CN111259324A - Satellite data assimilation vertical direction adaptive localization method and integrated Kalman filtering weather assimilation forecasting method - Google Patents
Satellite data assimilation vertical direction adaptive localization method and integrated Kalman filtering weather assimilation forecasting method Download PDFInfo
- Publication number
- CN111259324A CN111259324A CN202010013183.6A CN202010013183A CN111259324A CN 111259324 A CN111259324 A CN 111259324A CN 202010013183 A CN202010013183 A CN 202010013183A CN 111259324 A CN111259324 A CN 111259324A
- Authority
- CN
- China
- Prior art keywords
- satellite
- observation
- function
- vertical direction
- localization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000004807 localization Effects 0.000 title claims abstract description 147
- 230000003044 adaptive effect Effects 0.000 title claims abstract description 69
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000013277 forecasting method Methods 0.000 title claims description 6
- 238000001914 filtration Methods 0.000 title description 2
- 238000002474 experimental method Methods 0.000 description 39
- 238000005070 sampling Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 239000010432 diamond Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000003908 quality control method Methods 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical class C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/15—Correlation function computation including computation of convolution operations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01W—METEOROLOGY
- G01W1/00—Meteorology
- G01W1/10—Devices for predicting weather conditions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/285—Selection of pattern recognition techniques, e.g. of classifiers in a multi-classifier system
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Physics (AREA)
- General Engineering & Computer Science (AREA)
- Computational Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Environmental & Geological Engineering (AREA)
- Evolutionary Biology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Ecology (AREA)
- Environmental Sciences (AREA)
- Atmospheric Sciences (AREA)
- Computing Systems (AREA)
- Evolutionary Computation (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Algebra (AREA)
- Artificial Intelligence (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
本发明公开了卫星数据同化在垂直方向的适应性局地化方法及集合卡曼滤波天气同化预报方法。适应性局地化方法根据集合卡曼滤波同化系统中给出的任意观测资料和模式变量,计算出观测资料和模式变量的相关系数;接着利用分组后的相关系数估计该观测资料和模式变量的原始局地化函数;根据相关系数的廓线估计出卫星观测的位置po,并将原始局地化函数以位于po位置处的GC函数最大值进行拟合,得到卫星观测的影响范围co。位置po、影响范围co即为本发明所求的适应性局地化参数。将所得到的适应性局地化参数用于区域模式中预报台风,预报结果与没有使用本发明的预报结果相比,相对于观测的误差明显减小,同时使用本发明还明显改进了台风快速增强阶段的预报。
The invention discloses an adaptive localization method of satellite data assimilation in the vertical direction and an ensemble Kalman filter weather assimilation forecast method. The adaptive localization method calculates the correlation coefficient between the observation data and the model variable according to the arbitrary observation data and model variables given in the ensemble Kalman filter assimilation system; The original localization function; according to the profile of the correlation coefficient, the position p o of the satellite observation is estimated, and the original localization function is fitted with the maximum value of the GC function located at the position p o to obtain the influence range c of the satellite observation o . The position p o and the influence range c o are the adaptive localization parameters required by the present invention. The obtained adaptive localization parameters are used to forecast typhoons in regional models. Compared with the forecast results without the use of the present invention, the error of the forecast results relative to the observations is significantly reduced, and at the same time, the use of the present invention also significantly improves the rapidity of typhoons. Enhancement phase forecast.
Description
技术领域technical field
本发明涉及一种天气同化预报方法,尤其是一种基于适应性局地化技术的集合卡曼滤波天气同化预报方法,其采用适应性局地化技术修正现有的集合卡曼滤波同化系统,以改进天气预报结果。The invention relates to a weather assimilation forecasting method, in particular to an ensemble Kalman filter weather assimilation forecasting method based on adaptive localization technology, which uses adaptive localization technology to correct the existing ensemble Kalman filter assimilation system, to improve weather forecast results.
背景技术Background technique
数据同化是一种利用观测修正模式变量,以获得对当前大气状态最佳估计的技术。Data assimilation is a technique that uses observations to correct model variables to obtain the best estimate of the current state of the atmosphere.
集合卡曼滤波是一种常用的数据同化方法,但集合卡曼滤波应用于高维大气模式时会受到取样误差的影响,而局地化可以处理样本误差。局地化通常假设距离观测越远的相关性越可能是虚假的。一般使用的局地化函数是Gaspari和Cohn(Gaspari and Cohn1999)函数,简称GC函数。在集合卡曼滤波同化系统中采用该局地化函数对观测数据进行同化处理时,通常的做法是:保留观测数据对于其附近模式变量的影响,减少观测数据对于距离较远模式变量的影响,同时忽略一定范围之外观测数据对模式变量的影响。Ensemble Kalman filtering is a commonly used method for data assimilation, but it is affected by sampling errors when applied to high-dimensional atmospheric models, and localization can deal with sampling errors. Localization generally assumes that correlations farther away from observations are more likely to be spurious. The commonly used localization function is the Gaspari and Cohn (Gaspari and Cohn1999) function, referred to as the GC function. When using the localization function to assimilate the observational data in the ensemble Kalman filter assimilation system, the usual practice is to retain the influence of the observational data on the nearby model variables, and reduce the influence of the observational data on the distant model variables. At the same time, the influence of observation data outside a certain range on the model variables is ignored.
然而,对于卫星观测等非局地观测,观测的位置和垂直方向的影响范围没有很好的定义,无法直接进行局地化。同时,对于不同时刻和不同地区的观测,卫星观测的局地化函数也应不同,但现有技术无法适应性地估计所需的局地化函数。However, for non-local observations such as satellite observations, the location of the observations and the influence range in the vertical direction are not well defined and cannot be directly localized. At the same time, for observations at different times and in different regions, the localization functions of satellite observations should also be different, but the existing technology cannot adaptively estimate the required localization functions.
因此,需要一种适应性局地化方案,为不同平台和通道、不同区域、不同时间的卫星观测提供垂直方向上适应性的局地化函数。Therefore, an adaptive localization scheme is required to provide an adaptive localization function in the vertical direction for satellite observations of different platforms and channels, different regions, and different times.
发明内容SUMMARY OF THE INVENTION
本发明针对现有技术的不足,提供一种卫星数据同化在垂直方向的适应性局地化方法。该方法使用集合卡曼滤波同化系统中卫星观测和模式变量的相关系数,利用分组后的相关系数估计该种卫星观测和模式变量在当前时刻和当前区域内原始的局地化函数,并将这些原始的局地化函数以GC函数进行拟合,从而得到适应性的局地化函数和相关参数。将所得到的适应性的局地化函数和相关参数应用于集合卡曼滤波同化系统中,以通过更加有效地使用卫星资料估计当前大气的状态,从而提高天气预报的准确性。Aiming at the deficiencies of the prior art, the present invention provides an adaptive localization method for satellite data assimilation in the vertical direction. The method uses the ensemble Kalman filter to assimilate the correlation coefficients of satellite observations and model variables in the system, and uses the grouped correlation coefficients to estimate the original localization functions of the satellite observations and model variables at the current moment and current area, and then converts these The original localization function is fitted with the GC function to obtain the adaptive localization function and related parameters. The obtained adaptive localization functions and related parameters are applied in an ensemble Kalman filter assimilation system to estimate the current state of the atmosphere by using satellite data more efficiently, thereby improving the accuracy of weather forecasting.
为实现上述的技术目的,本发明将采取如下的技术方案:For realizing the above-mentioned technical purpose, the present invention will take the following technical scheme:
一种卫星数据同化在垂直方向的适应性局地化方法,其特征在于:根据集合卡曼滤波同化系统中给出的任意子区域范围内、处于任意时次的卫星观测和模式变量,计算出卫星观测和模式变量在垂直方向上的相关系数;接着利用相关系数估计该种卫星观测和模式变量在当前时刻和当前区域内处于垂直方向的原始局地化函数;根据相关系数廓线估计出卫星观测在垂直方向的位置po,并以位于po位置处的GC函数最大值拟合上述的原始局地化函数,以得到卫星观测在垂直方向的影响范围co;卫星观测在垂直方向的估计位置po、卫星观测在垂直方向的影响范围co即为适应性的局地化参数。An adaptive localization method for satellite data assimilation in the vertical direction, which is characterized in that: according to the satellite observations and model variables in any sub-region given in the ensemble Kalman filter assimilation system at any time, calculate The correlation coefficient between satellite observations and model variables in the vertical direction; then use the correlation coefficient to estimate the original localization function of the satellite observations and model variables in the vertical direction at the current moment and in the current area; estimate the satellite according to the correlation coefficient profile. Observe the position p o in the vertical direction, and fit the above original localization function with the maximum value of the GC function at the position p o to obtain the influence range c o of the satellite observation in the vertical direction; The estimated position p o and the influence range c o of satellite observations in the vertical direction are the adaptive localization parameters.
进一步地,集合卡曼滤波同化系统中给出的特定子区域范围内、处于特定时次的卫星观测和模式变量分别为:Further, the satellite observations and model variables within a specific sub-region given in the ensemble Kalman filter assimilation system at a specific time are:
观测yl,n的扰动量:Observe the disturbance of y l,n :
其中:观测yl,n表示集合卡曼滤波同化系统中给出的卫星观测中的第n个集合成员的第l个观测,l∈{1,...,L}且n∈{1,...,N};N为集合卡曼滤波同化系统的集合成员个数,L为某一卫星观测某一通道的观测数;代表卫星观测的集合成员yl,n的平均值;where: observation y l,n denotes the lth observation of the nth set member in the satellite observations given in the set Kalman filter assimilation system, l∈{1,...,L} and n∈{1, ...,N}; N is the number of ensemble members of the ensemble Kalman filter assimilation system, and L is the number of observations of a certain channel observed by a certain satellite; represents the mean value of ensemble members y l,n of satellite observations;
模式变量的扰动量:The amount of disturbance of the mode variable:
其中:模式变量表示在集合卡曼滤波同化系统中,在水平方向投影至第l个观测变量所在位置的第n个集合成员位于第k层高度的模式变量;l∈{1,…,L},n∈{1,...,N},k∈{1,...,K};K为模式在垂直方向的层数;代表各模式变量的平均值。where: pattern variable In the ensemble Kalman filter assimilation system, the nth ensemble member projected in the horizontal direction to the position of the lth observation variable is the pattern variable at the height of the kth layer; l∈{1,…,L},n∈{ 1,...,N},k∈{1,...,K}; K is the number of layers in the vertical direction; represents each model variable average of.
进一步地,对于集合卡曼滤波同化系统中某一类给定的卫星观测和某一种模式变量,其在任意高度k的相关系数rl k为:Further, for a given type of satellite observation and a certain model variable in the ensemble Kalman filter assimilation system, the correlation coefficient r l k at any height k is:
式中:代表模式变量的扰动量;Δyl,n代表观测yl,n的扰动量;where: represents the pattern variable Δy l,n represents the disturbance of observed y l,n ;
yl,n表示集合卡曼滤波同化系统中给出的卫星观测中的第n个集合成员的第l个观测,l∈{1,...,L}且n∈{1,...,N};N为集合卡曼滤波同化系统的集合成员个数,L为某一卫星观测某一通道的观测数;y l,n denotes the lth observation of the nth set member in the satellite observations given in the set Kalman filter assimilation system, l∈{1,...,L} and n∈{1,... ,N}; N is the number of ensemble members of the ensemble Kalman filter assimilation system, and L is the number of observations of a certain channel observed by a satellite;
代表模式变量在集合卡曼滤波同化系统中,在水平方向投影至第l个观测变量所在位置的第n个集合成员位于第k层高度的模式变量;l∈{1,...,L},n∈{1,...,N},k∈{1,...,K},K为模式在垂直方向的层数。 In the ensemble Kalman filter assimilation system, the representative pattern variable is the pattern variable of the nth ensemble member at the height of the kth layer projected in the horizontal direction to the position of the lth observation variable; l∈{1,...,L} ,n∈{1,...,N},k∈{1,...,K}, where K is the number of layers in the vertical direction.
进一步地,在利用任意的卫星观测和处于垂直方向上任意高度k的模式变量之间的相关系数rl k估计该种卫星观测和模式变量在当前时刻和当前区域内处于垂直方向的原始局地化函数前,需要将相关系数rl k分组,分组方式为:按每组G个元素分为M组,每组相关系数中的任意一个相关系数记为 Further, use the correlation coefficient r k between any satellite observation and the model variable at any height k in the vertical direction to estimate the original local position of the satellite observation and the model variable in the vertical direction at the current moment and the current area. Before transforming the function, it is necessary to group the correlation coefficients r l k . The grouping method is as follows: each group of G elements is divided into M groups, and any correlation coefficient in each group of correlation coefficients is recorded as
进一步地,原始局地化函数为参数αk的垂直廓线;参数αk表示对于某一种卫星观测和高度为k的模式变量相关系数的信心指数;Further, the original localization function is the vertical profile of the parameter α k ; the parameter α k represents the confidence index of the correlation coefficient between a certain satellite observation and the model variable with an altitude of k;
若视每一个相关系数都有相同的概率为真值,则局地化后的相关系数的目标函数Jk应满足:If considering each correlation coefficient have the same probability as the true value, then the localized correlation coefficient The objective function J k should satisfy:
当目标函数Jk取值最小时,信心指数αk满足:When the objective function J k takes the minimum value, the confidence index α k satisfies:
式中:代表相关系数rl k分为每组包含有G个成员的M组后,每组相关系数中的任意一个相关系数;where: After the representative correlation coefficient r l k is divided into M groups containing G members in each group, any correlation coefficient in each group of correlation coefficients;
相关系数rl k表示于某一类给定的卫星观测和某一种模式变量,在任意高度k的相关系数。The correlation coefficient r l k represents the correlation coefficient at any height k for a given type of satellite observation and a certain model variable.
进一步地,卫星观测在垂直方向的估计位置po:为相关系数rl k廓线最大值所在高度的气压值。Further, the estimated position p o of the satellite observation in the vertical direction: is the air pressure value at the height where the correlation coefficient r l k is the maximum value of the profile.
进一步地,卫星观测在垂直方向的影响范围co的获取方式:先以位于po位置处的GC函数最大值拟合原始局地化函数,以获得适应性局地化函数;Further, the acquisition method of the influence range c o of the satellite observation in the vertical direction: firstly fit the original localization function with the maximum value of the GC function located at the position p o to obtain the adaptive localization function;
然后通过比较适应性局地化函数以及原始局地化函数,即可得到卫星观测在垂直方向的影响范围co,卫星观测在垂直方向的影响范围co为GC函数宽度值co,指使位于po位置处的适应性局地化函数和原始局地化函数两者的均方根误差最小所对应的GC函数的宽度参数。Then, by comparing the adaptive localization function and the original localization function, the influence range c o of the satellite observation in the vertical direction can be obtained, and the influence range c o of the satellite observation in the vertical direction is the GC function width value c o , indicating The width parameter of the GC function corresponding to the minimum root mean square error of both the adaptive localization function and the original localization function at the p o position.
进一步地,上述局地化方法,包括以下步骤:Further, the above-mentioned localization method includes the following steps:
(1)选择合适的区域和时次(1) Select the appropriate area and time
针对不同的天气系统,通过集合卡曼滤波同化系统给出特定子区域范围内、处于特定时次的卫星观测和模式变量;For different weather systems, the satellite observations and model variables in a specific sub-region and at a specific time are given through the ensemble Kalman filter assimilation system;
所述的特定子区域包括TC区和/或者非TC区;TC区定义为以热带气旋在当前时刻所在位置为中心、边长为20经纬度的正方形区域;The specific sub-area includes TC area and/or non-TC area; TC area is defined as a square area with the location of the tropical cyclone at the current moment as the center and a side length of 20 longitude and latitude;
特定子区域范围需要保证其中所有时次的总观测数不小于O个,O=102;It is necessary to ensure that the total number of observations at all times in a specific sub-region is not less than O, O=10 2 ;
所述的特定时次,为给定卫星观测和模式变量中具有代表性的时次或者为估算当前时刻局地化参数的前一时刻或者前两时刻;The specific time is a representative time in the given satellite observation and model variables or the previous time or the previous two time when the localization parameter is estimated at the current time;
(2)获取观测变量和模式变量(2) Obtain observation variables and model variables
观测yl,n的扰动量:Observe the disturbance of y l,n :
其中:观测yl,n表示集合卡曼滤波同化系统中给出的卫星观测的第n个集合成员的第l个观测,l∈{1,...,L}且n∈{1,...,N};N为集合卡曼滤波同化系统的集合成员个数,L为某一卫星资料某一通道的观测数;代表卫星观测的集合成员yl,n的平均值;where: observation y l,n denotes the lth observation of the nth set member of satellite observations given in the set Kalman filter assimilation system, l∈{1,...,L} and n∈{1,. ..,N}; N is the number of ensemble members of the ensemble Kalman filter assimilation system, and L is the number of observations of a certain channel of satellite data; represents the mean value of ensemble members y l,n of satellite observations;
模式变量的扰动量:pattern variable The amount of disturbance:
其中:模式变量表示在集合卡曼滤波同化系统中,在水平方向投影至第l个观测变量所在位置的第n个集合成员位于第k层高度的模式变量;l∈{1,...,L},n∈{1,...,N},k∈{1,…,K};K为模式在垂直方向的层数;代表各模式变量的平均值;where: pattern variable In the ensemble Kalman filter assimilation system, the nth ensemble member projected to the position of the lth observation variable in the horizontal direction is the pattern variable at the height of the kth layer; l∈{1,...,L},n ∈{1,...,N},k∈{1,...,K}; K is the number of layers of the pattern in the vertical direction; represents each model variable average of;
(3)计算相关系数(3) Calculate the correlation coefficient
第l个观测yl和第l个模式变量的相关系数rl k为:The lth observation y l and the lth pattern variable The correlation coefficient r l k of is:
(4)计算原始局地化函数(4) Calculate the original localization function
对于某一类给定的卫星观测和某一种模式变量,将任意高度k的相关系数rl k按每组G个元素分为M组,每组相关系数中的任意一个相关系数记为 For a given type of satellite observation and a certain model variable, the correlation coefficient r l k of any height k is divided into M groups according to each group of G elements, and any correlation coefficient in each group of correlation coefficients is recorded as
若视每一个相关系数都有相同的概率成为真值,则局地化后的相关系数的目标函数Jk满足:If considering each correlation coefficient have the same probability to become the true value, then the localized correlation coefficient The objective function J k satisfies:
αk表示对于这一种卫星观测和高度为k的模式变量的相关系数的信心指数,当目标函数Jk取值最小时,信心指数αk满足:α k represents the confidence index of the correlation coefficient between this kind of satellite observation and the model variable with height k. When the objective function J k takes the minimum value, the confidence index α k satisfies:
αk的垂直廓线即为估算的垂直方向的原始局地化函数;The vertical profile of α k is the estimated original localization function in the vertical direction;
(5)拟合参数(5) Fitting parameters
找出垂直方向的观测位置po;Find out the observation position p o in the vertical direction;
以最大值位于po的GC函数拟合原始局地化函数,所得到的结果即为适应性局地化函数;Fit the original localization function with the GC function whose maximum value is at p o , and the obtained result is the adaptive localization function;
通过适应性局地化函数以及原始局地化函数,即可得到估计的GC函数宽度值co,GC函数宽度值co表示使位于po的应性局地化函数和原始局地化函数两者的均方根误差最小所对应的GC函数的宽度参数,即卫星观测的影响范围。Through the adaptive localization function and the original localization function, the estimated GC function width value c o can be obtained, and the GC function width value c o indicates that the adaptive localization function and the original localization function located at p o The width parameter of the GC function corresponding to the minimum root mean square error of the two is the influence range of satellite observations.
本发明的另一个技术目的是提供一种集合卡曼滤波天气同化预报方法,包括:1)在集合卡曼滤波同化系统中,选择能够直接被同化的1个及以上的变量作为模式变量;2)通过比较各类模式变量与卫星观测之间的相关系数,选择具有表征性的模式变量来估计局地化参数,所估计的局地化参数包括估计的卫星观测在垂直方向的位置po和估计的卫星观测在垂直方向的影响范围co;3)将估计的局地化参数用于天气同化预报系统中,获得下一时刻的预报结果。Another technical purpose of the present invention is to provide an ensemble Kalman filter weather assimilation forecasting method, including: 1) in the ensemble Kalman filter assimilation system, selecting one or more variables that can be directly assimilated as model variables; 2 ) By comparing the correlation coefficients between various model variables and satellite observations, select the representative model variables to estimate the localization parameters, the estimated localization parameters include the estimated satellite observations in the vertical direction of the position p o and The estimated influence range c o of the satellite observation in the vertical direction; 3) The estimated localization parameters are used in the weather assimilation forecast system to obtain the forecast result of the next moment.
进一步地,估计的卫星观测在垂直方向的影响范围co为GC函数宽度值co,表示使位于po位置处的适应性局地化函数和原始局地化函数两者的均方根误差最小所对应的GC函数的宽度参数;适应性局地化函数通过最大值位于po的GC函数拟合原始局地化函数而获得,而原始局地化函数为参数αk的垂直廓线;参数αk表示对于给定的卫星观测和高度为k的模式变量之间的相关系数的信心指数,当目标函数Jk取值最小时,信心指数αk满足:Further, the influence range c o of the estimated satellite observation in the vertical direction is the GC function width value c o , which represents the root mean square error of both the adaptive localization function and the original localization function located at the position p o The width parameter of the GC function corresponding to the minimum; the adaptive localization function is obtained by fitting the GC function with the maximum value at p o to the original localization function, and the original localization function is the vertical profile of the parameter α k ; The parameter α k represents the confidence index of the correlation coefficient between a given satellite observation and a model variable with a height of k. When the objective function J k takes the minimum value, the confidence index α k satisfies:
目标函数Jk满足:The objective function J k satisfies:
其中的均为某一类给定的卫星观测和某一种位于高度k的模式变量的相关系数rl k按每组G个元素分为M组后的任意一个相关系数,统一记为 相关系数rl k的表达式如下:one of them are the correlation coefficients of a given type of satellite observation and a certain type of model variable located at height k r l k is any one of the correlation coefficients after each group of G elements is divided into M groups, and is uniformly recorded as The expression of the correlation coefficient r l k is as follows:
式中: where:
Δyl,n表示观测yl,n的扰动量;yl,n表示集合卡曼滤波同化系统中给出的卫星观测中的第n个集合成员的第l个观测,l∈{1,...,L}且n∈{1,...,N};N为集合卡曼滤波同化系统的集合成员个数,L为某一卫星资料某一通道的观测数;代表卫星观测的集合成员yl,n的平均值;Δy l,n denotes the disturbance of the observation y l,n ; y l,n denotes the lth observation of the nth ensemble member in the satellite observations given in the ensemble Kalman filter assimilation system, l∈{1,. ..,L} and n∈{1,...,N}; N is the number of ensemble members of the ensemble Kalman filter assimilation system, and L is the number of observations of a certain channel of satellite data; represents the mean value of ensemble members y l,n of satellite observations;
表示模式变量的扰动量:表示在集合卡曼滤波同化系统中,在水平方向投影至第l个观测变量所在位置的第n个集合成员位于第k层高度的模式变量;l∈{1,...,L},n∈{1,...,N},k∈{1,...,K};K为模式在垂直方向的层数;代表各模式变量的平均值; Represents a pattern variable The amount of disturbance: In the ensemble Kalman filter assimilation system, the nth ensemble member projected to the position of the lth observation variable in the horizontal direction is the pattern variable at the height of the kth layer; l∈{1,...,L},n ∈{1,...,N},k∈{1,...,K}; K is the number of layers of the pattern in the vertical direction; represents each model variable average of;
所估计的观测在垂直方向的位置po为相关系数rl k廓线最大值所在高度的气压值。The position p o of the estimated observation in the vertical direction is the barometric pressure value at the height where the correlation coefficient r l k is the maximum of the profile.
根据上述的技术方案,相对于现有技术,本发明具有如下的有益效果:According to the above-mentioned technical scheme, with respect to the prior art, the present invention has the following beneficial effects:
本发明利用某一种观测变量与已经投影到观测变量所在位置的某一种模式变量的相关系数,在选定时间和空间范围内得到垂直方向的适应性局地化函数。将本发明用于区域模式中预报台风,预报结果与没有使用本发明的预报结果相比,相对于观测的误差明显减小,同时使用本发明还明显改进了台风快速增强阶段的预报。本发明还通过对相关系数分组的方式减少取样误差,进一步减小预报结果与观测之间的误差。The present invention obtains an adaptive localization function in the vertical direction within a selected time and space range by using the correlation coefficient between a certain observation variable and a certain mode variable that has been projected to the position of the observation variable. When the present invention is used for forecasting typhoon in regional models, the error of the forecast result compared with the forecast result without the present invention is obviously reduced relative to the observation, and meanwhile, the forecast of the typhoon rapidly intensifying stage is obviously improved by using the present invention. The invention also reduces the sampling error by grouping the correlation coefficients, and further reduces the error between the prediction result and the observation.
附图说明Description of drawings
图1为本发明的流程示意图。FIG. 1 is a schematic flow chart of the present invention.
图2为本发明应用于台风玉兔(2018)中,搭载于卫星NOAA-15的微波观测计AMSU-A通道6与模式变量温度在模式整个区域内平均的相关系数、原始局地化函数和拟合的局地化函数。Fig. 2 shows the average correlation coefficient, original localization function and simulated temperature between the microwave observation meter AMSU-
图3a、图3b为微波观测计AMSU-A在TC区和非TC区的适应性局地化参数,图中点和线(非TC区使用圆点和实线,TC区使用菱形和虚线)分别代表了局地化参数在各卫星平台的平均值和标准差,模式变量选择为温度。Figure 3a, Figure 3b are the adaptive localization parameters of the microwave observation meter AMSU-A in the TC area and the non-TC area, the dots and lines in the figure (the non-TC area uses the dots and solid lines, the TC area uses the diamonds and dotted lines) They represent the mean and standard deviation of the localization parameters on each satellite platform, respectively, and the model variable is selected as temperature.
图4为未使用本发明(控制实验)时所得的6小时预报相对于常规观测(a)温度、(c)风速和(e)比湿度在水平区域内和在时间上平均的均方根误差,以及使用本发明计算的适应性局地化函数所得的6小时预报误差相对于控制实验预报误差对于(b)温度、(d)风速和(f)比湿度之差。Fig. 4 is the 6-hour forecast relative to conventional observations (a) temperature, (c) wind speed and (e) specific humidity averaged over time in the horizontal region and the root mean square error of the 6-hour forecast without the use of the present invention (control experiment). , and the 6-hour forecast error relative to the control experimental forecast error for (b) temperature, (d) wind speed, and (f) specific humidity using the adaptive localization function computed in the present invention.
图5为使用本发明计算的适应性局地化参数(GGF-Domain,GGF-TC,GGF-Time)和未使用本发明的控制实验对台风玉兔(2018)的(a)路径、(b)最低海平面气压和(c)最大风速的6小时预报。其中粗实线大圆点为观测值。Fig. 5 is the (a) path, (b) of the adaptive localization parameters (GGF-Domain, GGF-TC, GGF-Time) calculated using the present invention and the control experiment without using the present invention for Typhoon Yutu (2018) 6-hour forecast of minimum sea level pressure and (c) maximum wind speed. The large dots with thick solid lines are the observed values.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. The following description of at least one exemplary embodiment is merely illustrative in nature and is in no way intended to limit the invention, its application, or uses. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention. Meanwhile, it should be understood that, for the convenience of description, the dimensions of various parts shown in the accompanying drawings are not drawn in an actual proportional relationship. Techniques, methods, and devices known to those of ordinary skill in the relevant art may not be discussed in detail, but where appropriate, such techniques, methods, and devices should be considered part of the authorized description. In all examples shown and discussed herein, any specific value should be construed as illustrative only and not as limiting. Accordingly, other examples of exemplary embodiments may have different values.
如图1至5所示,本发明所述的卫星数据同化在垂直方向的适应性局地化方法,使用集合卡曼滤波同化系统中卫星观测和模式变量的相关系数,利用分组后的相关系数估计该种卫星观测和模式变量在当前时刻和当前区域内原始的局地化函数,并将这些原始的局地化函数以GC函数进行拟合,得到适应性的局地化函数和相关参数。适应性局地化函数和相关参数可以随后被应用于集合卡曼滤波同化系统中以改进预报。具体步骤如下:As shown in Figures 1 to 5, the adaptive localization method of satellite data assimilation in the vertical direction of the present invention uses the ensemble Kalman filter to assimilate the correlation coefficient between satellite observations and model variables in the system, and uses the grouped correlation coefficient Estimate the original localization functions of the satellite observations and model variables at the current moment and in the current area, and fit these original localization functions with GC functions to obtain adaptive localization functions and related parameters. The adaptive localization function and related parameters can then be applied in the ensemble Kalman filter assimilation system to improve the forecast. Specific steps are as follows:
步骤一、选择合适的区域和时次
本发明可以适应性估计局地化函数,即在不同子区域使用随时间变化的局地化函数。The present invention can adaptively estimate the localization function, that is, use the time-varying localization function in different sub-regions.
1.1.对不同区域的适应性局地化函数1.1. Adaptive localization function for different regions
Lei et al.(2015)提出对于有无降水区需使用不同的局地化参数,同时热带气旋(TC)等天气系统拥有多尺度的特征,因此对于不同天气系统的子区域(如TC区域内外)应使用不同的局地化参数。子区域不宜选取过小,以保证其中的观测数可以通过步骤(3.1)的质量控制。Lei et al. (2015) proposed that different localization parameters should be used for areas with or without precipitation. At the same time, weather systems such as tropical cyclones (TC) have multi-scale characteristics. Therefore, for sub-regions of different weather systems (such as inside and outside the TC area) ) should use different localization parameters. The sub-region should not be selected too small to ensure that the number of observations in it can pass the quality control of step (3.1).
1.2.对不同同化时次的适应性局地化函数1.2. Adaptive localization function for different assimilation times
天气系统的位置、强度、结构等特征随时间而变化。因此,可以使用跟随同化时次变化的适应性局地化参数,某一时刻的局地化参数可以由其前面一个、某个或多个时次的观测和模式变量进行估算。The location, strength, structure, and other characteristics of weather systems change over time. Therefore, adaptive localization parameters that follow assimilation epochs can be used, and the localization parameters at a certain time can be estimated from observations and model variables at one, one or more epochs preceding it.
步骤二、获取观测变量和模式变量
集合卡曼滤波同化系统中给出了各集合成员的卫星观测和模式变量。模式在垂直方向的层数记为K,集合成员个数记为N,某一卫星资料某一通道的观测数记为L。The satellite observations and model variables of each ensemble member are given in the ensemble Kalman filter assimilation system. The number of layers in the vertical direction of the model is denoted as K, the number of set members is denoted as N, and the number of observations of a certain channel of satellite data is denoted as L.
2.1.获取观测变量2.1. Obtaining observed variables
以yl,n表示的第n个集合成员的第l个观测。(l∈{1,...,L}且n∈{1,...,N})。同时对于观测yln可计算其扰动量等式中代表集合成员的平均值。The lth observation of the nth set member denoted by y l,n . (l∈{1,...,L} and n∈{1,...,N}). At the same time, the disturbance amount can be calculated for the observation y ln in the equation Represents the mean of the set members.
2.2.获取模式变量2.2. Get pattern variables
对于模式变量,首先在水平方向投影至第l个观测变量所在的位置,并将第n个集合成员位于第k层高度的变量记为模式变量扰动量的定义方式与观测变量相似,其中代表集合成员的平均值。For the mode variable, firstly project to the position of the lth observed variable in the horizontal direction, and record the variable with the nth set member at the height of the kth layer as The model variable disturbance is defined in a similar way to the observed variable, in Represents set members average of.
步骤三、计算相关系数
3.1.质量控制3.1. Quality Control
为避免区域内观测数量太少,难以消除取样误差并影响估计局地化函数的准确性,经验上设定观测数下限为100。当区域内观测数小于100时,本发明不适用,使用默认的GC函数配置。In order to avoid that the number of observations in the region is too small, it is difficult to eliminate sampling errors and affect the accuracy of the estimated localization function, the lower limit of the number of observations is empirically set to 100. When the number of observations in the area is less than 100, the present invention is not applicable, and the default GC function configuration is used.
3.2.计算相关系数3.2. Calculate the correlation coefficient
第l个观测yl和第l个模式变量的相关系数rl k可以由相关系数的定义给出,即:The lth observation y l and the lth pattern variable The correlation coefficient r l k of can be given by the definition of correlation coefficient, namely:
步骤四、计算原始局地化函数
4.1.对相关系数分组4.1. Grouping the correlation coefficients
对于某一类给定的卫星观测和某一种模式变量,将任意高度k的相关系数rl k按每组G个元素分为M组,即L=M*G,rl k可以改写为经验上G取为4。For a given type of satellite observation and a certain model variable, the correlation coefficient r l k of any height k is divided into M groups according to each group of G elements, that is, L=M*G, r l k can be rewritten as In experience, G is taken as 4.
4.2.某一高度的局地化函数值4.2. Localization function value at a certain height
第m组的每一个分别记为“真实”的相关系数,则局地化后的相关系数与“真值”的目标函数为each of the mth group are recorded as "true" correlation coefficients, then the localized correlation coefficients The objective function with "truth value" is
使目标函数最小的αk取值应为The value of α k that minimizes the objective function should be
4.3.计算原始局地化函数4.3. Calculate the original localization function
步骤(3.2)中的αk表示了对于这一种卫星观测和高度为k的模式变量相关系数的信心指数,αk(k∈{1,...,K})的垂直廓线即为估算的垂直方向的原始局地化函数。α k in step (3.2) represents the confidence index of the correlation coefficient between this kind of satellite observation and the model variable with height k, and the vertical profile of α k (k∈{1,...,K}) is Estimated vertical raw localization function.
步骤五、拟合参数
GC函数的值通常在观测所在的位置为最大,并随观测与模式变量的距离增大而减小,在某一范围之外函数值减为0。The value of the GC function is usually the largest at the location of the observation, and decreases as the distance between the observation and the model variable increases, and the function value decreases to 0 outside a certain range.
5.1.找出垂直方向观测位置5.1. Find the vertical observation position
将相关系数廓线最大值所在高度的气压值作为此卫星观测垂直方向的位置po。The barometric pressure value at the height of the maximum correlation coefficient profile is taken as the position p o in the vertical direction of this satellite observation.
5.2.拟合GC函数宽度(影响范围)5.2. Fitting GC function width (range of influence)
以GC函数拟合原始局地化函数,找出使两者均方根误差最小的GC函数宽度值co。Fit the original localization function with the GC function, and find the GC function width value c o that minimizes the root mean square error of both.
对于卫星观测,目前仅使用适应性的GC宽度co和垂直方向的观测位置po两个参数来拟合原始局地化函数。For satellite observations, currently only two parameters, the adaptive GC width c o and the observation position p o in the vertical direction are used to fit the original localization function.
步骤六、将适应性局地化函数应用于模式中
6.1.选择模式变量6.1. Selecting Mode Variables
在集合卡曼滤波同化系统中直接被同化的变量均可以作为模式变量。对于某一卫星某一通道的观测,选择相关系数较大的模式变量对应的适应性局地化参数作为此观测的适应性局地化参数。The variables directly assimilated in the ensemble Kalman filter assimilation system can be used as model variables. For the observation of a certain channel of a certain satellite, the adaptive localization parameter corresponding to the model variable with a larger correlation coefficient is selected as the adaptive localization parameter of this observation.
6.2.应用适应性局地化函数6.2. Applying an adaptive localization function
将(6.1)中每一卫星平台的每种观测的每个通道对应的适应性局地化参数应用于同化预报模式中,检验模式的预报结果,使用本发明的适应性局地化参数后预报结果有所改进。Apply the adaptive localization parameter corresponding to each channel of each observation of each satellite platform in (6.1) to the assimilation prediction model, check the prediction result of the model, and use the adaptive localization parameter of the present invention. Results have improved.
实施例Example
本发明使用集合卡曼滤波同化系统中卫星观测和模式变量的相关系数,以在区域模式WRF中模拟台风玉兔(2018)为例,根据相关系数估计某种卫星观测和模式变量的局地化函数和相关参数。之后将这些相关系数放入同化预报系统中,以观测检验模式的6小时预报,对比使用本发明和不使用本发明所得的预报误差。同时检验使用和不使用本发明对台风玉兔(2018)的路径和强度(最低海平面气压和最大风速)的预报结果。图1展示了本发明的流程图。The present invention uses the correlation coefficient of satellite observations and model variables in the ensemble Kalman filter assimilation system, taking the simulation of typhoon Yutu (2018) in the regional model WRF as an example, and estimates the localization function of a certain satellite observation and model variables according to the correlation coefficient. and related parameters. These correlation coefficients are then put into the assimilation forecast system, and the 6-hour forecast of the model is observed and verified, and the forecast errors obtained with and without the present invention are compared. The forecast results of the path and intensity (minimum sea level pressure and maximum wind speed) of Typhoon Yutu (2018) with and without the use of the present invention were also examined. Figure 1 shows a flow chart of the present invention.
步骤一、确定本发明应用的区域和时次
WRF-集合卡曼滤波循环同化预报实验从2018年10月19日1200UTC进行到2018年11月2日1200UTC,模式对新同化方法的适应需要时间,故舍弃循环开始前两天的预报。控制实验为未使用本发明的预报实验,使用本发明的实验的所有其他设置与控制实验相同。The WRF-ensemble Kalman filter cycle assimilation forecast experiment was carried out from 1200UTC on October 19, 2018 to 1200UTC on November 2, 2018. It takes time for the model to adapt to the new assimilation method, so the forecast two days before the start of the cycle is discarded. The control experiment was a prediction experiment without the use of the present invention, and all other settings of the experiment using the present invention were the same as the control experiment.
1.1.确定本发明应用的区域1.1. Determine the area of application of the present invention
方案一:对于整个模式覆盖区域不加区分,使用整个区域所有的样本使用本发明估计局地化函数和相关参数。Scheme 1: The entire pattern coverage area is not differentiated, and all samples in the entire area are used to estimate the localization function and related parameters using the present invention.
方案二:考虑到热带气旋(TC)拥有的多尺度特征,区分TC区和非TC区,分别对这两个区域的样本使用本发明估计局地化函数和相关参数。TC区定义为以TC在当前时刻所在位置为中心,边长为20经纬度的正方形区域。Option 2: Considering the multi-scale characteristics of tropical cyclones (TC), distinguish the TC area and the non-TC area, and use the present invention to estimate the localization function and related parameters for the samples of these two areas respectively. The TC area is defined as a square area with the position of the TC at the current moment as the center and a side length of 20 latitude and longitude.
1.2.确定本发明应用的同化时次1.2. Determine the assimilation time for the application of the present invention
方案一:使用控制实验中某些有代表性时次输出的观测和模式变量估算适应性局地化函数,玉兔(2018)模拟实验中使用时次包括台风快速增强之前的四个周期(从10月22日0000UTC到10月22日1800UTC)和快速增强之后的四个周期(从10月23日1800UTC至10月24日1200UTC)。Option 1: Estimate the adaptive localization function using observations and model variables from some representative times in the control experiment. The times used in the Yutu (2018) simulation experiment include the four periods before the rapid intensification of the typhoon (from 10 0000UTC on 22 October to 1800 UTC on 22 October) and four periods after the rapid intensification (from 1800 UTC on 23 October to 1200 UTC on 24 October).
方案二:使用随时间变化的局地化参数,利用前一时刻或前两时刻出的观测和模式变量估算适应性局地化函数。Option 2: Use the time-varying localization parameters to estimate the adaptive localization function using observations and model variables from the previous moment or two.
选择不同的区域和同化时次设计如下的四个实验:Four experiments were designed with different regions and assimilation times as follows:
步骤二、获取观测变量和模式变量
集合卡曼滤波同化系统中给出了各集合成员的卫星观测和模式变量。模式在垂直方向的层数记为K,集合成员个数记为N,某一卫星资料某一通道的观测数记为L。实验中集合成员数为80,依次对每一卫星仪器每一通道的观测计算适应性局地化函数和参数。2.1.获取观测变量The satellite observations and model variables of each ensemble member are given in the ensemble Kalman filter assimilation system. The number of layers in the vertical direction of the model is denoted as K, the number of set members is denoted as N, and the number of observations of a certain channel of satellite data is denoted as L. In the experiment, the number of ensemble members is 80, and the adaptive localization functions and parameters are calculated for the observations of each channel of each satellite instrument in turn. 2.1. Obtaining observed variables
以yl,n表示的第n个集合成员的第l个观测。(l∈{1,...,L}且n∈{1,...,N})。同时对于观测yl,n可计算其扰动量等式中代表集合成员的平均值。The lth observation of the nth set member denoted by y l,n . (l∈{1,...,L} and n∈{1,...,N}). At the same time, the disturbance amount can be calculated for the observation y l,n in the equation Represents the mean of the set members.
2.2.获取模式变量2.2. Get pattern variables
对于模式变量,首先在水平方向投影至第l个观测变量所在的位置,并将第n个集合成员位于第k层高度的变量记为模式变量扰动量的定义方式与观测变量相似,其中代表集合成员的平均值。For the mode variable, firstly project to the position of the lth observed variable in the horizontal direction, and record the variable with the nth set member at the height of the kth layer as The model variable disturbance is defined in a similar way to the observed variable, in Represents set members average of.
步骤三、计算相关系数
3.1.质量控制3.1. Quality Control
为避免区域内观测数量太少,难以消除的取样误差影响估计局地化函数的准确性,经验上设定观测数下限为100。当区域内观测数小于100时,本发明不适用,使用默认的GC函数配置。实验中仅GGF-TC实验的TC区域内个别通道的样本数量不足。In order to avoid that the number of observations in the region is too small, the sampling error that is difficult to eliminate affects the accuracy of the estimated localization function, the lower limit of the number of observations is empirically set to 100. When the number of observations in the area is less than 100, the present invention is not applicable, and the default GC function configuration is used. The number of samples of individual channels within the TC region of the GGF-TC-only experiment was insufficient in the experiments.
3.2.计算相关系数3.2. Calculate the correlation coefficient
第l个观测yl和第l个模式变量的相关系数rl k可以由相关系数的定义给出,即 The lth observation y l and the lth pattern variable The correlation coefficient r l k of can be given by the definition of the correlation coefficient, namely
图2中虚线代表了GGF-Domain实验中卫星NOAA-15搭载的AMSU-A仪器通道6的观测在各高度层的平均相关系数。The dotted line in Fig. 2 represents the average correlation coefficient at each altitude of the observations of the AMSU-
步骤四、计算原始局地化函数
4.1.对相关系数分组4.1. Grouping the correlation coefficients
对于某一类给定的卫星观测和某一种模式变量,将任意高度k的相关系数rl k按每组G个元素分为M组,即L=M*G,rl k可以改写为经验上G取为4。For a given type of satellite observation and a certain model variable, the correlation coefficient r l k of any height k is divided into M groups according to each group of G elements, that is, L=M*G, r l k can be rewritten as In experience, G is taken as 4.
4.2.某一高度的局地化函数值4.2. Localization function value at a certain height
第m组的每一个分别记为“真实”的相关系数,则局地化后的相关系数与“真值”的目标函数为 each of the mth group are recorded as "true" correlation coefficients, then the localized correlation coefficients The objective function with "truth value" is
使目标函数最小的αk取值应为:The value of α k that minimizes the objective function should be:
4.3.计算原始局地化函数4.3. Calculate the original localization function
步骤(3.2)中的αk表示了对于这一种卫星观测和高度为k的模式变量相关系数的信心指数,αk(k∈{1,...,K})的垂直廓线即为估算的垂直方向的原始局地化函数。图2中点线状曲线代表了GGF-Domain实验中卫星NOAA-15搭载的AMSU-A仪器通道6的观测在各高度层的原始局地化函数。α k in step (3.2) represents the confidence index of the correlation coefficient between this kind of satellite observation and the model variable with height k, and the vertical profile of α k (k∈{1,...,K}) is Estimated vertical raw localization function. The dotted-line curve in Fig. 2 represents the original localization function at each altitude level observed by the AMSU-
步骤五、拟合参数
GC函数的值通常在观测所在的位置最大,并随观测与模式变量的距离增大而减小,在某一范围之外函数值减为0。The value of the GC function is usually the largest at the location of the observation, and decreases as the distance between the observation and the model variable increases, and the value of the function decreases to 0 outside a certain range.
5.1.找出垂直方向观测位置5.1. Find the vertical observation position
将相关系数廓线最大值所在高度的气压值作为此卫星观测垂直方向的位置po。The barometric pressure value at the height of the maximum correlation coefficient profile is taken as the position p o in the vertical direction of this satellite observation.
5.2.拟合GC函数宽度(影响范围)5.2. Fitting GC function width (range of influence)
以GC函数拟合原始局地化函数,找出使两者均方根误差最小的GC函数宽度值co。Fit the original localization function with the GC function, and find the GC function width value c o that minimizes the root mean square error of both.
图2中实线状曲线代表了GGF-Domain实验中卫星NOAA-15搭载的AMSU-A仪器通道6的观测在原始局地化函数拟合后的结果。据图可知,这一观测在本实验中估计的观测位置为505.5hPa,局地化尺度为2.2ln(hPa)。The solid line curve in Figure 2 represents the result of fitting the original localization function to the observation of the AMSU-
步骤六、将适应性局地化函数应用于模式中
6.1.选择模式变量6.1. Selecting Mode Variables
在集合卡曼滤波同化系统中直接被同化的变量均可以作为模式变量。实验中选择了温度和比湿度两个模式变量,对于来自仪器AMSU-A的观测,观测与模式变量温度的相关系数大于与比湿度的相关系数,因此使用温度估计适应性局地化参数。The variables directly assimilated in the ensemble Kalman filter assimilation system can be used as model variables. Two model variables, temperature and specific humidity, were selected in the experiment. For the observations from the instrument AMSU-A, the correlation coefficient between the observation and the model variable temperature is greater than the correlation coefficient with the specific humidity, so temperature was used to estimate the adaptive localization parameter.
图3a、图3b展示了GGF-TC实验中,分别在TC区和非TC区估计的局地化参数在不同卫星平台的平均值(非TC区为圆点,TC区为菱形)和一个标准差(非TC区为实线,即圆点上下的线为实线,TC区为虚线,即菱形上下的线是虚线)。对于TC区域和非TC区域,对AMSU-A观测估计的垂直位置相似,但TC区域中估计的局地化宽度通常大于非TC区域估计的宽度。这些适应性局地化参数将用于循环同化预报,以检验适应性局地化参数对预报的影响。其他实验及其他种类卫星观测的适应性局地化参数也可以相应地估计而得。Figure 3a and Figure 3b show the average values of localization parameters estimated in the TC area and the non-TC area on different satellite platforms in the GGF-TC experiment (the non-TC area is a circle and the TC area is a diamond) and a standard Difference (the non-TC area is a solid line, that is, the line above and below the dot is a solid line, and the TC area is a dashed line, that is, the line above and below the diamond is a dashed line). The vertical positions estimated for AMSU-A observations are similar for TC and non-TC regions, but the estimated localized widths in TC regions are generally larger than those estimated in non-TC regions. These adaptive localization parameters will be used in cyclic assimilation forecasts to examine the effects of adaptive localization parameters on forecasts. Adaptive localization parameters for other experiments and other kinds of satellite observations can also be estimated accordingly.
6.2.应用适应性局地化函数6.2. Applying an adaptive localization function
6.2.1.利用常规观测检验预报结果6.2.1. Using routine observations to check forecast results
使用常规观测(温度、风速、比湿度)检验控制实验和三个使用本发明的适应性局地化实验(GGF-Domain、GGF-TC、GGF-Time)的6小时预报误差。图4(a)、图4(c)、图4(e)分别展示了以温度、风速、比湿度三种常规观测检验控制实验在时间上和水平区域内平均后的均方根误差。图4(b)、图4(d)、图4(f)则展示了使用本发明后所得的误差与控制实验误差之差,图中负值表示使用本发明的实验结果优于控制实验,正值则表示使用本发明后结果变差;图上方的短实线表示在垂直方向上的平均值。总体而言,使用本发明后预报结果误差小于控制实验,且适应性局地化参数随时间变化的GGF-Time实验优于恒定适应性局地化参数的GGF-Domain实验,区分TC和非TC区的适应性局地化参数的GGF-TC实验相对于GGF-Time和GGF-Domain又稍有优势。The control experiments and three adaptive localization experiments using the present invention (GGF-Domain, GGF-TC, GGF-Time) were used to examine the 6-hour forecast errors using conventional observations (temperature, wind speed, specific humidity). Fig. 4(a), Fig. 4(c), Fig. 4(e) respectively show the average root mean square error of the control experiment in time and in the horizontal area by three kinds of routine observation test of temperature, wind speed and specific humidity. Fig. 4(b), Fig. 4(d), Fig. 4(f) show the difference between the error obtained after using the present invention and the error of the control experiment, the negative value in the figure indicates that the experimental result using the present invention is better than the control experiment, Positive values indicate worse results after using the present invention; the short solid line above the graph represents the average value in the vertical direction. In general, the error of the prediction results after using the present invention is smaller than that of the control experiment, and the GGF-Time experiment with the adaptive localization parameter changing with time is better than the GGF-Domain experiment with constant adaptive localization parameters, distinguishing TC and non-TC. The GGF-TC experiment of the adaptive localization parameters of the region has a slight advantage over GGF-Time and GGF-Domain.
6.2.2.利用台风的路径和强度检验预报的结果6.2.2. Use the track and intensity of the typhoon to check the forecast results
图5展示了观测(粗实线大圆点)、控制实验(细实线小圆点)和三个使用本发明的实验对于台风玉兔(2018)的路径(图5a)、最低海平面气压(图5b)和最大风速(图5c)的预报影响。控制实验和使用本发明的实验的路径预报均与观测非常接近,但在台风开始时GGF实验的路径预报略好于控制实验(图5a)。对于强度预报,即最低海平面气压和最大风速,GGF实验的预报比控制实验更加接近观测值。使用本发明的实验比控制实验更好地捕捉了快速增强(RI)过程。然而,使用本发明的实验预测的台风峰值强度仍低于观测值,这可能是由于模型分辨率不足无法解析质量场和风场的梯度所致。三个使用本发明的实验具有相似的路径和强度预报,且它们的预报结果均优于控制实验。Figure 5 shows the path (Figure 5a), minimum sea level pressure ( Fig. 5b) and forecast effects of maximum wind speed (Fig. 5c). The track predictions of both the control experiment and the experiment using the present invention are very close to the observations, but the track prediction of the GGF experiment is slightly better than that of the control experiment at the onset of the typhoon (Fig. 5a). For intensity forecasts, i.e. minimum sea level pressure and maximum wind speed, the predictions from the GGF experiments were much closer to the observations than the control experiments. Experiments using the present invention capture the rapid enhancement (RI) process better than control experiments. However, the typhoon peak intensity predicted by the experiments of the present invention is still lower than the observed value, which may be due to insufficient model resolution to resolve the gradients of the mass field and wind field. The three experiments using the present invention have similar path and intensity predictions, and their prediction results are better than the control experiments.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010013183.6A CN111259324B (en) | 2020-01-07 | 2020-01-07 | Adaptive localization method of satellite data assimilation in vertical direction and ensemble Kalman filter weather assimilation forecast method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010013183.6A CN111259324B (en) | 2020-01-07 | 2020-01-07 | Adaptive localization method of satellite data assimilation in vertical direction and ensemble Kalman filter weather assimilation forecast method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111259324A true CN111259324A (en) | 2020-06-09 |
CN111259324B CN111259324B (en) | 2022-07-12 |
Family
ID=70946784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010013183.6A Active CN111259324B (en) | 2020-01-07 | 2020-01-07 | Adaptive localization method of satellite data assimilation in vertical direction and ensemble Kalman filter weather assimilation forecast method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111259324B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112782789A (en) * | 2020-12-25 | 2021-05-11 | 东营市气象局 | Typhoon movement prediction method and device |
CN114048433A (en) * | 2021-10-26 | 2022-02-15 | 南京大学 | Mixed assimilation system and method based on ensemble Kalman filtering framework |
CN114070262A (en) * | 2021-10-26 | 2022-02-18 | 南京大学 | An Integrated Mixed Ensemble Kalman Filter Weather Forecast Assimilation Method and Device with Additional Disturbance |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104899448A (en) * | 2015-06-09 | 2015-09-09 | 哈尔滨工程大学 | Adaptive compensation method for static localization scheme of ensemble Kalman filter |
CN105046046A (en) * | 2015-06-09 | 2015-11-11 | 哈尔滨工程大学 | Ensemble Kalman filter localization method |
WO2016164147A1 (en) * | 2015-04-08 | 2016-10-13 | The Climate Corporation | Improving weather forecasts through post-processing |
CN109660290A (en) * | 2018-11-23 | 2019-04-19 | 南京信息工程大学 | A kind of multi rack structure emergency security system based on more satellite multibands |
CN109814179A (en) * | 2019-01-04 | 2019-05-28 | 南京信息工程大学 | An emergency communication processing system based on cloud perception |
CN110008621A (en) * | 2019-04-15 | 2019-07-12 | 中国农业科学院农业资源与农业区划研究所 | Assimilation algorithm based on double flow-dependent ensemble square root filter and crop model remote sensing assimilation estimation method based on this algorithm |
-
2020
- 2020-01-07 CN CN202010013183.6A patent/CN111259324B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016164147A1 (en) * | 2015-04-08 | 2016-10-13 | The Climate Corporation | Improving weather forecasts through post-processing |
CN104899448A (en) * | 2015-06-09 | 2015-09-09 | 哈尔滨工程大学 | Adaptive compensation method for static localization scheme of ensemble Kalman filter |
CN105046046A (en) * | 2015-06-09 | 2015-11-11 | 哈尔滨工程大学 | Ensemble Kalman filter localization method |
CN109660290A (en) * | 2018-11-23 | 2019-04-19 | 南京信息工程大学 | A kind of multi rack structure emergency security system based on more satellite multibands |
CN109814179A (en) * | 2019-01-04 | 2019-05-28 | 南京信息工程大学 | An emergency communication processing system based on cloud perception |
CN110008621A (en) * | 2019-04-15 | 2019-07-12 | 中国农业科学院农业资源与农业区划研究所 | Assimilation algorithm based on double flow-dependent ensemble square root filter and crop model remote sensing assimilation estimation method based on this algorithm |
Non-Patent Citations (4)
Title |
---|
LILI LEI 等: "Empirical Localization Functions for Ensemble Kalman Filter Data Assimilation in Regions with and without Precipitation", 《HTTPS://DOI.ORG/10.1175/MWR-D-14-00415.1》 * |
LILI LEI 等: "Localizing the impact of satellite radiance observations using a global group ensemble filter", 《HTTPS://DOI.ORG/10.1002/2016MS000627》 * |
常明恒 等: "一种新的耦合模糊控制局地化的同化方法", 《地球科学进展》 * |
马小艳 等: "一种新的基于模糊分析观测信息的局地化方法", 《地球信息科学》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112782789A (en) * | 2020-12-25 | 2021-05-11 | 东营市气象局 | Typhoon movement prediction method and device |
CN114048433A (en) * | 2021-10-26 | 2022-02-15 | 南京大学 | Mixed assimilation system and method based on ensemble Kalman filtering framework |
CN114070262A (en) * | 2021-10-26 | 2022-02-18 | 南京大学 | An Integrated Mixed Ensemble Kalman Filter Weather Forecast Assimilation Method and Device with Additional Disturbance |
CN114048433B (en) * | 2021-10-26 | 2022-06-21 | 南京大学 | Hybrid assimilation system and method based on ensemble Kalman filter framework |
CN114070262B (en) * | 2021-10-26 | 2022-06-21 | 南京大学 | An Integrated Mixed Ensemble Kalman Filter Weather Forecast Assimilation Method and Device with Additional Disturbance |
Also Published As
Publication number | Publication date |
---|---|
CN111259324B (en) | 2022-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111259324A (en) | Satellite data assimilation vertical direction adaptive localization method and integrated Kalman filtering weather assimilation forecasting method | |
US11488069B2 (en) | Method for predicting air quality with aid of machine learning models | |
McNally et al. | The use of TOVS level‐1b radiances in the NCEP SSI analysis system | |
Macpherson et al. | The impact of MOPS moisture data in the UK Meteorological Office mesoscale data assimilation scheme | |
CN109946762B (en) | Method and system for short-time rainfall forecast based on probability distribution | |
CN112990609B (en) | Air quality prediction method based on space-time bandwidth self-adaptive geographical weighted regression | |
WO2004086067A2 (en) | System and method for lightning detection | |
CN114118537A (en) | Combined prediction method for carbon emission of airspace flight | |
Eccel et al. | Prediction of minimum temperatures in an alpine region by linear and non-linear post-processing of meteorological models | |
CN112541615A (en) | Water level prediction method based on convolutional neural network | |
Zhu et al. | Variational correction of aircraft temperature bias in the NCEP’s GSI analysis system | |
Prasad et al. | Improvements in medium range weather forecasting system of India | |
CN114252834A (en) | Satellite-borne microwave radiometer external calibration method and device based on ocean target | |
CN110968926B (en) | Method for predicting atmospheric parameters based on improved background error covariance matrix | |
CN116609858A (en) | A Tropical Cyclone Atmospheric Duct Prediction Method and System Based on Interpretable XGBoost Model | |
CN115508917B (en) | Airport meteorological element forecast method, device, equipment and storage medium | |
CN115561836B (en) | A method and system for evaluating the accuracy of satellite-borne microwave hyperspectral temperature and humidity profile inversion | |
Shahabadi et al. | Toward all-sky assimilation of microwave temperature sounding channels in environment Canada’s global deterministic weather prediction system | |
CN116338625A (en) | A method and computer readable medium for multiscale classification of clouds and aerosols | |
CN110929225B (en) | Near-surface sulfur dioxide concentration estimation method based on geographical weighted regression model | |
CN112965144B (en) | Method for improving accuracy of inversion of atmospheric temperature and humidity profile by one-dimensional variational algorithm | |
Bani Shahabadi et al. | Implementation of all-sky assimilation of microwave humidity sounding channels in Environment Canada’s global deterministic weather prediction system | |
CN119025820A (en) | A regional snow albedo prediction method, system and device | |
CN117809161A (en) | Star-masking refractive index profile data quality evaluation system based on multi-source data | |
CN108594335A (en) | A kind of Global Precipitation detection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |