CN111242898A - 基于深度神经网络的列车受电弓磨损检测方法及系统 - Google Patents

基于深度神经网络的列车受电弓磨损检测方法及系统 Download PDF

Info

Publication number
CN111242898A
CN111242898A CN201911411280.4A CN201911411280A CN111242898A CN 111242898 A CN111242898 A CN 111242898A CN 201911411280 A CN201911411280 A CN 201911411280A CN 111242898 A CN111242898 A CN 111242898A
Authority
CN
China
Prior art keywords
pantograph
neural network
picture
train
deep neural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911411280.4A
Other languages
English (en)
Inventor
焦圣棚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Zhongchuang Rongke Polytron Technologies Inc
Original Assignee
Wuhan Zhongchuang Rongke Polytron Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Zhongchuang Rongke Polytron Technologies Inc filed Critical Wuhan Zhongchuang Rongke Polytron Technologies Inc
Priority to CN201911411280.4A priority Critical patent/CN111242898A/zh
Publication of CN111242898A publication Critical patent/CN111242898A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • G06T5/73
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30164Workpiece; Machine component

Abstract

本发明公开了一种基于深度神经网络的列车受电弓磨损检测方法及系统。所述一种基于深度神经网络的列车受电弓磨损检测方法包括如下步骤:S1、利用列车上的相机大量采集受电弓滑板的图片,并将所述图片标记为样本图片;S2、对所述样本图片进行图像增强处理,得到待训练图片;S3、基于神经网络对所述待训练图片进行训练,并得到受电弓图片磨损状况训练模型;S4、根据所述训练模型对所述受电弓进行磨损检测。本发明公开的基于深度神经网络的列车受电弓磨损检测方法及系统能够降低检测成本,提高受电弓的检测效率和检测精确度,即进行受电弓检测不需要专业知识和相关检测经验,就可以直接获得是否需要更换受电弓的判断结果。

Description

基于深度神经网络的列车受电弓磨损检测方法及系统
技术领域
本发明涉及列车检测领域,特别涉及一种基于深度神经网络的列车受电弓磨损检测方法、系统及存储介质。
背景技术
受电弓是列车唯一与接触网接触、安装在机车或动车车顶,是电力牵引机车从接触网取得电能的电气设备,受电弓滑板在列车日常运行过程中不断与接触网接触滑动造成磨损;需要定期检测更换以避免弓头与接触网发生机械碰撞造成受电弓故障。因此,及时有效地对受电弓滑板进行检测并更换过度磨损和有故障的受电弓,能够预防各种安全隐患和降低安全事故发生的几率。
列车受电弓检测主要分为人工检测、超声检测和基于图像检测。目前国内检测受电弓受损情况,需要让列车停靠并断电且确保安全后,由检修人员查看受电弓滑板磨损情况和有无异常情况。这样的操作不仅效率低,耗时长,且依赖个人对异常情况判断经验。超声波检测是通过超声波传感器发出超声波,当超声波接触受电弓滑板后反射,传感器接收到反射的超声波后,通过结合超声波在空气中传播的速度和测量超声波的发射与接收的时间,就可计算滑板的剩余厚度。但是超声波检测相对激光检测精度较低且对缺陷显示不明显,同时其要求在平滑表面工作。
因而现有技术还有待改进和提高。
发明内容
鉴于上述现有技术的不足之处,本发明的目的在于提供一种基于深度神经网络的列车受电弓磨损检测方法、设备及存储介质,解决现有技术中受电弓检测方法效率低且精度不够的技术问题。
为了达到上述目的,本发明采取了以下技术方案:
一种基于深度神经网络的列车受电弓磨损检测方法,包括如下步骤:
S1、利用列车上的相机大量采集受电弓滑板的图片,并将所述图片标记为样本图片;
S2、对所述样本图片进行图像增强处理,得到待训练图片;
S3、基于神经网络对所述待训练图片进行训练,并得到受电弓图片磨损状况训练模型;
S4、根据所述训练模型对所述受电弓进行磨损检测。
一种基于深度神经网络的列车受电弓磨损检测系统,包括处理器和存储器;
所述存储器上存储有可被所述处理器执行的计算机可读程序;
所述处理器执行所述计算机可读程序时实现如上所述的基于深度神经网络的列车受电弓磨损检测方法中的步骤。
一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个多个程序可被一个或者多个处理器执行,以实现如上所述的基于深度神经网络的列车受电弓磨损检测方法中的步骤。
相较于现有技术,本发明提供的基于深度神经网络的列车受电弓磨损检测方法、设备及存储介质能够降低检测成本,提高受电弓的检测效率和检测精确度,即进行受电弓检测不需要专业知识和相关检测经验,就可以直接获得是否需要更换受电弓的判断结果。
附图说明
图1为本发明提供的基于深度神经网络的列车受电弓磨损检测方法的一较佳实施例的流程图。
具体实施方式
本发明提供一种基于深度神经网络的列车受电弓磨损检测方法、设备及存储介质,为使本发明的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
请参阅图1,图1为本发明提供的基于深度神经网络的列车受电弓磨损检测方法的一较佳实施例的流程图。本发明提供的基于深度神经网络的列车受电弓磨损检测方法的流程图,包括如下步骤:
S1、利用列车上的相机大量采集受电弓滑板的图片,并将所述图片标记为样本图片;
S2、对所述样本图片进行图像增强处理,得到待训练图片;
S3、基于神经网络对所述待训练图片进行训练,并得到受电弓图片磨损状况训练模型;
S4、根据所述训练模型对所述受电弓进行磨损检测。
具体来说,在步骤S1中:所述样本图片包括正样本图片和负样本图片,其中,所述正样本图片为受电弓磨损到需要更换的图片,所述负样本图片为受电弓磨损状况不需要更换的图片。
作为优选的实施例,在步骤S2中具体包括:
对采集到的图片运用图像增强、形态学图像处理方法进行预处理,具体来说,对所述样本图片进行灰度化和图像增强处理,其中,所述图像增强处理是指不考虑图像降噪的情况下突出图像中感兴趣的区域,可使图像中的轮廓和细节更清晰和明显;对所述样本图片进行数据扩增,得到所述待训练图片,数据扩增方法能够解决训练神经网络时出现的过拟合。
作为优选的实施例,在步骤S3中具体包括:
通过神经网络提取所述待训练图片的图像特征,并基于逻辑回归判断所述待训练图片中对应的受电弓滑板是否需要更换;
基于所述判断结果建立训练模型,其中,当所述判断结果为1时,表示需要更换受电弓滑板,当判断结果为0时,表示不需要更换受电弓滑板。
需要说明的是,一旦建立了训练模型,只要列车工作人员在对列车受电弓进行磨损检测时,可以根据相机采集的受电弓滑板图片与训练模型中的训练图片进行对比,然后根据比对的结果来判断该受电弓滑板是否发生磨损。
作为优选的实施例,本实施例采用的神经网络为卷积神经网络,更为具体的是,该卷积神经网络为GoogLeNet神经网络。
下面具体介绍利用GoogLeNet神经网络对采集的待训练图片建立训练模型方案,该方案利用GoogLeNet神经网络提取图像特征,去掉GoogLeNet的softmax层将其替换为逻辑回归(logistics regression),其中逻辑回归用于对输出结果进行判断,即判断输入该神经网络的图片中的受电弓滑板是否需要更换。其判断结果分别为1(需要更换受电弓)、0(不需要更换受电弓)。
具体来说,GoogLeNet通过设计一个稀疏网络结构(Inception),不仅能提升神经网络的表现,又能保证高计算性能。Inception网络将1*1、3*3、5*5的卷积核和3*3的pooling(池化)堆叠在一起,且为避免特征图厚度和计算量太大,在3*3、5*5卷积核前和maxpooling后分别加上1*1的卷积核起到降低特征维度和计算复杂度,同时使用1*1卷积核可以提取更丰富的特征。利用不同尺度同时进行卷积,多个尺度的特征可以被提取且提取更丰富的特征可以让最后的分类判断更准确。网络设置2个辅助分类器(原2个辅助分类器为softmax,本方法改为logistics regression用于向前传导梯度),其目的是为了避免梯度消失。其作用是在中间节点分类,将分类结果赋予较小的权重(0.3)并加到最终分类结果中,这样做对整个网络的训练有好处,因为不仅可以额外的尽心正则化而且将反向传播的梯度增加进网络,在实际测试时这两个辅助分类器会被去掉。
GoogLeNet为22层网络结构,此处将其分为一般的卷积层和Inception层,原始输入图像为224*224*3,且都进行了零均值化的预处理操作(图像每个像素减去均值)。
其第一层卷积层使用7*7的卷积核(滑动步长2,padding为3),64通道,输出为112*112*64,卷积后进行ReLU操作,经过3*3的ma*pooling(步长为2),输出为((112-3+1)/2)+1=56,即56*56*64,再进行ReLU操作。
第二层卷积层使用3*3的卷积核(滑动步长为1,padding为1),192通道,输出为56*56*192,卷积后进行ReLU操作,经过3*3的ma*pooling(步长为2),输出为((56-3+1)/2)+1=28,即28*28*192,再进行ReLU操作。
第三层即上文提到的Inception 3a、3b层,Inception 3a层分为四个分支,采用不同尺度的卷积核来进行处理:
(1)64个1*1的卷积核,然后RuLU,输出28*28*64;
(2)96个1*1的卷积核,作为3*3卷积核之前的降维,变成28*28*96,然后进行ReLU计算,再进行128个3*3的卷积(padding为1),输出28*28*128;
(3)16个1*1的卷积核,作为5*5卷积核之前的降维,变成28*28*16,进行ReLU计算后,再进行32个5*5的卷积(padding为2),输出28*28*32;
(4)pool层,使用3*3的核(padding为1),输出28*28*192,然后进行32个1*1的卷积,输出28*28*32。
最后将四个结果进行连接,对这四部分输出结果的第三维并联,即64+128+32+32=256,最终输出28*28*256。
Inception 3b层类似3a层,即:
(1)128个1*1的卷积核,然后RuLU,输出28*28*128;
(2)128个1*1的卷积核,作为3*3卷积核之前的降维,变成28*28*128,进行ReLU,再进行192个3*3的卷积(padding为1),输出28*28*192;
(3)32个1*1的卷积核,作为5*5卷积核之前的降维,变成28*28*32,进行ReLU计算后,再进行96个5*5的卷积(padding为2),输出28*28*96;
(4)pool层,使用3*3的核(padding为1),输出28*28*256,然后进行64个1*1的卷积,输出28*28*64。
最后将四个结果进行连接,对这四部分输出结果的第三维并联,即128+192+96+64=480,最终输出为28*28*480。
第四层(4a,4b,4c,4d,4e)、第五层(5a,5b),与3a、3b类似,其中在Inception4b、4e层各有一个辅助分类器,该分类器在测试时会被去掉。最后经过全连接层后结果传入逻辑回归Logistics regression进行结果判断。
通过上述GoogLeNet神经网络能够实现训练模型的建立,然后在实际受电弓磨损检测时,根据相机采集的受电弓滑板图片与训练模型中的训练图片进行对比,然后根据比对的结果来判断该受电弓滑板是否发生磨损,工作人员在根据滑板受损情况进行滑板更换。
通过深度神经网络能够高效建立训练模型,通过训练模型中存储的各种受电弓滑板图片,这样工作人员在检测时能够提高检测效率和精确度。
本发明提供的基于深度神经网络的列车受电弓磨损检测方法能够降低检测成本,提高受电弓的检测效率和检测精确度,即进行受电弓检测不需要专业知识和相关检测经验,就可以直接获得是否需要更换受电弓的判断结果。
实施例2
本发明还提供了基于深度神经网络的列车受电弓磨损检测系统,包括处理器以及存储器,所述存储器上存储有计算机程序,所述计算机程序被所述处理器执行时,实现实施例1提供的基于深度神经网络的列车受电弓磨损检测方法,具体如下:
S1、利用列车上的相机大量采集受电弓滑板的图片,并将所述图片标记为样本图片;
S2、对所述样本图片进行图像增强处理,得到待训练图片;
S3、基于神经网络对所述待训练图片进行训练,并得到受电弓图片磨损状况训练模型;
S4、根据所述训练模型对所述受电弓进行磨损检测。
本实施例提供的基于深度神经网络的列车受电弓磨损检测系统,用于实现基于深度神经网络的列车受电弓磨损检测方法,因此,上述基于深度神经网络的列车受电弓磨损检测方法所具备的技术效果,基于深度神经网络的列车受电弓磨损检测系统同样具备,在此不再赘述。
实施例3
本发明的实施例3提供了计算机存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时,实现实施例1基于深度神经网络的列车受电弓磨损检测方法,具体如下:
S1、利用列车上的相机大量采集受电弓滑板的图片,并将所述图片标记为样本图片;
S2、对所述样本图片进行图像增强处理,得到待训练图片;
S3、基于神经网络对所述待训练图片进行训练,并得到受电弓图片磨损状况训练模型;
S4、根据所述训练模型对所述受电弓进行磨损检测。
本实施例提供的计算机存储介质,用于实现基于深度神经网络的列车受电弓磨损检测方法,因此,上述基于深度神经网络的列车受电弓磨损检测方法所具备的技术效果,计算机存储介质同样具备,在此不再赘述。
综上所述,本发明提供的基于深度神经网络的列车受电弓磨损检测方法、设备及存储介质中能够降低检测成本,提高受电弓的检测效率和检测精确度,即进行受电弓检测不需要专业知识和相关检测经验,就可以直接获得是否需要更换受电弓的判断结果。
当然,本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关硬件(如处理器,控制器等)来完成,所述的程序可存储于一计算机可读取的存储介质中,该程序在执行时可包括如上述各方法实施例的流程。其中所述的存储介质可为存储器、磁碟、光盘等。
可以理解的是,对本领域普通技术人员来说,可以根据本发明的技术方案及其发明构思加以等同替换或改变,而所有这些改变或替换都应属于本发明所附的权利要求的保护范围。

Claims (10)

1.一种基于深度神经网络的列车受电弓磨损检测方法,其特征在于,包括如下步骤:
S1、利用列车上的相机大量采集受电弓滑板的图片,并将所述图片标记为样本图片;
S2、对所述样本图片进行图像增强处理,得到待训练图片;
S3、基于神经网络对所述待训练图片进行训练,并得到受电弓图片磨损状况训练模型;
S4、根据所述训练模型对所述受电弓进行磨损检测。
2.根据权利要求1所述的基于深度神经网络的列车受电弓磨损检测方法,其特征在于,在步骤S1中:
所述样本图片包括正样本图片和负样本图片,其中,所述正样本图片为受电弓磨损到需要更换的图片,所述负样本图片为受电弓磨损状况不需要更换的图片。
3.根据权利要求1所述的基于深度神经网络的列车受电弓磨损检测方法,其特征在于,在步骤S2中:
对所述样本图片进行灰度化和图像增强处理,其中,所述图像增强处理是指不考虑图像降噪的情况下突出图像中感兴趣的区域;
对所述样本图片进行数据扩增,得到所述待训练图片。
4.根据权利要求1所述的基于深度神经网络的列车受电弓磨损检测方法,其特征在于,在步骤S3中:
通过神经网络提取所述待训练图片的图像特征,并基于逻辑回归判断所述待训练图片中对应的受电弓滑板是否需要更换;
基于所述判断结果建立训练模型。
5.根据权利要求4所述的基于深度神经网络的列车受电弓磨损检测方法,其特征在于,当所述判断结果为1时,表示需要更换受电弓滑板,当判断结果为0时,表示不需要更换受电弓滑板。
6.根据权利要求4所述的基于深度神经网络的列车受电弓磨损检测方法,其特征在于,所述神经网络为卷积神经网络,且所述卷积神经网络包括:
卷积层1:使用7*7的卷积核,其中,滑动步长2,padding为3,64通道,输出为112*112*64,卷积后进行ReLU操作,经过3*3且步长为2的池化,输出为((112-3+1)/2)+1=56,即56*56*64,再进行ReLU操作;
卷积层2:使用3*3的卷积核,其中,滑动步长为1,padding为1,192通道,输出为56*56*192,卷积后进行ReLU操作,经过3*3的且步长为2的池化,输出为((56-3+1)/2)+1=28,即28*28*192,再进行ReLU操作;
Inception 3a层:Inception 3a层分为四个分支,且采用不同尺度的卷积核;
Inception 3b层:Inception 3a层也分为四个分支,且采用不同尺度的卷积核;
全连接层:基于所述逻辑回归进行结果判断。
7.根据权利要求6所述的基于深度神经网络的列车受电弓磨损检测方法,其特征在于,所述Inception 3a层具体为:
分支一、64个1*1的卷积核,然后进行RuLU计算,输出28*28*64;
分支二、96个1*1的卷积核,然后进行ReLU计算,再进行128个3*3的卷积,输出28*28*128;
分支三、16个1*1的卷积核,然后进行ReLU计算,再进行32个5*5的卷积,输出28*28*32;
分支四、池化层,使用3*3的核,输出28*28*192,然后进行32个1*1的卷积,输出28*28*32。
8.根据权利要求6所述的基于深度神经网络的列车受电弓磨损检测方法,其特征在于,所述Inception 3b层具体为:
分支一、128个1*1的卷积核,然后进行RuLU计算,输出28*28*128;
分支二、128个1*1的卷积核,然后进行ReLU计算,再进行192个3*3的卷积,输出28*28*192;
分支三、32个1*1的卷积核,进行ReLU计算后,再进行96个5*5的卷积,输出28*28*96;
分支四、池化层,使用3*3的核,输出28*28*256,然后进行64个1*1的卷积,输出28*28*64。
9.一种基于深度神经网络的列车受电弓磨损检测系统,其特征在于,包括处理器和存储器;
所述存储器上存储有可被所述处理器执行的计算机可读程序;
所述处理器执行所述计算机可读程序时实现如权利要求1-8任意一项所述的基于深度神经网络的列车受电弓磨损检测方法中的步骤。
10.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有一个或者多个程序,所述一个多个程序可被一个或者多个处理器执行,以实现如权利要求1-8任意一项所述的基于深度神经网络的列车受电弓磨损检测方法中的步骤。
CN201911411280.4A 2019-12-31 2019-12-31 基于深度神经网络的列车受电弓磨损检测方法及系统 Pending CN111242898A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911411280.4A CN111242898A (zh) 2019-12-31 2019-12-31 基于深度神经网络的列车受电弓磨损检测方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911411280.4A CN111242898A (zh) 2019-12-31 2019-12-31 基于深度神经网络的列车受电弓磨损检测方法及系统

Publications (1)

Publication Number Publication Date
CN111242898A true CN111242898A (zh) 2020-06-05

Family

ID=70864625

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911411280.4A Pending CN111242898A (zh) 2019-12-31 2019-12-31 基于深度神经网络的列车受电弓磨损检测方法及系统

Country Status (1)

Country Link
CN (1) CN111242898A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113569737A (zh) * 2021-07-28 2021-10-29 合肥综合性国家科学中心人工智能研究院(安徽省人工智能实验室) 基于自主学习网络模型笔记本屏幕缺陷检测方法及介质
CN113658112A (zh) * 2021-07-27 2021-11-16 北京交通大学 一种基于模板匹配与神经网络算法的弓网异常检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108288055A (zh) * 2018-03-14 2018-07-17 台州智必安科技有限责任公司 基于深度网络与分级测试的电力机车受电弓及电弧检测方法
CN109658387A (zh) * 2018-11-27 2019-04-19 北京交通大学 电力列车的受电弓碳滑板缺陷的检测方法
CN110533097A (zh) * 2019-08-27 2019-12-03 腾讯科技(深圳)有限公司 一种图像清晰度识别方法、装置、电子设备及存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108288055A (zh) * 2018-03-14 2018-07-17 台州智必安科技有限责任公司 基于深度网络与分级测试的电力机车受电弓及电弧检测方法
CN109658387A (zh) * 2018-11-27 2019-04-19 北京交通大学 电力列车的受电弓碳滑板缺陷的检测方法
CN110533097A (zh) * 2019-08-27 2019-12-03 腾讯科技(深圳)有限公司 一种图像清晰度识别方法、装置、电子设备及存储介质

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHRISTIAN SZEGEDY ET AL.: "Going Deeper with Convolutions", 《CVPR2015》, pages 1 - 9 *
EMMANUEL OKAFOR AND RIK SMIT ET AL.: "Operational Data Augmentation in Classifying Single Aerial Images of Animals", 《IEEE.ORG》, pages 1 - 7 *
KEKE ZHANG ET AL.: "Can Deep Learning Identify Tomato Leaf Disease", 《ADVANCE IN MULTIMEDIA》, pages 75 - 11 *
高志强 等, 北京:中国铁道出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113658112A (zh) * 2021-07-27 2021-11-16 北京交通大学 一种基于模板匹配与神经网络算法的弓网异常检测方法
CN113658112B (zh) * 2021-07-27 2024-03-01 北京交通大学 一种基于模板匹配与神经网络算法的弓网异常检测方法
CN113569737A (zh) * 2021-07-28 2021-10-29 合肥综合性国家科学中心人工智能研究院(安徽省人工智能实验室) 基于自主学习网络模型笔记本屏幕缺陷检测方法及介质

Similar Documents

Publication Publication Date Title
Wang et al. Integrated model of BP neural network and CNN algorithm for automatic wear debris classification
Wang et al. Deep proposal and detection networks for road damage detection and classification
CN108711148B (zh) 一种基于深度学习的轮胎缺陷智能检测方法
CN114842011B (zh) 基于图像处理的轴承磨损检测方法及系统
CN113034483B (zh) 基于深度迁移学习的烟支缺陷检测方法
Amin et al. Deep learning-based defect detection system in steel sheet surfaces
Savino et al. Automated classification of civil structure defects based on convolutional neural network
CN111242898A (zh) 基于深度神经网络的列车受电弓磨损检测方法及系统
JP2021174456A (ja) 異常判定方法及び異常判定装置
CN110599459A (zh) 基于深度学习的地下管网风险评估云系统
CN113569672A (zh) 轻量级目标检测与故障识别方法、装置及系统
Waqas et al. Vehicle damage classification and fraudulent image detection including moiré effect using deep learning
Ali et al. Performance evaluation of different algorithms for crack detection in concrete structures
CN111598854A (zh) 基于丰富鲁棒卷积特征模型的复杂纹理小缺陷的分割方法
CN114022727B (zh) 一种基于图像知识回顾的深度卷积神经网络自蒸馏方法
CN115239672A (zh) 缺陷检测方法及装置、设备、存储介质
CN117197591B (zh) 一种基于机器学习的数据分类方法
Ni et al. Convolution neural network based automatic corn kernel qualification
Zhang et al. Fabric defect detection based on visual saliency map and SVM
CN112837281A (zh) 基于级联卷积神经网络的销钉缺陷识别方法、装置和设备
Nie et al. Analysis on DeepLabV3+ performance for automatic steel defects detection
He et al. CBAM-YOLOv5: a promising network model for wear particle recognition
CN114897909B (zh) 基于无监督学习的曲轴表面裂纹监测方法及系统
Chen et al. Attention mechanism-based CNN for surface damage detection of wind turbine blades
Nacir et al. YOLO V5 for traffic sign recognition and detection using transfer learning

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination