CN111244463A - Preparation method and application of PEG (polyethylene glycol) intercalated double-layer vanadium pentoxide electrode material - Google Patents
Preparation method and application of PEG (polyethylene glycol) intercalated double-layer vanadium pentoxide electrode material Download PDFInfo
- Publication number
- CN111244463A CN111244463A CN202010086951.0A CN202010086951A CN111244463A CN 111244463 A CN111244463 A CN 111244463A CN 202010086951 A CN202010086951 A CN 202010086951A CN 111244463 A CN111244463 A CN 111244463A
- Authority
- CN
- China
- Prior art keywords
- vanadium pentoxide
- peg
- electrode material
- double
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 title claims abstract description 112
- 239000007772 electrode material Substances 0.000 title claims abstract description 39
- 239000002202 Polyethylene glycol Substances 0.000 title claims abstract description 38
- 229920001223 polyethylene glycol Polymers 0.000 title claims abstract description 38
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- 229910001415 sodium ion Inorganic materials 0.000 claims abstract description 13
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000002243 precursor Substances 0.000 claims abstract description 12
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000000843 powder Substances 0.000 claims abstract description 6
- 239000008118 PEG 6000 Substances 0.000 claims abstract description 5
- 229920002584 Polyethylene Glycol 6000 Polymers 0.000 claims abstract description 5
- 238000005245 sintering Methods 0.000 claims abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- 239000008367 deionised water Substances 0.000 claims description 10
- 229910021641 deionized water Inorganic materials 0.000 claims description 10
- 238000003756 stirring Methods 0.000 claims description 10
- 239000011259 mixed solution Substances 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- 239000012153 distilled water Substances 0.000 claims description 5
- -1 polytetrafluoroethylene Polymers 0.000 claims description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 2
- 239000002244 precipitate Substances 0.000 claims 2
- 238000007865 diluting Methods 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- 230000008014 freezing Effects 0.000 claims 1
- 238000007710 freezing Methods 0.000 claims 1
- 238000002156 mixing Methods 0.000 claims 1
- 239000000047 product Substances 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 7
- 238000009830 intercalation Methods 0.000 abstract description 6
- 230000002687 intercalation Effects 0.000 abstract description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 abstract description 5
- 229910052708 sodium Inorganic materials 0.000 abstract description 5
- 239000011734 sodium Substances 0.000 abstract description 5
- 238000001027 hydrothermal synthesis Methods 0.000 abstract description 2
- 238000009777 vacuum freeze-drying Methods 0.000 abstract description 2
- 229910052720 vanadium Inorganic materials 0.000 abstract description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 abstract description 2
- 239000006184 cosolvent Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 17
- 239000000243 solution Substances 0.000 description 6
- 238000011056 performance test Methods 0.000 description 5
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 239000010406 cathode material Substances 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 239000008346 aqueous phase Substances 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 239000002135 nanosheet Substances 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000002121 nanofiber Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/483—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域technical field
本发明属于钠离子电池正极材料技术领域,具体涉及一种PEG插层双层五氧化二钒电极材料的制备方法及其应用。The invention belongs to the technical field of positive electrode materials for sodium ion batteries, and in particular relates to a preparation method and application of a PEG intercalated double-layer vanadium pentoxide electrode material.
背景技术Background technique
锂离子电池具有能量密度高、循环寿命长和环境友好等优点,已广泛应用在便携式电子设备、电动汽车等领域。但是随着其需求量的日益增加,锂资源匮乏的问题逐渐显现出来,这极大地限制了锂离子电池的发展。金属钠的储量远高于金属锂,且具有与金属锂相似的物理化学性质,因此,钠离子电池被认为是锂离子电池最有潜力的替代品。然而由于钠离子半径较大,所以钠离子在电极材料中扩散阻力更大,并对电极材料的结构产生严重破坏,最终导致钠离子电池循环稳定性和倍率性能变差。Lithium-ion batteries have the advantages of high energy density, long cycle life, and environmental friendliness, and have been widely used in portable electronic devices, electric vehicles, and other fields. However, with the increasing demand for lithium-ion batteries, the shortage of lithium resources has gradually emerged, which greatly limits the development of lithium-ion batteries. The reserves of metallic sodium are much higher than those of metallic lithium, and have similar physical and chemical properties to metallic lithium. Therefore, sodium-ion batteries are considered to be the most potential substitutes for lithium-ion batteries. However, due to the large radius of sodium ions, the diffusion resistance of sodium ions in the electrode material is larger, and the structure of the electrode material is severely damaged, which ultimately leads to the deterioration of the cycling stability and rate performance of sodium-ion batteries.
双层结构的五氧化二钒(V2O5·nH2O)因具有较大的层间距(8.8~13.8 Å),非常有利于钠离子的嵌/脱,同时具有价格低廉、容易制备等优点,是一种非常有应用前景的钠离子电池正极材料。然而,V2O5·nH2O导电性差和层状结构不稳定等缺点严重制约了其储钠性能。有机分子体积较大,可进入层间与V2O5·nH2O形成氢键,从而通过扩大层间距离来改善其电化学性能,同时稳定其层状结构。PEG(聚乙二醇)作为一种常见的有机高分子聚合物,其物理、化学性质稳定,常用作表面活性剂,有亲水性。为此,本发明申请提出一种将适量的PEG插入V2O5·nH2O材料层间,以提高V2O5·nH2O作为钠离子电池正极材料的电化学性能。Vanadium pentoxide with double-layer structure (V 2 O 5 ·nH 2 O) has a large interlayer spacing (8.8~13.8 Å), which is very beneficial to the insertion/desorption of sodium ions, and has the advantages of low price and easy preparation. The advantage is that it is a very promising cathode material for sodium-ion batteries. However, the poor electrical conductivity and unstable layered structure of V 2 O 5 ·nH 2 O severely restrict its sodium storage performance. The organic molecules are bulky and can enter the interlayer to form hydrogen bonds with V 2 O 5 ·nH 2 O, thereby improving their electrochemical performance by expanding the interlayer distance and stabilizing their layered structure. PEG (polyethylene glycol) is a common organic polymer with stable physical and chemical properties. It is often used as a surfactant and is hydrophilic. To this end, the present application proposes a method of inserting an appropriate amount of PEG between V 2 O 5 ·nH 2 O material layers to improve the electrochemical performance of V 2 O 5 ·nH 2 O as a cathode material for sodium ion batteries.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种PEG插层双层五氧化二钒电极材料的制备方法及其应用。The purpose of the present invention is to provide a preparation method and application of a PEG intercalated double-layer vanadium pentoxide electrode material.
制备PEG插层双层五氧化二钒电极材料的具体步骤为:The specific steps for preparing the PEG intercalated double-layer vanadium pentoxide electrode material are:
(1) 将0.0014 mol五氧化二钒粉体、0~0.10 g PEG和3.85 mL去离子水混合,边搅拌边向混合物中滴加质量百分比浓度为30%的双氧水,使混合溶液中五氧化二钒的浓度为0.28mol/L,滴加完成后继续搅拌25分钟,然后用去离子水将混合溶液中五氧化二钒的浓度稀释至0.028 mol/L,最后将混合溶液转移至聚四氟乙烯内衬的反应釜中并置于180 ℃的烘箱中反应12小时,获得沉淀产物。(1) Mix 0.0014 mol of vanadium pentoxide powder, 0~0.10 g of PEG and 3.85 mL of deionized water, and add hydrogen peroxide with a concentration of 30% by mass to the mixture while stirring to make the mixture of The concentration of vanadium is 0.28 mol/L, continue stirring for 25 minutes after the dropwise addition is completed, then dilute the concentration of vanadium pentoxide in the mixed solution to 0.028 mol/L with deionized water, and finally transfer the mixed solution to polytetrafluoroethylene. The lined reactor was placed in an oven at 180 °C for 12 hours to obtain a precipitated product.
(2) 将步骤(1)获得的沉淀产物用蒸馏水洗涤至中性后在冰箱中冷冻24小时,然后转移至冷冻干燥机中干燥至恒重后取出,制得五氧化二钒前驱体。(2) The precipitated product obtained in step (1) is washed with distilled water to neutrality, then frozen in a refrigerator for 24 hours, then transferred to a freeze dryer to be dried to a constant weight and taken out to obtain a vanadium pentoxide precursor.
(3) 将步骤(2)制得的五氧化二钒前驱体置于马弗炉中在空气气氛下从室温升温至200 ℃,升温速度为1 ℃/分钟,然后在200 ℃下烧结2小时,即制得PEG插层双层五氧化二钒电极材料。(3) The vanadium pentoxide precursor prepared in step (2) was placed in a muffle furnace and heated from room temperature to 200 °C in an air atmosphere at a heating rate of 1 °C/min, and then sintered at 200 °C for 2 hours , that is, the PEG intercalated double-layer vanadium pentoxide electrode material was prepared.
所述PEG为PEG-6000,聚乙二醇。The PEG is PEG-6000, polyethylene glycol.
本发明的PEG插层双层五氧化二钒电极材料应用于制备钠离子电池。The PEG intercalated double-layer vanadium pentoxide electrode material of the present invention is applied to the preparation of sodium ion batteries.
本发明在采用水热法结合真空冷冻干燥技术制备钠离子电池正极材料五氧化二钒过程中,加入适量的PEG插层,能够显著提高双层五氧化二钒电极材料的储钠性能,且该制备方法还具有操作简单和反应条件容易控制等优点。In the present invention, in the process of preparing the positive electrode material vanadium pentoxide of the sodium ion battery by the hydrothermal method combined with the vacuum freeze-drying technology, adding an appropriate amount of PEG intercalation layer can significantly improve the sodium storage performance of the double-layer vanadium pentoxide electrode material, and the The preparation method also has the advantages of simple operation and easy control of reaction conditions.
附图说明Description of drawings
图1为本发明实施例1制备的五氧化二钒电极材料和实施例2、3制备的PEG插层双层五氧化二钒电极材料的XRD图谱。1 is the XRD patterns of the vanadium pentoxide electrode material prepared in Example 1 of the present invention and the PEG intercalated double-layer vanadium pentoxide electrode material prepared in Examples 2 and 3.
图2为本发明实施例1制备的五氧化二钒电极材料的SEM图。2 is a SEM image of the vanadium pentoxide electrode material prepared in Example 1 of the present invention.
图3为本发明实施例2制备的PEG插层双层五氧化二钒电极材料的SEM图。3 is a SEM image of the PEG intercalated double-layer vanadium pentoxide electrode material prepared in Example 2 of the present invention.
图4为本发明实施例3制备的PEG插层双层五氧化二钒电极材料的SEM图。4 is a SEM image of the PEG intercalated double-layer vanadium pentoxide electrode material prepared in Example 3 of the present invention.
图5为本发明实施例1制备的五氧化二钒电极材料和实施例2、3制备的PEG插层双层五氧化二钒电极材料在0.1 A/g电流密度下的循环性能曲线。5 is the cycle performance curve of the vanadium pentoxide electrode material prepared in Example 1 of the present invention and the PEG intercalated double-layer vanadium pentoxide electrode material prepared in Examples 2 and 3 at a current density of 0.1 A/g.
图6为本发明实施例1制备的五氧化二钒电极材料和实施例2、3制备的PEG插层双层五氧化二钒电极材料在不同电流密度(0.05、0.1、0.2、0.5、0.8、1.0 A/g)下的倍率性能曲线。Fig. 6 is the vanadium pentoxide electrode material prepared in Example 1 of the present invention and the PEG intercalated double-layer vanadium pentoxide electrode material prepared in Examples 2 and 3 at different current densities (0.05, 0.1, 0.2, 0.5, 0.8, 1.0 A/g) rate performance curve.
具体实施方式Detailed ways
下面结合具体实施例对本发明作进一步的说明,需要指出的是以下实施例是为了本领域的技术人员更好地理解本发明,而不是对本发明保护范围的限制,该领域的技术人员可以根据上述内容做出一些非本质的改进和调整。The present invention will be further described below in conjunction with specific embodiments. It should be pointed out that the following embodiments are for those skilled in the art to better understand the present invention, rather than limiting the protection scope of the present invention. Those skilled in the art can Some non-essential improvements and adjustments have been made to the content.
实施例1:Example 1:
(1) 首先将0.2547 g商业化五氧化二钒粉体和3.85 mL去离子水混合,其次边搅拌边向混合物中缓慢滴加1.15 mL质量百分比浓度为30%的双氧水,滴加完成后继续搅拌25分钟,然后用45 mL去离子水将溶液稀释至五氧化二钒的浓度为0.028 mol/L,最后将溶液转移至100 mL聚四氟乙烯内衬的反应釜中并置于180 ℃的烘箱中反应12小时,获得沉淀产物。(1) First, 0.2547 g of commercial vanadium pentoxide powder was mixed with 3.85 mL of deionized water, and then 1.15 mL of hydrogen peroxide with a concentration of 30% by mass was slowly added dropwise to the mixture while stirring, and the stirring was continued after the dropwise addition was completed. After 25 minutes, the solution was diluted with 45 mL of deionized water to a concentration of 0.028 mol/L of vanadium pentoxide, and finally the solution was transferred to a 100 mL polytetrafluoroethylene-lined reactor and placed in an oven at 180 °C. The reaction was carried out for 12 hours to obtain a precipitated product.
(2) 将步骤(1)所得的沉淀产物用蒸馏水反复洗涤至中性,在冰箱中冷冻24小时后转移至冷冻干燥机中干燥至恒重后取出,得到五氧化二钒前驱体。(2) The precipitated product obtained in step (1) is repeatedly washed with distilled water until neutral, frozen in a refrigerator for 24 hours, transferred to a freeze dryer, dried to constant weight, and taken out to obtain a vanadium pentoxide precursor.
(3) 将步骤(2)所得的五氧化二钒前驱体置于马弗炉中在空气气氛下从室温升温至200 ℃,升温速度为1 ℃/分钟,在200 ℃条件下烧结2小时,即制得五氧化二钒电极材料。(3) placing the vanadium pentoxide precursor obtained in step (2) in a muffle furnace and heating it up from room temperature to 200 °C in an air atmosphere at a heating rate of 1 °C/min, and sintering at 200 °C for 2 hours, That is, the vanadium pentoxide electrode material is prepared.
实施例2:Example 2:
(1) 首先将0.2547 g商业化五氧化二钒粉体、0.04 g PEG-6000和3.85 mL去离子水混合,其次边搅拌边向混合物中缓慢滴加1.15 mL质量百分比浓度为30%的双氧水,使混合溶液中五氧化二钒的浓度为0.28 mol/L,滴加完成后继续搅拌25分钟,然后用45 mL去离子水将溶液稀释至五氧化二钒的浓度为0.028 mol/L,最后将溶液转移至100 mL聚四氟乙烯内衬的反应釜中并置于180 ℃的烘箱中反应12小时,获得沉淀产物。(1) First, 0.2547 g of commercial vanadium pentoxide powder, 0.04 g of PEG-6000 and 3.85 mL of deionized water were mixed, and then 1.15 mL of hydrogen peroxide with a concentration of 30% by mass was slowly added dropwise to the mixture while stirring, Make the concentration of vanadium pentoxide in the mixed solution 0.28 mol/L, continue to stir for 25 minutes after the dropwise addition is completed, then dilute the solution with 45 mL of deionized water to the concentration of vanadium pentoxide to be 0.028 mol/L, and finally The solution was transferred to a 100 mL polytetrafluoroethylene-lined reactor and placed in an oven at 180 °C for 12 hours to obtain a precipitated product.
(2) 将步骤(1)所得的沉淀产物用蒸馏水反复洗涤至中性,在冰箱中冷冻24小时后转移至冷冻干燥机中干燥至恒重后取出,得到五氧化二钒前驱体。(2) The precipitated product obtained in step (1) is repeatedly washed with distilled water until neutral, frozen in a refrigerator for 24 hours, transferred to a freeze dryer, dried to constant weight, and taken out to obtain a vanadium pentoxide precursor.
(3) 将步骤(2)所得的五氧化二钒前驱体置于马弗炉中在空气气氛下从室温升温至200 ℃,升温速度为1 ℃/分钟,然后在200 ℃条件下烧结2小时,即制得PEG插层双层五氧化二钒电极材料。(3) Put the vanadium pentoxide precursor obtained in step (2) in a muffle furnace and heat it up from room temperature to 200 °C in an air atmosphere at a heating rate of 1 °C/min, and then sinter at 200 °C for 2 hours , that is, the PEG intercalated double-layer vanadium pentoxide electrode material was prepared.
实施例3:Example 3:
(1) 首先将0.2547 g商业化五氧化二钒粉体、0.10 g PEG-6000和3.85 mL去离子水混合,其次边搅拌边向混合物中缓慢滴加1.15 mL质量百分浓度为30%的双氧水,使混合溶液中五氧化二钒的浓度为0.28 mol/L,滴加完成后继续搅拌25分钟,然后用45 mL去离子水将溶液稀释至五氧化二钒的浓度为0.028 mol/L,最后将溶液转移至100 mL聚四氟乙烯内衬的反应釜中并置于180 ℃的烘箱中反应12小时,获得沉淀产物。(1) First, 0.2547 g of commercial vanadium pentoxide powder, 0.10 g of PEG-6000 and 3.85 mL of deionized water were mixed, and then 1.15 mL of 30% hydrogen peroxide was slowly added dropwise to the mixture while stirring. , so that the concentration of vanadium pentoxide in the mixed solution is 0.28 mol/L, continue to stir for 25 minutes after the dropwise addition is completed, and then dilute the solution with 45 mL of deionized water to a concentration of vanadium pentoxide of 0.028 mol/L, and finally The solution was transferred to a 100 mL polytetrafluoroethylene-lined reactor and placed in an oven at 180 °C for 12 hours to obtain a precipitated product.
(2) 将步骤(1)所得的沉淀产物用蒸馏水反复洗涤至中性,在冰箱中冷冻24小时后转移至冷冻干燥机中干燥至恒重后取出,得到五氧化二钒前驱体。(2) The precipitated product obtained in step (1) is repeatedly washed with distilled water until neutral, frozen in a refrigerator for 24 hours, transferred to a freeze dryer, dried to constant weight, and taken out to obtain a vanadium pentoxide precursor.
(3) 将步骤(2)所得的五氧化二钒前驱体置于马弗炉中在空气气氛下从室温升温至200 ℃,升温速度为1 ℃/分钟,然后在200 ℃条件下烧结2小时,即制得PEG插层双层五氧化二钒电极材料。(3) Put the vanadium pentoxide precursor obtained in step (2) in a muffle furnace and heat it up from room temperature to 200 °C in an air atmosphere at a heating rate of 1 °C/min, and then sinter at 200 °C for 2 hours , that is, the PEG intercalated double-layer vanadium pentoxide electrode material was prepared.
应用实例:将实施例1制备的五氧化二钒电极材料和实施例2、3制备的PEG插层双层五氧化二钒电极材料作为活性材料,导电炭黑(Super P)作为导电剂,聚偏氟乙烯(PVDF)作为粘结剂按质量比7:2:1的比例混合研磨均匀后,加入适量的N-甲基-2-吡咯烷酮(NMP),调匀成浆后均匀涂覆在铝箔上,在80 ℃下真空干燥12小时,冲裁后得到电极片。以冲裁后得到的电极片为工作电极,金属钠片为对电极,玻璃纤维膜(GF/D)为隔膜,1.0 mol/LNaClO4的碳酸乙烯酯(EC)和碳酸丙烯酯(PC)的混合液(v(EC):v(PC)=1:1)为电解液,在充满氩气的手套箱中组装成CR2016型扣式钠离子电池。采用深圳新威公司的BTS-5V/10mA型充放电测试仪测试电池的恒流充放电及倍率性能,充放电电压范围为1.0~4.0 V,其中倍率性能测试的电流密度分别为0.05、0.1、0.2、0.5、0.8和1.0 A/g,循环性能测试的电流密度为 0.1 A/g。实施例1~3制得的电极材料的倍率性能测试结果列于表1中。实施例1~3制得的电极材料的循环性能测试结果列于表2中。Application example: The vanadium pentoxide electrode material prepared in Example 1 and the PEG intercalated double-layer vanadium pentoxide electrode material prepared in Examples 2 and 3 were used as active materials, and conductive carbon black (Super P) was used as conductive agent. Vinylidene fluoride (PVDF) as a binder is mixed and ground evenly in a mass ratio of 7:2:1, then an appropriate amount of N-methyl-2-pyrrolidone (NMP) is added, and the slurry is uniformly coated on aluminum foil. , vacuum-dried at 80 °C for 12 hours, and the electrode sheet was obtained after punching. The electrode sheet obtained after punching was used as the working electrode, the metal sodium sheet was used as the counter electrode, the glass fiber membrane (GF/D) was used as the separator, and the ethylene carbonate (EC) and propylene carbonate (PC) of 1.0 mol/L NaClO 4 were used. The mixed solution (v(EC):v(PC)=1:1) was the electrolyte, and a CR2016 button sodium-ion battery was assembled in an argon-filled glove box. The BTS-5V/10mA charge-discharge tester of Shenzhen Xinwei Company was used to test the constant current charge-discharge and rate performance of the battery. The charge-discharge voltage range was 1.0~4.0 V, and the current density of the rate performance test was 0.05, 0.1, 0.2, 0.5, 0.8 and 1.0 A/g, and the current density of the cycle performance test was 0.1 A/g. The rate performance test results of the electrode materials prepared in Examples 1-3 are listed in Table 1. The cycle performance test results of the electrode materials prepared in Examples 1-3 are listed in Table 2.
表1 实施例1~3制得的电极材料的倍率性能测试结果Table 1 Test results of rate performance of electrode materials prepared in Examples 1-3
表2 实施例1~3制得的电极材料的循环性能测试结果 Table 2 Cycle performance test results of electrode materials prepared in Examples 1-3
从图1中可以看出,实施例1为含水相V2O5和正交相V2O5的复合材料,实施例2~3为含水相V2O5,即PEG插层获得的是双层结构的含水相V2O5。It can be seen from Figure 1 that Example 1 is a composite material of aqueous phase V 2 O 5 and orthogonal phase V 2 O 5 , and Examples 2 to 3 are aqueous phase V 2 O 5 , that is, what is obtained by PEG intercalation is The aqueous phase V 2 O 5 of the bilayer structure.
从图2、3和4中可以看出,实施例1为纳米纤维挤压形成的纳米片状结构,实施例2和实施例3为表面有褶皱的二维纳米片状结构。It can be seen from Figures 2, 3 and 4 that Example 1 is a nanosheet structure formed by extrusion of nanofibers, and Examples 2 and 3 are two-dimensional nanosheet structures with wrinkles on the surface.
从图5中可以看出,实施例2制备的电极材料的循环性能明显比实施例1和实施例3制备的电极材料的循环性能好,说明适量的PEG插层是提高五氧化二钒钠离子电池正极材料循环稳定性的有效方法。It can be seen from Figure 5 that the cycle performance of the electrode material prepared in Example 2 is significantly better than that of the electrode material prepared in Example 1 and Example 3, indicating that an appropriate amount of PEG intercalation can improve the sodium vanadium pentoxide ion An efficient method for cycling stability of battery cathode materials.
从图6中可以看出,实施例2制备的电极材料的倍率性能明显优于实施例1和实施例3制备的电极材料的倍率性能,说明适量的PEG插层是提高五氧化二钒钠离子电池正极材料倍率性能的有效方法。It can be seen from Figure 6 that the rate performance of the electrode material prepared in Example 2 is significantly better than that of the electrode material prepared in Example 1 and Example 3, indicating that an appropriate amount of PEG intercalation can improve the sodium vanadium pentoxide ion An efficient method for the rate performance of battery cathode materials.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010086951.0A CN111244463A (en) | 2020-02-11 | 2020-02-11 | Preparation method and application of PEG (polyethylene glycol) intercalated double-layer vanadium pentoxide electrode material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010086951.0A CN111244463A (en) | 2020-02-11 | 2020-02-11 | Preparation method and application of PEG (polyethylene glycol) intercalated double-layer vanadium pentoxide electrode material |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111244463A true CN111244463A (en) | 2020-06-05 |
Family
ID=70873165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010086951.0A Pending CN111244463A (en) | 2020-02-11 | 2020-02-11 | Preparation method and application of PEG (polyethylene glycol) intercalated double-layer vanadium pentoxide electrode material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111244463A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111847510A (en) * | 2020-08-06 | 2020-10-30 | 西南石油大学 | A kind of polyaniline in-situ polymerization intercalation vanadium pentoxide and its preparation method and application |
CN112259381A (en) * | 2020-10-01 | 2021-01-22 | 桂林理工大学 | Preparation and application of non-woven multifunctional diaphragm |
CN112421017A (en) * | 2020-10-29 | 2021-02-26 | 湘潭大学 | Preparation method of binder-free water-based zinc ion battery positive electrode composite material |
CN113991096A (en) * | 2021-10-09 | 2022-01-28 | 武汉理工大学 | Vanadium pentoxide nanoribbons with hydrogen bond network and their preparation and application |
CN115520897A (en) * | 2022-10-28 | 2022-12-27 | 江苏大学 | A kind of preparation method of high rate and low temperature resistant nano-lithium vanadate negative electrode material |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103208619A (en) * | 2013-03-13 | 2013-07-17 | 武汉理工大学 | Potassium ion embedded type vanadium pentoxide nanowire and preparation method thereof and application thereof |
CN109638245A (en) * | 2018-12-07 | 2019-04-16 | 桂林理工大学 | A method of sodium performance is stored up by the pre- embedding raising vanadic anhydride electrode material of copper ion |
CN109659553A (en) * | 2018-12-07 | 2019-04-19 | 桂林理工大学 | A method of passing through the double-deck vanadic anhydride sodium-ion battery positive material cyclical stability of the pre- embedding raising of lanthanum ion |
CN109775758A (en) * | 2018-12-26 | 2019-05-21 | 中国电子科技集团公司第十八研究所 | Preparation method of large-layer-spacing vanadium pentoxide |
-
2020
- 2020-02-11 CN CN202010086951.0A patent/CN111244463A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103208619A (en) * | 2013-03-13 | 2013-07-17 | 武汉理工大学 | Potassium ion embedded type vanadium pentoxide nanowire and preparation method thereof and application thereof |
CN109638245A (en) * | 2018-12-07 | 2019-04-16 | 桂林理工大学 | A method of sodium performance is stored up by the pre- embedding raising vanadic anhydride electrode material of copper ion |
CN109659553A (en) * | 2018-12-07 | 2019-04-19 | 桂林理工大学 | A method of passing through the double-deck vanadic anhydride sodium-ion battery positive material cyclical stability of the pre- embedding raising of lanthanum ion |
CN109775758A (en) * | 2018-12-26 | 2019-05-21 | 中国电子科技集团公司第十八研究所 | Preparation method of large-layer-spacing vanadium pentoxide |
Non-Patent Citations (2)
Title |
---|
CH.V. SUBBA REDDY 等: "Cathodic performance of (V2O5+PEG) nanobelts for Li ion rechargeable battery", 《JOURNAL OF POWER SOURCES》 * |
郭丽等: "聚乙二醇在五氧化二钒干凝胶中的嵌入", 《电源技术》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111847510A (en) * | 2020-08-06 | 2020-10-30 | 西南石油大学 | A kind of polyaniline in-situ polymerization intercalation vanadium pentoxide and its preparation method and application |
CN112259381A (en) * | 2020-10-01 | 2021-01-22 | 桂林理工大学 | Preparation and application of non-woven multifunctional diaphragm |
CN112421017A (en) * | 2020-10-29 | 2021-02-26 | 湘潭大学 | Preparation method of binder-free water-based zinc ion battery positive electrode composite material |
CN112421017B (en) * | 2020-10-29 | 2022-02-18 | 湘潭大学 | A kind of preparation method of binder-free aqueous zinc ion battery cathode composite material |
CN113991096A (en) * | 2021-10-09 | 2022-01-28 | 武汉理工大学 | Vanadium pentoxide nanoribbons with hydrogen bond network and their preparation and application |
CN113991096B (en) * | 2021-10-09 | 2024-05-28 | 武汉理工大学 | Vanadium pentoxide nanobelt with hydrogen bond network, and preparation and application thereof |
CN115520897A (en) * | 2022-10-28 | 2022-12-27 | 江苏大学 | A kind of preparation method of high rate and low temperature resistant nano-lithium vanadate negative electrode material |
CN115520897B (en) * | 2022-10-28 | 2024-02-13 | 江苏大学 | Preparation method of high-rate low-temperature-resistant nano lithium vanadate anode material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108232318B (en) | Manufacturing method of all-solid-state power lithium ion battery | |
CN111244463A (en) | Preparation method and application of PEG (polyethylene glycol) intercalated double-layer vanadium pentoxide electrode material | |
CN105460917B (en) | A kind of nitrogen-doped carbon nanometer pipe and preparation method with hierarchy | |
CN108258323A (en) | A kind of production method of high specific energy solid lithium battery | |
CN104600247A (en) | Sulfur-carbon composite positive electrode material for lithium-sulfur battery and preparation method of sulfur-carbon composite positive electrode material | |
CN106356555B (en) | The preparation method of the sulphur composite positive pole of the dual modification of carbon nano tube/conducting polymer | |
CN108565432A (en) | LiFePO4/nitrogen, sulphur codope graphene composite material and preparation method thereof | |
CN111244462A (en) | Preparation method and application of polypyrrole composite vanadium pentoxide electrode material | |
CN104183832A (en) | Preparation method and application of FeF3 flexible electrode based on carbon nanotube-graphene composite three-dimensional network | |
CN111952675A (en) | A kind of high-performance all-solid-state sodium-ion battery and preparation method thereof | |
CN113809303A (en) | Elm-shaped molybdenum diselenide @ nitrogen-doped carbon nanofiber and preparation method and application thereof | |
CN106207119A (en) | A kind of method preparing N doping porous spherical disordered carbon material | |
CN109659521A (en) | A kind of preparation method of high-performance sodium-ion battery vanadic anhydride/grapheme composite positive electrode material | |
CN104022283A (en) | Method for improving electrochemical characteristics of lithium iron phosphate by use of graphene/polyaniline | |
CN105304866B (en) | A kind of lithium-sulphur cell positive electrode containing metal magnesium powder and preparation method thereof | |
CN104022269A (en) | High-performance natural graphite-MnO composite electrode material and preparation method thereof | |
CN108735994A (en) | A kind of preparation method of N doping hollow carbon sphere | |
CN111244435A (en) | A kind of preparation method and application of nanowire vanadium pentoxide electrode material | |
CN110911741A (en) | Carbon oxide sphere doped solid polymer electrolyte membrane and preparation method and application thereof | |
CN109560267A (en) | A kind of composite modified ternary material and preparation method thereof | |
CN111799508B (en) | All-solid-state polymer electrolyte diaphragm, preparation method and all-solid-state lithium ion battery | |
CN108417815A (en) | A carbon-coated sodium vanadium phosphate three-dimensional mesoporous nanomaterial and its preparation method and application | |
CN109449440B (en) | Microporous ultrathin soft carbon nanosheet and preparation method and application thereof | |
CN115959671B (en) | Porous carbon network modified silicon oxide composite anode material, preparation and application | |
CN110620221A (en) | Sulfur-doped lithium titanate/graphene oxide composite material, and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200605 |