CN111255744A - 一种控制压气机/风扇静子叶片吸力面流动分离的微喷气方法 - Google Patents

一种控制压气机/风扇静子叶片吸力面流动分离的微喷气方法 Download PDF

Info

Publication number
CN111255744A
CN111255744A CN202010160489.4A CN202010160489A CN111255744A CN 111255744 A CN111255744 A CN 111255744A CN 202010160489 A CN202010160489 A CN 202010160489A CN 111255744 A CN111255744 A CN 111255744A
Authority
CN
China
Prior art keywords
blade
gap
suction surface
blade profile
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010160489.4A
Other languages
English (en)
Other versions
CN111255744B (zh
Inventor
周正贵
郑欢
叶新龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN202010160489.4A priority Critical patent/CN111255744B/zh
Publication of CN111255744A publication Critical patent/CN111255744A/zh
Priority to US17/197,538 priority patent/US20210285460A1/en
Application granted granted Critical
Publication of CN111255744B publication Critical patent/CN111255744B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/005Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by changing flow path between different stages or between a plurality of compressors; Load distribution between compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/388Blades characterised by construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/682Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps by fluid extraction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/684Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps by fluid injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/145Means for influencing boundary layers or secondary circulations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • F04D29/544Blade shapes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/321Application in turbines in gas turbines for a special turbine stage
    • F05D2220/3216Application in turbines in gas turbines for a special turbine stage for a special compressor stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/36Application in turbines specially adapted for the fan of turbofan engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/81Modelling or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本发明公开了一种控制压气机/风扇静子叶片吸力面流动分离的微喷气方法,本发明的技术特征在于:所述叶型内部开设缝隙,形成开缝叶型,所述叶型缝隙的一端位于叶型前缘,另一端位于叶型吸力面;气流流经叶片时,微量气流流入叶型缝隙,从叶型吸力面出口处喷出。本项发明所提出的利用速度冲量形成微喷气控制叶片吸力面附面层方法可用于压气机、风扇等一类轴流压缩机械,以降低流动损失、提高效率。

Description

一种控制压气机/风扇静子叶片吸力面流动分离的微喷气 方法
技术领域
本发明属于空气动力学技术领域,具体涉及一种控制压气机/风扇静子叶片吸力面流动分离的微喷气方法,是为了利用速度冲量形成微射流控制压气机/风扇静子吸力面流动分离。
背景技术
轴流压气机/风扇静子与转子配合构成压气机/风扇级,静子用于改变气流方向和减速增压。压气机/风扇级压比越高,静子进口速度越高、气流转角越大,叶片吸力面附面层越厚、甚至产生流动分离,流动损失越大。为了提高航空发动机推重比,航空压气机/风扇始终向着高级压比方向发展。因此对于航空压气机/风扇,控制静子吸力面附面层更有价值。
2019年11月,唐雨萌等在工程热物理学报上发表论文“叶根开槽对高速常规负荷压气机叶栅性能影响”研究在压气机叶片中间开槽,利用压力面高能量气体形成射流吹除吸力面附面层,并采用计算机模拟方法进行不同方案比较,显示了开槽控制流动分离的有效性。由于压力面与吸力面能量差较小,因此开槽形成的射流对吸力面流动控制较弱。
发明内容
发明目的:为了克服现有技术中存在的不足,本发明提出一种控制压气机/风扇静子叶片吸力面流动分离的微喷气方法,利用速度冲量形成微喷气,实现对压气机/风扇静子叶片吸力面附面层抑制,减小静子流动损失、提高压气机效率。
技术方案:为实现上述目的,本发明采用的技术方案为:
一种控制压气机/风扇静子叶片吸力面流动分离的微喷气方法,所述叶型内部开设叶型缝隙,形成开缝叶型,所述叶型缝隙的一端位于叶型前缘,另一端位于叶型吸力面;气流流经叶片时,微量气流流入叶型缝隙,从叶型吸力面出口处喷出。
进一步的,所述叶型缝隙进口正对来流方向。
进一步的,另一端位于叶型吸力面需要进行附面层吹除的位置。
进一步的,叶型缝隙形状的优化方法为:针对给定叶型构成的叶栅,初拟给出初始的叶型缝隙形状,采用流场数值模拟方法进行包含叶型缝隙流动的流场计算,根据流场计算结果和流场结构分析,进行叶型缝隙形状的修改,确定叶型缝隙形状的主要参数包括:缝隙宽度δ、缝隙出口距前缘位置L,最终得到优化的叶型缝隙。
有益效果:本发明提出的一种控制压气机/风扇静子叶片吸力面流动分离的微喷气方法,与现有技术相比,具有以下优势:本项发明所提出的利用速度冲量形成微喷气控制叶片吸力面附面层方法,可形成高动量微喷气、有效吹除轴流压气机、风扇叶片吸力面附面层,降低流动损失、提高效率。
附图说明
图1静子空心叶型;
图2静子空心叶型前缘局部放大。
图中包括:1、叶型前缘,2、微量气流,3、叶型缝隙,4、叶型,5、叶型吸力面,6、叶型压力面,7、叶型弦,8、叶型尾缘。
具体实施方式
下面结合附图和实施例对本发明作更进一步的说明。
实施例
以下由图1说明本发明利用速度冲量形成微喷气控制压气机静子吸力面附面层的实施方法。
轴流压气机/风扇静子叶片都是由若干个叶型沿径向按一定积叠规律积叠,以叶型作为骨架采用样条曲面覆盖在此骨架上形成。因此叶型是构成叶片的基本元素,叶片气动性能取决于叶型。本项发明特征在于:所述的压气机/风扇静子叶片为空心,空心叶片由开缝叶片型面即叶型(4)构成。在叶型(4)上所开叶型缝隙(3)一端位于叶型前缘(1);另一端位于叶型吸力面(5)需要进行附面层吹除位置。气流流经叶片时,微量气流(2)流入叶型缝隙(3),从叶型吸力面(5)出口处喷出,增加此处附面层动量、抑制附面层发展、控制附面层流动分离。进而减小静子流动损失、提高压气机/风扇效率。由于缝隙进口正对来流方向,缝隙内微量气流动量高,缝隙出口射流速度相应高,可有效控制吸力面附面层。
静子叶型气动性能指标主要为:在一定进口马赫数和进气角下,达到给定气流转角,流动损失尽可能小、且低损失攻角范围尽可能大。针对给定叶型构成的叶栅,给出初始的叶型缝隙3形状,采用流场数值模拟方法进行包含叶型缝隙流动的流场计算。根据流场计算结果和流场结构分析,进行叶型缝隙3形状的修改。比如:可增加缝隙宽度δ,以增加缝隙流量;可减小缝隙出口距前缘位置L,以更早对吸力面附面层进行控制。最终得到优化的叶型缝隙3,实现优良的叶型气动性能指标和较小的缝隙流动损失。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (4)

1.一种控制压气机/风扇静子叶片吸力面流动分离的微喷气方法,其特征在于:所述叶型(4)内部开设叶型缝隙(3),形成开缝叶型,所述叶型缝隙(3)的一端位于叶型前缘(1),另一端位于叶型吸力面(5);气流流经叶片时,微量气流(2)流入叶型缝隙(3),从叶型吸力面(5)出口处喷出。
2.根据权利要求1所述的控制压气机/风扇静子叶片吸力面流动分离的微喷气方法,其特征在于:所述叶型缝隙(3)进口正对来流方向。
3.根据权利要求1所述的一种控制压气机/风扇静子叶片吸力面流动分离的微喷气方法,其特征在于:另一端位于叶型吸力面(5)需要进行附面层吹除的位置。
4.根据权利要求1所述的一种控制压气机/风扇静子叶片吸力面流动分离的微喷气方法,其特征在于:叶型缝隙(3)形状的优化方法为:针对给定叶型构成的叶栅,初拟给出初始的叶型缝隙(3)形状,采用流场数值模拟方法进行包含叶型缝隙流动的流场计算,根据流场计算结果和流场结构分析,进行叶型缝隙(3)形状的修改,确定叶型缝隙形状的主要参数包括:缝隙宽度δ、缝隙出口距前缘位置L,最终得到优化的叶型缝隙(3)。
CN202010160489.4A 2020-03-10 2020-03-10 一种控制压气机/风扇静子叶片吸力面流动分离的微喷气方法 Active CN111255744B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010160489.4A CN111255744B (zh) 2020-03-10 2020-03-10 一种控制压气机/风扇静子叶片吸力面流动分离的微喷气方法
US17/197,538 US20210285460A1 (en) 2020-03-10 2021-03-10 Method for controlling flow separation on suction surface of stator blade of axial compressor/fan by means of micro air injection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010160489.4A CN111255744B (zh) 2020-03-10 2020-03-10 一种控制压气机/风扇静子叶片吸力面流动分离的微喷气方法

Publications (2)

Publication Number Publication Date
CN111255744A true CN111255744A (zh) 2020-06-09
CN111255744B CN111255744B (zh) 2021-04-20

Family

ID=70949616

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010160489.4A Active CN111255744B (zh) 2020-03-10 2020-03-10 一种控制压气机/风扇静子叶片吸力面流动分离的微喷气方法

Country Status (2)

Country Link
US (1) US20210285460A1 (zh)
CN (1) CN111255744B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112253314A (zh) * 2020-11-10 2021-01-22 上海海事大学 基于鲨鱼鳃射流的燃气轮机风扇及压气机叶片减阻结构
CN112268012A (zh) * 2020-10-10 2021-01-26 浙江理工大学 带尾翼射流装置的无蜗壳离心通风机叶轮及其工作方法
CN113217462A (zh) * 2021-06-08 2021-08-06 西北工业大学 亚声速旋涡吹气式压气机叶片
WO2023060836A1 (zh) * 2021-10-15 2023-04-20 中国民航大学 一种自适应控制的压气机叶片及其制作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101348170A (zh) * 2008-09-01 2009-01-21 北京航空航天大学 一种具有层流流动控制和分离控制的机翼结构
US20100074763A1 (en) * 2008-09-25 2010-03-25 Siemens Energy, Inc. Trailing Edge Cooling Slot Configuration for a Turbine Airfoil
CN103534488A (zh) * 2011-05-16 2014-01-22 涡轮梅坎公司 燃气涡轮机扩压器吹气方法和相应的扩压器
CN103807201A (zh) * 2013-09-30 2014-05-21 北京航空航天大学 一种控制压气机静子角区分离的组合抽吸布局方法
CN104791025A (zh) * 2015-03-02 2015-07-22 中国科学院工程热物理研究所 一种用于降低低压涡轮叶片分离损失的控制结构及方法
CN108661947A (zh) * 2017-03-28 2018-10-16 中国科学院工程热物理研究所 采用康达喷气的轴流压气机叶片及应用其的轴流压气机
CN109665093A (zh) * 2019-01-16 2019-04-23 西北工业大学 一种可延缓流动分离的翼型及置于翼型上的激励器
CN209444376U (zh) * 2018-10-25 2019-09-27 中国科学院工程热物理研究所 采用自适应康达喷气的叶片

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101348170A (zh) * 2008-09-01 2009-01-21 北京航空航天大学 一种具有层流流动控制和分离控制的机翼结构
US20100074763A1 (en) * 2008-09-25 2010-03-25 Siemens Energy, Inc. Trailing Edge Cooling Slot Configuration for a Turbine Airfoil
CN103534488A (zh) * 2011-05-16 2014-01-22 涡轮梅坎公司 燃气涡轮机扩压器吹气方法和相应的扩压器
CN103807201A (zh) * 2013-09-30 2014-05-21 北京航空航天大学 一种控制压气机静子角区分离的组合抽吸布局方法
CN104791025A (zh) * 2015-03-02 2015-07-22 中国科学院工程热物理研究所 一种用于降低低压涡轮叶片分离损失的控制结构及方法
CN108661947A (zh) * 2017-03-28 2018-10-16 中国科学院工程热物理研究所 采用康达喷气的轴流压气机叶片及应用其的轴流压气机
CN209444376U (zh) * 2018-10-25 2019-09-27 中国科学院工程热物理研究所 采用自适应康达喷气的叶片
CN109665093A (zh) * 2019-01-16 2019-04-23 西北工业大学 一种可延缓流动分离的翼型及置于翼型上的激励器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112268012A (zh) * 2020-10-10 2021-01-26 浙江理工大学 带尾翼射流装置的无蜗壳离心通风机叶轮及其工作方法
CN112268012B (zh) * 2020-10-10 2022-02-11 浙江理工大学 带尾翼射流装置的无蜗壳离心通风机叶轮及其工作方法
CN112253314A (zh) * 2020-11-10 2021-01-22 上海海事大学 基于鲨鱼鳃射流的燃气轮机风扇及压气机叶片减阻结构
CN113217462A (zh) * 2021-06-08 2021-08-06 西北工业大学 亚声速旋涡吹气式压气机叶片
CN113217462B (zh) * 2021-06-08 2022-11-29 西北工业大学 亚声速旋涡吹气式压气机叶片
WO2023060836A1 (zh) * 2021-10-15 2023-04-20 中国民航大学 一种自适应控制的压气机叶片及其制作方法

Also Published As

Publication number Publication date
US20210285460A1 (en) 2021-09-16
CN111255744B (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
CN111255744B (zh) 一种控制压气机/风扇静子叶片吸力面流动分离的微喷气方法
US8235658B2 (en) Fluid flow machine including rotors with small rotor exit angles
US9017037B2 (en) Rotor with flattened exit pressure profile
EP2441964B1 (en) Airfoil design method for an axial compressor and axial compressor
US20150344127A1 (en) Aeroelastically tailored propellers for noise reduction and improved efficiency in a turbomachine
CN113153815B (zh) 一种基于多孔的超声速吸附式压气机叶片
CN114718659A (zh) 一种耦合径向肋条和周向槽的涡轮叶顶间隙流控制方法
CN105179322A (zh) 叶根开设等宽直线槽的压气机静子叶栅
CN115062438A (zh) 一种降低开式转子噪声的弯尖构型前转子叶片设计方法
CN111946664B (zh) 一种带开缝结构的离心通风机叶片
US20030012645A1 (en) Inlet guide vane for axial compressor
CN113090580A (zh) 一种具有s型前缘的离心叶轮叶片及其造型方法
CN112065737A (zh) 一种基于超大展弦比的超高压比单级轴流压气机
CN113653672B (zh) 一种带有分流叶片的轴流叶轮
CN113446261B (zh) 一种超声速吸附式压气机串列静子叶片
CN113007135B (zh) 一种轴流叶片及轴流风机
CN105156361A (zh) 叶根开设等宽圆弧槽的压气机静子叶栅
CN111305909B (zh) 增压级静子叶片构建方法、增压级静子叶片及航空发动机
Rajesh et al. Numerical study of variable camber inlet guide vane on low speed axial compressor
CN111120406A (zh) 一种增加离心风机风量的方法
CN113309737B (zh) 压气机三段式可调串列叶片
EP3263837B1 (en) Pressure recovery axial-compressor blading
US20230024238A1 (en) Aerofoil shaping method
CN103867489B (zh) 压气机叶片、压气机以及航空发动机
CN113513500A (zh) 一种负出口气流角低损失扩压叶型

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant