔坐标系下,实现了图像中高亮海上目标的快速提取。
2、本发明提供的船载雷达图像中的海上目标轮廓的经纬度信息,根据船舶GPS信息、船首向信息,通过空间位置计算与投影变换,提取了船载雷达图像中的海上目标轮廓的经纬度信息,可以使其快速融入电子海图或者其他地理信息平台。
基于上述理由本发明可在海洋数据共享应用等领域广泛推广。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做以简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明方法流程图。
图2为本发明极坐标系下的船载雷达图像。
图3为本发明极坐标系与笛卡尔坐标系的转换图。
图4为本发明笛卡尔坐标系的船载雷达图像。
图5为本发明捕获区设定图。
图6为本发明采用灰度阈值法后的图像二值化示意图。
图7为本发明提取的图像中的海上目标示意图。
图8为本发明极坐标系下识别的目标示意图。
图9为本发明识别目标进行船首向方位旋转图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
如图1所示,本发明提供了一种船载雷达图像海上目标空间数据的共享方法,包括如下步骤:
S1、提取船载雷达图像中的海上目标;
进一步地作为本发明优选的实施方式,所述步骤S1具体为:
S11、坐标系转换,将原始船载雷达图像从极坐标系转换至笛卡尔坐标系;如图2所示,为在极坐标系下船载雷达图像;如图3所示,为极坐标系与笛卡尔坐标系的转换图;如图4所示,为坐标系转换后,在笛卡尔坐标系下的船载雷达图像;
S12、如图5所示,在转换坐标系后的图像中设定捕获区;
S13、采用灰度阈值法与连续像元面积阈值法,提取图像中的海上目标。
进一步地作为本发明优选的实施方式,所述步骤S13具体为:
S131、先采用灰度阈值法,对图像进行二值化,如图6所示,本实施例在Matlab图像处理软件中设置BW=im2bw(img,120/255),初步提取海上目标;
S132、再采用连续像元面积阈值法,提取图像中准确的海上目标。本实施例在Matlab图像处理软件中设置BW=ismember(L,find([S.Area]>20)),如图7所示,为提取的图像中的海上目标。
S2、提取船载雷达图像中的海上目标的轮廓;
进一步地作为本发明优选的实施方式,所述步骤S2具体为:
S21、坐标系转换,将提取的海上目标图像从笛卡尔坐标系转换至极坐标系;如图8所示,为在极坐标系下识别的目标;
S22、如图9所示,根据船首向,对识别的目标进行图像旋转,提取目标轮廓的平面直角坐标数据。
S3、海上目标轮廓边界点空间数据输出。
进一步地作为本发明优选的实施方式,所述步骤S3具体为:
S31、通过投影变换,将本船的GPS地理坐标数据变换成平面直角坐标数据;
S32、根据目标轮廓边界点的极坐标数据(R,θ)与本船的平面直角坐标数据(X本船,Y本船),计算得到目标轮廓边界点的平面直角坐标数据(X,Y);其计算公式如下:
Figure BDA0002366157340000051
S33、通过投影变换,逐步将目标轮廓每个边界点的平面直角坐标变换至以经纬度为单位的地理坐标,输出目标轮廓的地理坐标数据。如表1所示:
表1海上目标边界点的地理坐标采样
Figure BDA0002366157340000052
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的范围。

Claims (5)

1.一种船载雷达图像海上目标空间数据的共享方法,其特征在于,包括如下步骤:
S1、提取船载雷达图像中的海上目标;
S2、提取船载雷达图像中的海上目标的轮廓;
S3、海上目标轮廓边界点空间数据输出。
2.根据权利要求1所述的船载雷达图像海上目标空间数据的共享方法,其特征在于,所述步骤S1具体为:
S11、坐标系转换,将原始船载雷达图像从极坐标系转换至笛卡尔坐标系;
S12、在转换坐标系后的图像中设定捕获区;
S13、采用灰度阈值法与连续像元面积阈值法,提取图像中的海上目标。
3.根据权利要求1所述的船载雷达图像海上目标空间数据的共享方法,其特征在于,所述步骤S2具体为:
S21、坐标系转换,将提取的海上目标图像从笛卡尔坐标系转换至极坐标系;
S22、根据船首向,对识别的目标进行图像旋转,提取目标轮廓的平面直角坐标数据。
4.根据权利要求1所述的船载雷达图像海上目标空间数据的共享方法,其特征在于,所述步骤S3具体为:
S31、通过投影变换,将本船的GPS地理坐标数据变换成平面直角坐标数据;
S32、根据目标轮廓边界点的极坐标数据(R,θ)与本船的平面直角坐标数据(X本船,Y本船),计算得到目标轮廓边界点的平面直角坐标数据(X,Y);其计算公式如下:
Figure FDA0002366157330000011
S33、通过投影变换,逐步将目标轮廓每个边界点的平面直角坐标变换至以经纬度为单位的地理坐标,输出目标轮廓的地理坐标数据。
5.根据权利要求2所述的船载雷达图像海上目标空间数据的共享方法,其特征在于,所述步骤S13具体为:
S131、先采用灰度阈值法,对图像进行二值化,初步提取海上目标;
S132、再采用连续像元面积阈值法,提取图像中准确的海上目标。
CN202010036366.XA 2020-01-10 2020-01-10 一种船载雷达图像海上目标空间数据的共享方法 Active CN111260676B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010036366.XA CN111260676B (zh) 2020-01-10 2020-01-10 一种船载雷达图像海上目标空间数据的共享方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010036366.XA CN111260676B (zh) 2020-01-10 2020-01-10 一种船载雷达图像海上目标空间数据的共享方法

Publications (2)

Publication Number Publication Date
CN111260676A true CN111260676A (zh) 2020-06-09
CN111260676B CN111260676B (zh) 2023-10-17

Family

ID=70952420

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010036366.XA Active CN111260676B (zh) 2020-01-10 2020-01-10 一种船载雷达图像海上目标空间数据的共享方法

Country Status (1)

Country Link
CN (1) CN111260676B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112686106A (zh) * 2020-12-21 2021-04-20 武汉理工大学 一种视频图像转海事雷达图像的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070146197A1 (en) * 2005-12-23 2007-06-28 Barco Orthogon Gmbh Radar scan converter and method for transforming
CN104535066A (zh) * 2014-12-19 2015-04-22 大连海事大学 一种船载红外视频图像中的海上目标与电子海图的叠加方法及系统
CN107194953A (zh) * 2017-05-18 2017-09-22 中国科学院长春光学精密机械与物理研究所 一种动态背景下运动目标的检测方法及装置
CN109932701A (zh) * 2019-04-02 2019-06-25 哈尔滨工程大学 一种模拟船用雷达的目标船回波2d成像方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070146197A1 (en) * 2005-12-23 2007-06-28 Barco Orthogon Gmbh Radar scan converter and method for transforming
CN104535066A (zh) * 2014-12-19 2015-04-22 大连海事大学 一种船载红外视频图像中的海上目标与电子海图的叠加方法及系统
CN107194953A (zh) * 2017-05-18 2017-09-22 中国科学院长春光学精密机械与物理研究所 一种动态背景下运动目标的检测方法及装置
CN109932701A (zh) * 2019-04-02 2019-06-25 哈尔滨工程大学 一种模拟船用雷达的目标船回波2d成像方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
周建成: ""无人艇雷达数据处理及其特征提取的研究"", pages 19 - 24 *
张培珍 等: ""声散射预报中目标断面图像的快速旋转"", vol. 30, no. 4 *
王旭升: ""无人艇雷达图像目标检测系统的研究"", pages 20 - 25 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112686106A (zh) * 2020-12-21 2021-04-20 武汉理工大学 一种视频图像转海事雷达图像的方法
CN112686106B (zh) * 2020-12-21 2023-12-08 武汉理工大学 一种视频图像转海事雷达图像的方法

Also Published As

Publication number Publication date
CN111260676B (zh) 2023-10-17

Similar Documents

Publication Publication Date Title
US10055648B1 (en) Detection, classification, and tracking of surface contacts for maritime assets
US8730090B2 (en) Signal processing device, radar apparatus and signal processing program
US8532402B2 (en) Image registration
CN105842724B (zh) 一种船舶辅助泊岸方法和系统
EP3349123B1 (en) System for monitoring marine vessels using a satellite network with reception at a terrestrial station of the satellite data and processing of aerial marine imagery using fractal algorithm for vessel classification.
EP3349202B1 (en) System for monitoring marine vessels using a satellite network with determination at a terrestrial station of passenger lists for the vessels based on vessel identification data obtained from the satellites and passenger social media data.
EP3349147A2 (en) System for monitoring marine vessels using a satellite network with determination at a terrestrial station of a rendezvous between the vessels which pass within a threshold distance using the satellite data.
Kazimierski et al. Radar and automatic identification system track fusion in an electronic chart display and information system
CN103175525B (zh) 基于电子海图和导航数据的雷达图像模拟系统和方法
CN101915910B (zh) 利用航海雷达识别海上溢油目标的方法及系统
CN109993692B (zh) 一种基于深度学习的电子海图和雷达图像的数据融合方法
KR20200095888A (ko) 무인 선박 시스템의 상황인지 방법 및 장치
US20240303852A1 (en) Methods and systems for detecting vessels
CN112711995A (zh) 一种基于图像的海上目标识别方法
CN116486271A (zh) 厚度检测方法、检测装置、训练方法及训练装置
Yu et al. On-board fast and intelligent perception of ships with the “Jilin-1” spectrum 01/02 satellites
CN111260676B (zh) 一种船载雷达图像海上目标空间数据的共享方法
JP7143809B2 (ja) クラッタ学習装置及びクラッタ識別装置
Xu et al. Hydrographic data inspection and disaster monitoring using shipborne radar small range images with electronic navigation chart
CN105425235A (zh) 基于固态雷达的海面溢油监测装置及其监测方法
JP2000275338A (ja) 目標識別装置および目標識別方法
Amabdiyil et al. Marine vessel detection comparing GPRS and satellite images for security applications
WO2023100390A1 (ja) 情報処理方法、レーダー装置及びコンピュータプログラム
KR100436922B1 (ko) 선박 추적정보 위성 전송 방법
CN114594477A (zh) 基于回波域的星载sar海上目标信号检测方法和装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant