CN111256708A - 一种基于射频识别的车载组合导航方法 - Google Patents

一种基于射频识别的车载组合导航方法 Download PDF

Info

Publication number
CN111256708A
CN111256708A CN202010097647.6A CN202010097647A CN111256708A CN 111256708 A CN111256708 A CN 111256708A CN 202010097647 A CN202010097647 A CN 202010097647A CN 111256708 A CN111256708 A CN 111256708A
Authority
CN
China
Prior art keywords
radio frequency
frequency identification
equation
navigation system
inertial navigation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010097647.6A
Other languages
English (en)
Inventor
刘培学
闫东
徐辉
刘纪新
董丽
姜宝华
曹爱霞
冯飞
陈玉杰
赵梅莲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Huanghai University
Original Assignee
Qingdao Huanghai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Huanghai University filed Critical Qingdao Huanghai University
Priority to CN202010097647.6A priority Critical patent/CN111256708A/zh
Publication of CN111256708A publication Critical patent/CN111256708A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/46Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being of a radio-wave signal type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/47Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/0008General problems related to the reading of electronic memory record carriers, independent of its reading method, e.g. power transfer

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Automation & Control Theory (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明公开了一种基于射频识别的车载组合导航方法,涉及无人运输车的定位技术领域。可工作于单独惯导定位方式,无RFID辅助GPS+惯导方式+RFID辅助定位方式,其中RFID辅助定位方式精度最高。无RFID辅助时,基于全球定位系统和惯性导航系统,利用全球定位系统和惯性导航系统解算出的位置和速度之差作为卡尔曼滤波器的输入,通过卡尔曼滤波器得到导航误差参数的估值,利用估值校正惯性导航系统的输出,最终得到基于GPS+惯导的车载组合导航系统的输出参数,有RFID存在时,利用射频识别的特点,利用RFID信息对组合导航系统中GPS解算的位置信息进行修正,达到辅助定位的作用。

Description

一种基于射频识别的车载组合导航方法
技术领域
本发明涉及无人运输车的定位技术领域,具体涉及一种基于射频识别的车载组合导航方法。
背景技术
目前一些工厂在生产、装配、运输过程中增加各种现代化技术实现了工厂智能化,其中无人运输是智能化工厂的重要组成部分。并且随着计算机的发展,各类先进的导航设备的出现,为组合导航系统在工程上的应用提供了条件。全球定位系统(Global PositionSystem,GPS)与惯性导航系统(Inertia Navigation System,INS)的组合系统因为兼备了抗干扰性好、自主能力强、定位精度高等诸多优点,在工程应用中最为广范。然而在实际的应用中,当无人运输车位于工厂厂区时,因所处的环境高楼林立、道路复杂,GPS信号容易受到周围环境等物的影响,造成GPS出现信号不稳定、VDOP和HDOP值较大的情况,甚至可能导致长时间导航定位无效,此时,基于INS惯性器件的组合导航方法导航精度迅速下降。
为了解决车载组合导航定位精度不高的问题,文献中记载了使用零速修正或地标点上停车修正两种方法,但是因其削弱了驾驶车辆的机动性而没有被广泛应用。文献中记载了利用地图匹配技术进行辅助定位,但也同时存在地图精度、数据处理技术要求高等问题。文献中记载了将惯导系统与里程计(OD)组合进行航位推算,可以一定程度上抑制误差发散,但由于车辆行驶过程中会发生车轮空转、打滑现象,影响里程计,因此也不适合长时导航。
发明内容
本发明的目的是针对上述不足,提出了一种通过射频识别将储存于标签内的位置信息传送给车载的射频设别阅读器,通过射频设别位置信息修正GPS给出的位置信息从而提高导航定位精度的方法。
本发明具体采用如下技术方案:
一种基于射频识别的车载组合导航方法,基于全球定位系统、惯性导航系统和射频识别进行定位,包括全球定位系统和惯性导航系统相结合的定位方式,以及全球定位系统、惯性导航系统和射频识别辅助定位相结合的定位方式:
全球定位系统和惯性导航系统相结合的定位方式,利用全球定位系统和惯性导航系统解算出的位置和速度之差作为卡尔曼滤波器的输入,通过卡尔曼滤波器得到导航误差参数的估值,利用估值校正惯性导航系统的输出,最终得到车载组合导航的输出参数;
全球定位系统、惯性导航系统和射频识别辅助相结合的定位方式,利用射频识别辅助定位对全球定位系统和惯性导航系统中全球定位系统解算的位置信息进行修正;射频识别辅助定位包括以下步骤:
步骤1,首先建立描述车载组合导航系统动态特性的状态方程;
步骤2,建立描述车载组合导航系统的量测方程,基于状态方程及量测方程,解算基于全球定位系统及惯导系统的定位输出信息;
步骤3,有射频识别标签存在时,构建基于射频识别的辅助定位系统,使用射频识别对全球定位系统的位置信息进行修正,在系统内设置,当车载阅读器扫描到射频设别标签时,将系统中全球定位系统解算的位置信息替换成电子标签中的位置信息,构建辅助定位系统的量测方程,结合描述车载组合导航系统动态特性的状态方程,利用卡尔曼滤波进行参数的时间更新和量测更新。
优选地,步骤1中,
选取各导航系统参数的误差为状态变量,建立12维状态向量的卡尔曼滤波模型,误差状态向量分别为:东φE、北φN、天φU向姿态角误差φE、φN、φU,东、北向速度误差δVE、δVN,纬度、经度误差δL、δλ,东、北、天向陀螺漂移εbx、εby、εbz,东、北向加速度计零漂
Figure BDA0002385735310000028
Figure BDA0002385735310000029
系统状态方程为式(1):
Figure BDA0002385735310000021
式中:
Figure BDA0002385735310000022
Figure BDA0002385735310000023
Figure BDA0002385735310000024
系统状态转移矩阵为式(2):
Figure BDA0002385735310000025
FN为系统动态矩阵,由惯导系统的3个姿态误差,2个速度误差,2个位置误差组成。
优选地,步骤2中,量测方程反映了量测量与状态量之间的关系,建立包括东、北向速度、位置误差的4维量测向量,设射频识别解算出的位置为xE,INS,yN,INS,速度为vE,INS,vN,INS,全球定位系统解算出的位置为xE,GPS,yN,GPS,速度为vE,GPS,vN,GPS
相应的量测方程为式(3):
Z(t)=H(t)X(t)+V(t) (3)
其中,量测向量为:
Figure BDA0002385735310000026
量测噪声为:
Figure BDA0002385735310000027
ME、MN分别为GPS量测的东、北向位置误差,NE、MN分别为东、北向速度误差,基于上述量测方程及状态方程,带入卡尔曼滤波方程即可解算导航系统信息。
优选地,步骤3中,设射频识别给出的位置为xE,RFID,yE,RFID,全球定位系统给出的速度为vE,GPS,vN,GPS,则系统的位置误差为惯性导航系统结算的位置与射频识别给出的位置之差,将位置误差转换到大地坐标中,得到位置量测方程为式(4):
Figure BDA0002385735310000031
速度量测方程为式(5):
Figure BDA0002385735310000032
则系统量测方程由射频识别提供的位置,全球定位系统提供的速度与惯性导航系统测得的位置和速度作差得到相应的量测方程,即如式(6):
Figure BDA0002385735310000033
联合系统状态方程,利用卡尔曼滤波进行参数的时间更新和量测更新:
一步预测方程:
先验状态估计值:
Figure BDA0002385735310000034
后验状态估计值:
Figure BDA0002385735310000035
求取增益矩阵:
Figure BDA0002385735310000036
先验估计协方差:
Figure BDA0002385735310000037
后验估计协方差:
Figure BDA0002385735310000038
本发明具有如下有益效果:
该方法可工作于单独惯导定位方式、无RFID辅助方式,有RFID辅助定位方式,其中,有RFID辅助方式利用射频识别的特点,对组合导航系统中GPS解算的位置信息进行修正,结合误差滤波修正方式,达到辅助定位的作用,从而提高了定位精度,适用于多种场合。构建数学模型并对提出方法进行仿真,对比试验结果表明:随着RFID辅助的应用,目标车辆的位置误差得到有效抑制,可以满足无人运输车高精度定位需求。
附图说明
图1为车载组合导航结构框图;
图2为路面安装标签示意图;
图3a为第一次实验仿真导航位置误差比较示意图;
图3b为第二次实验仿真导航位置误差比较示意图;
图4为东向位置误差均方根示意图;
图5为北向位置误差均方根示意图。
具体实施方式
下面结合实施例对本发明的具体实施方式作进一步说明。
Global Position System,GPS,全球定位系统。
Inertia Navigation System,INS,惯性导航系统。
RFID,射频识别。
本发明公开的一种基于射频识别的车载组合导航方法,涉及无人运输车的定位技术领域。基于射频识别的车载组合导航系统,可工作于单独惯导定位方式,无RFID辅助GPS+惯导方式+RFID辅助定位方式,其中RFID辅助定位方式精度最高。无RFID辅助时,基于全球定位系统和惯性导航系统,利用全球定位系统和惯性导航系统解算出的位置和速度之差作为卡尔曼滤波器的输入,通过卡尔曼滤波器得到导航误差参数的估值,利用估值校正惯性导航系统的输出,最终得到基于GPS+惯导的车载组合导航系统的输出参数,有RFID存在时,方法利用射频识别的特点,利用RFID信息对组合导航系统中GPS解算的位置信息进行修正,达到辅助定位的作用。
基于全球定位系统的接收机采样率小于惯性导航系统的采样率,当全球定位系统观测不可用时,能够利用惯性导航系统的力学编排来更新状态方程中的位置、速度和姿态信息。
结合图1和图2,一种基于射频识别的车载组合导航方法,基于全球定位系统、惯性导航系统和射频识别进行定位,包括全球定位系统和惯性导航系统相结合的定位方式,以及全球定位系统、惯性导航系统和射频识别辅助定位相结合的定位方式:
全球定位系统和惯性导航系统相结合的定位方式,利用全球定位系统和惯性导航系统解算出的位置和速度之差作为卡尔曼滤波器的输入,通过卡尔曼滤波器得到导航误差参数的估值,利用估值校正惯性导航系统的输出,最终得到车载组合导航的输出参数;
全球定位系统、惯性导航系统和射频识别辅助相结合的定位方式,利用射频识别辅助定位对全球定位系统和惯性导航系统中全球定位系统解算的位置信息进行修正;射频识别辅助定位包括以下步骤:
步骤1,首先建立描述车载组合导航系统动态特性的状态方程;选取各导航系统参数的误差为状态变量,建立12维状态向量的卡尔曼滤波模型,误差状态向量分别为:东φE、北φN、天φU向姿态角误差φE、φN、φU,东、北向速度误差δVE、δVN,纬度、经度误差δL、δλ,东、北、天向陀螺漂移εbx、εby、εbz,东、北向加速度计零漂
Figure BDA0002385735310000045
系统状态方程为式(1):
Figure BDA0002385735310000041
式中:
Figure BDA0002385735310000042
Figure BDA0002385735310000043
Figure BDA0002385735310000044
系统状态转移矩阵为式(2):
Figure BDA0002385735310000051
FN为系统动态矩阵,由惯导系统的3个姿态误差,2个速度误差,2个位置误差组成。
步骤2,建立描述车载组合导航系统的量测方程,基于状态方程及量测方程,解算基于全球定位系统及惯导系统的定位输出信息;
量测方程反映了量测量与状态量之间的关系,建立包括东、北向速度、位置误差的4维量测向量,设射频识别解算出的位置为xE,INS,yN,INS,速度为vE,INS,vN,INS,全球定位系统解算出的位置为xE,GPS,yN,GPS,速度为vE,GPS,vN,GPS
相应的量测方程为式(3):
Z(t)=H(t)X(t)+V(t) (3)
其中,量测向量为:
Figure BDA0002385735310000052
量测噪声为:
Figure BDA0002385735310000053
ME、MN分别为GPS量测的东、北向位置误差,NE、MN分别为东、北向速度误差,基于上述量测方程及状态方程,带入卡尔曼滤波方程即可解算导航系统信息。
步骤3,有射频识别标签存在时,构建基于射频识别的辅助定位系统,使用射频识别对全球定位系统的位置信息进行修正,在系统内设置,当车载阅读器扫描到射频设别标签时,将系统中全球定位系统解算的位置信息替换成电子标签中的位置信息,构建辅助定位系统的量测方程,结合描述车载组合导航系统动态特性的状态方程,利用卡尔曼滤波进行参数的时间更新和量测更新。
误差为惯性导航系统结算的位置与射频识别给出的位置之差,将位置误差转换到大地坐标中,得到位置量测方程为式(4):
Figure BDA0002385735310000054
速度量测方程为式(5):
Figure BDA0002385735310000055
则系统量测方程由射频识别提供的位置,全球定位系统提供的速度与惯性导航系统测得的位置和速度作差得到相应的量测方程,即如式(6):
Figure BDA0002385735310000056
联合系统状态方程,利用卡尔曼滤波进行参数的时间更新和量测更新:
一步预测方程:
先验状态估计值:
Figure BDA0002385735310000057
后验状态估计值:
Figure BDA0002385735310000061
求取增益矩阵:
Figure BDA0002385735310000062
先验估计协方差:
Figure BDA0002385735310000063
后验估计协方差:
Figure BDA0002385735310000064
为验证RFID辅助修正GPS/INS组合定位效果,根据建立的数学模型,应用Matlab软件编写组合导航仿真程序,仿真实验中的INS和GPS参数如表1所示。
表1
Figure BDA0002385735310000065
针对厂区环境对组合导航精度的影响,分别使用三种不同导航方式进行仿真实验,对位置误差进行对比,仿真时长为500s。
第一次实验,仿真单独使用惯导系统,因惯性测量器件主要影响惯导系统的精度,所以导航误差会随时间不断积累,从图3a中曲线1也可以看出其东、北向位置误差不断增加,因此惯导系统不适合长时间的单独导航。
第二次仿真GPS/INS组合导航,当GPS信号有效时,组合导航精度主要取决于GPS定位精度,因此为了对比评价RFID对组合导航的辅助效果,仿真实验增加GPS定位的噪声,模拟由于树木、高楼遮挡导致短期内GPS信号失锁的场景。由图3b曲线2可以看出,虽然惯导系统的误差得到抑制,可以提供较为精准的导航结果,但是因为GPS信号被影响,位置误差收敛速度较慢。
第三次仿真是在第二次仿真的基础上,模拟车辆每隔50s会经过一个RFID区域,获得一次位置信息辅助修正,由曲线3可以看出经过RFID辅助后,导航系统误差收敛速度更快,稳态误差更小。
为了保证实验的准确性及可靠性,对仿真进行蒙特卡罗模拟实验,随机变量选择GPS的定位噪声进行五十次仿真实验,以模拟不同环境对GPS信号有不同程度的影响。在此基础上分别计算GPS/INS组合导航与RFID辅助导航的东、北向位置误差的均方根,并进行对比。由图4、5中位置误差的均方根对比可以看出,RFID辅助可以提高误差控制,在一定程度上可以弥补GPS定位的缺陷,提高定位精度。
针对无人运输车在工厂厂区时,周围复杂的环境会影响GPS信号,造成车载组合导航系统定位精度不高的问题,提出了在GPS/INS的组合导航的基础上,使用RFID对GPS解算的位置信息进行校正,以提高对组合导航最终输出位置的精度。并对此方案构建数学模型,进行仿真实验及位置误差对比,最终实验结果表明,利用RFID辅助可以抑制误差发散,提高车载导航的精度,为工程实现提供一定的参考。

Claims (4)

1.一种基于射频识别的车载组合导航方法,基于全球定位系统、惯性导航系统和射频识别进行定位,包括全球定位系统和惯性导航系统相结合的定位方式,以及全球定位系统、惯性导航系统和射频识别辅助定位相结合的定位方式:
全球定位系统和惯性导航系统相结合的定位方式,利用全球定位系统和惯性导航系统解算出的位置和速度之差作为卡尔曼滤波器的输入,通过卡尔曼滤波器得到导航误差参数的估值,利用估值校正惯性导航系统的输出,最终得到车载组合导航的输出参数;
全球定位系统、惯性导航系统和射频识别辅助相结合的定位方式,利用射频识别辅助定位对全球定位系统和惯性导航系统中全球定位系统解算的位置信息进行修正;其特征在于,射频识别辅助定位包括以下步骤:
步骤1,首先建立描述车载组合导航系统动态特性的状态方程;
步骤2,建立描述车载组合导航系统的量测方程,基于状态方程及量测方程,基于卡尔曼滤波,解算基于全球定位系统及惯导系统的定位输出信息;
步骤3,有射频识别标签存在时,构建基于射频识别的辅助定位系统,使用射频识别对全球定位系统的位置信息进行修正,在系统内设置,当车载阅读器扫描到射频设别标签时,将系统中全球定位系统解算的位置信息替换成电子标签中的位置信息,构建辅助定位系统的量测方程,结合描述车载组合导航系统动态特性的状态方程,利用卡尔曼滤波进行参数的时间更新和量测更新。
2.如权利要求1所述的一种基于射频识别的车载组合导航方法,其特征在于,步骤1中,
选取各导航系统参数的误差为状态变量,建立12维状态向量的卡尔曼滤波模型,误差状态向量分别为:东φE、北φN、天φU向姿态角误差φE、φN、φU,东、北向速度误差δVE、δVN,纬度、经度误差δL、δλ,东、北、天向陀螺漂移εbx、εby、εbz,东、北向加速度计零漂
Figure FDA0002385735300000011
Figure FDA0002385735300000012
系统状态方程为式(1):
Figure FDA0002385735300000013
式中:
Figure FDA0002385735300000014
Figure FDA0002385735300000015
Figure FDA0002385735300000016
系统状态转移矩阵为式(2):
Figure FDA0002385735300000017
FN为系统动态矩阵,由惯导系统的3个姿态误差,2个速度误差,2个位置误差组成。
3.如权利要求1所述的一种基于射频识别的车载组合导航方法,其特征在于,步骤2中,量测方程反映了量测量与状态量之间的关系,建立包括东、北向速度、位置误差的4维量测向量,设射频识别解算出的位置为xE,INS,yN,INS,速度为νE,INS,νN,INS,全球定位系统解算出的位置为xE,GPS,yN,GPS,速度为vE,GPS,νN,GPS
相应的量测方程为式(3):
Z(t)=H(t)X(f)+V(t) (3)
其中,量测向量为:
Figure FDA0002385735300000021
量测噪声为:
Figure FDA0002385735300000022
ME、MN分别为GPS量测的东、北向位置误差,NE、MN分别为东、北向速度误差,基于上述量测方程及状态方程,带入卡尔曼滤波方程即可解算导航系统信息。
4.如权利要求1所述的一种基于射频识别的车载组合导航方法,其特征在于,步骤3中,设射频识别给出的位置为xE,RFID,yE,RFID,全球定位系统给出的速度为νE,GPS,νN,GPS,则系统的位置误差为惯性导航系统结算的位置与射频识别给出的位置之差,将位置误差转换到大地坐标中,得到位置量测方程为式(4):
Figure FDA0002385735300000023
速度量测方程为式(5):
Figure FDA0002385735300000024
则系统量测方程由射频识别提供的位置,全球定位系统提供的速度与惯性导航系统测得的位置和速度作差得到相应的量测方程,即如式(6):
Figure FDA0002385735300000025
联合系统状态方程,利用卡尔曼滤波进行参数的时间更新和量测更新:
一步预测方程:
先验状态估计值:
Figure FDA0002385735300000026
后验状态估计值:
Figure FDA0002385735300000027
求取增益矩阵:
Figure FDA0002385735300000028
先验估计协方差:
Figure FDA0002385735300000029
后验估计协方差:
Figure FDA00023857353000000210
CN202010097647.6A 2020-02-17 2020-02-17 一种基于射频识别的车载组合导航方法 Pending CN111256708A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010097647.6A CN111256708A (zh) 2020-02-17 2020-02-17 一种基于射频识别的车载组合导航方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010097647.6A CN111256708A (zh) 2020-02-17 2020-02-17 一种基于射频识别的车载组合导航方法

Publications (1)

Publication Number Publication Date
CN111256708A true CN111256708A (zh) 2020-06-09

Family

ID=70952827

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010097647.6A Pending CN111256708A (zh) 2020-02-17 2020-02-17 一种基于射频识别的车载组合导航方法

Country Status (1)

Country Link
CN (1) CN111256708A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112894816A (zh) * 2021-01-26 2021-06-04 合肥赛为智能有限公司 一种基于gnss和rfid的变电站巡检机器人导航定位方法
CN114578406A (zh) * 2022-01-17 2022-06-03 苏州深蓝空间遥感技术有限公司 一种基于改正北斗与射频识别融合导航定位的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102692223A (zh) * 2012-06-27 2012-09-26 东南大学 用于wsn/ins组合导航的多级非线性滤波器的控制方法
US20120244885A1 (en) * 2005-04-26 2012-09-27 Guy Hefetz Method and system for monitoring and validating electronic transactions
CN102879002A (zh) * 2012-09-06 2013-01-16 江苏物泰信息科技有限公司 基于rfid和gps的智能导览系统
CN107402005A (zh) * 2016-05-20 2017-11-28 北京自动化控制设备研究所 一种基于惯性/里程计/rfid的高精度组合导航方法
CN110687564A (zh) * 2019-10-24 2020-01-14 中科凯普(天津)卫星导航通信技术有限公司 一种基于rfid的列车隧道内高精度定位系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120244885A1 (en) * 2005-04-26 2012-09-27 Guy Hefetz Method and system for monitoring and validating electronic transactions
CN102692223A (zh) * 2012-06-27 2012-09-26 东南大学 用于wsn/ins组合导航的多级非线性滤波器的控制方法
CN102879002A (zh) * 2012-09-06 2013-01-16 江苏物泰信息科技有限公司 基于rfid和gps的智能导览系统
CN107402005A (zh) * 2016-05-20 2017-11-28 北京自动化控制设备研究所 一种基于惯性/里程计/rfid的高精度组合导航方法
CN110687564A (zh) * 2019-10-24 2020-01-14 中科凯普(天津)卫星导航通信技术有限公司 一种基于rfid的列车隧道内高精度定位系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHENG WEI等: "Train Integrated Positioning Method Based on GPS/INS/RFID", 《2016 35TH CHINESE CONTROL CONFERENCE (CCC)》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112894816A (zh) * 2021-01-26 2021-06-04 合肥赛为智能有限公司 一种基于gnss和rfid的变电站巡检机器人导航定位方法
CN112894816B (zh) * 2021-01-26 2024-04-19 合肥赛为智能有限公司 一种基于gnss和rfid的变电站巡检机器人导航定位方法
CN114578406A (zh) * 2022-01-17 2022-06-03 苏州深蓝空间遥感技术有限公司 一种基于改正北斗与射频识别融合导航定位的方法

Similar Documents

Publication Publication Date Title
CN107621264B (zh) 车载微惯性/卫星组合导航系统的自适应卡尔曼滤波方法
CN108731667B (zh) 用于确定无人驾驶车辆的速度和位姿的方法和装置
CN112097763B (zh) 一种基于mems imu/磁力计/dvl组合的水下运载体组合导航方法
CN108362288B (zh) 一种基于无迹卡尔曼滤波的偏振光slam方法
CN101846734B (zh) 农用机械导航定位方法、系统及农用机械工控机
Xiong et al. G-VIDO: A vehicle dynamics and intermittent GNSS-aided visual-inertial state estimator for autonomous driving
CN108387236B (zh) 一种基于扩展卡尔曼滤波的偏振光slam方法
CN112505737B (zh) 一种gnss/ins组合导航方法
CN104729506A (zh) 一种视觉信息辅助的无人机自主导航定位方法
CN103822633A (zh) 一种基于二阶量测更新的低成本姿态估计方法
CN113063429B (zh) 一种自适应车载组合导航定位方法
CN111536972B (zh) 一种基于里程计刻度系数修正的车载dr导航方法
CN111399023B (zh) 基于李群非线性状态误差的惯性基组合导航滤波方法
CN110057356B (zh) 一种隧道内车辆定位方法及装置
Park et al. MEMS 3D DR/GPS integrated system for land vehicle application robust to GPS outages
Dawson et al. Radar-based multisensor fusion for uninterrupted reliable positioning in GNSS-denied environments
CN111256708A (zh) 一种基于射频识别的车载组合导航方法
Gao et al. An integrated land vehicle navigation system based on context awareness
CN115200578A (zh) 基于多项式优化的惯性基导航信息融合方法及系统
CN113503872B (zh) 一种基于相机与消费级imu融合的低速无人车定位方法
CN114935345A (zh) 一种基于模式识别的车载惯导安装角误差补偿方法
CN111220151B (zh) 载体系下考虑温度模型的惯性和里程计组合导航方法
Kim et al. Enhanced outdoor localization of multi-GPS/INS fusion system using Mahalanobis Distance
CN114994732A (zh) 基于gnss载波相位的车载航向快速初始化装置及方法
Cahyadi et al. Unscented Kalman filter for a low-cost GNSS/IMU-based mobile mapping application under demanding conditions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200609

RJ01 Rejection of invention patent application after publication