CN111241957A - 一种基于多特征融合和de-elm的手指静脉活体检测方法 - Google Patents

一种基于多特征融合和de-elm的手指静脉活体检测方法 Download PDF

Info

Publication number
CN111241957A
CN111241957A CN202010007626.0A CN202010007626A CN111241957A CN 111241957 A CN111241957 A CN 111241957A CN 202010007626 A CN202010007626 A CN 202010007626A CN 111241957 A CN111241957 A CN 111241957A
Authority
CN
China
Prior art keywords
elm
image
vein
hidden layer
finger vein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010007626.0A
Other languages
English (en)
Inventor
赵国栋
张烜
高旭
李学双
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Holy Point Century Technology Co Ltd
Original Assignee
Holy Point Century Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Holy Point Century Technology Co Ltd filed Critical Holy Point Century Technology Co Ltd
Priority to CN202010007626.0A priority Critical patent/CN111241957A/zh
Publication of CN111241957A publication Critical patent/CN111241957A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/40Spoof detection, e.g. liveness detection
    • G06V40/45Detection of the body part being alive
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/048Activation functions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/14Vascular patterns

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Molecular Biology (AREA)
  • Computational Linguistics (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Image Analysis (AREA)

Abstract

本发明涉及基于多特征融合和DE‑ELM的手指静脉活体检测方法,其包括以下步骤:1)分别采集真手指静脉图像和假手指伪静脉图像作为正负训练样本,并对其进行大小归一化预处理和高斯滤波处理;2)分别提取静脉图像的多块LBP直方图特征与多尺度HOG特征,并融合成一个总的特征向量,用于表述静脉特征;3)设置隐藏层神经元的激活函数和利用差分进化算法(Differential Evolution,DE)确定隐藏层神经元的个数,构建DE‑ELM分类模型;4)训练数据输入到DE‑ELM分类模型中进行训练;5)将测试图像数据输入到训练好的DE‑ELM分类模型中进行活体数据的检测和识别,确定测试图像数据是否为活体手指静脉。本发明采用多特征融合结合DE‑ELM分类器进行手指静脉活体检测的算法,具有检测速度快,检测精度高,鲁棒性强等优点。

Description

一种基于多特征融合和DE-ELM的手指静脉活体检测方法
技术领域
本发明属于手指静脉识别及信息安全技术领域,尤其涉及一种基于多特征融合和DE-ELM的手指静脉活体检测方法。
背景技术
在指静脉活体检测领域,基于活体信号检测的算法通过检测手指的活性或生命信号来辨别真伪静脉,这类算法的精度和可靠性较高,但往往需要借助额外的设备或消耗更多的计算资源。基于纹理分析的算法利用真伪静脉图像上的成像质量差异,这些差异主要体现在纹理和噪声层面上。该类算法既不需要增加额外的设备,也不需要会降低用户体验度的交互式动作,可最大限度减少额外的计算资源消耗。目前大多数基于纹理分析的研究都关注于提高分类精度,而忽略了学习速度,活体检测需要提高学习速度来保证实时性需求。
此外,指静脉活体检测技术如专利号为CN107194367A公开的一种手指静脉识别过程中的活体检测方法,在手指静脉识别过程中通过采集一定帧数的手指静脉视频图像,然后选取部分有手指静脉的区域作为活体静脉检测区域,最后再使用欧拉视频运动放大算法进行静脉纹路轻微膨胀和收缩运动检测,根据检测结果确定是否为活体手指静脉。该技术主要采用基于统计的算法,通常包括收集训练样本、提取图像特征、训练分类器以及检测目标四个主要阶段,其中特征提取是影响检测方法性能的关键因素,常用的图像特征包括LBP特征,HOG特征与Haar特征等,但这些单一特征的图像细节表现能力较差。
发明内容
本发明的目的是为了解决现有技术中活体检测学习速度慢、单一特征图像细节表现能力差的缺陷,提供基于多特征融合和DE-ELM的手指静脉活体检测方法。
为了达到目的,本发明提供的技术方案为:
本发明涉及的一种基于多特征融合和DE-ELM的手指静脉活体检测方法,其包括以下步骤:
1)分别采集真手指静脉图像和假手指伪静脉图像作为正负训练样本,并对其进行大小归一化预处理和高斯滤波处理;
2)分别提取静脉图像的多块LBP直方图特征与多尺度HOG特征,并融合成一个总的特征向量,用于表述静脉特征;
3)设置隐藏层神经元的激活函数和利用差分进化算法确定隐藏层神经元的个数,构建DE-ELM分类模型;
4)训练数据输入到DE-ELM分类模型中进行训练;
5)将测试图像数据输入到训练好的DE-ELM分类模型中进行活体数据的检测和识别,确定测试图像数据是否为活体手指静脉。
优选地,所述的步骤2)具体包括以下步骤:
2.1)计算多块LBP直方图特征,即设置各种不同大小的尺度,根据给定的尺度从静脉图像模板获得多个不同大小、不同位置的块,计算每个块的LBP直方图特征,把所有局部块的LBP直方图特征连接起来得到多块LBP特征;
2.2)计算多尺度HOG特征,即计算静脉图像模板的方向梯度,将图像按照宽高比均分为m*n个小块,选定一种遍历方式对每个小块进行扫描,每个小块生成一个共生矩阵,使用多种遍历方式扫描静脉图像模板,生成多尺度HOG特征;
2.3)把多块LBP直方图特征与多尺度HOG特征融合成一个总的特征向量。
优选地,所述步骤2.1)中,每个块的尺度通过公式计算得到,计算公式为:
Figure BDA0002355891460000021
其中,W与H分别表示静脉图像模板的宽度与高度,w与h分别表示块的宽度与高度,t1表示块左右移动的步长,t2表示块上下移动的步长。
优选地,所述步骤2.2)中,计算多尺度HOG特征的步骤包括:
2.2.1)采用Gamma校正法对输入图像进行颜色空间的标准化;
2.2.2)计算图像每个像素的梯度值,包括大小和方向两个方面的值,图像中像素点(x,y)的梯度为:
Gx(x,y)=H(x+1,y)-H(x-1,y) (2),
Gy(x,y)=H(x,y+1)-H(x,y-1) (3),
式中Gx(x,y),Gy(x,y),H(x,y)分别表示输入图像中像素点(x,y)处的水平方向梯度、垂直方向梯度和像素值;
进一步计算像素点(x,y)处的梯度幅值Gx’(x,y)和梯度方向αx(x,y),
Figure BDA0002355891460000031
Figure BDA0002355891460000032
2.2.3)把图像平均分成多个正方形的单元格;
2.2.4)统计每个单元格的梯度直方图;
2.2.5)将单元格放到一个块中,分别标准化每个块,对整个块进行归一化操作,即对于向量v,
Figure BDA0002355891460000033
2.2.6)将图像内的所有块的HOG特征串联起来得到该图像的多尺度HOG特征。
优选地,所述步骤2.2.5)中的多尺度HOG特征的维度为d,
Figure BDA0002355891460000034
式中,w、h为图像的宽度和高度,b、c分别为块、单元的大小,p为单元内梯度方向的数目,s为块移动的步长。
优选地,所述的步骤3)具体包括以下步骤:
3.1)利用差分进化算法确定ELM隐含层神经元个数N,设定输入层与隐含层间的输入权重w和隐含层神经元的偏置b;
3.2)采用无限可微的函数作为隐含层神经元的激活函数,计算隐含层输出矩阵H;
3.3)计算输出层权值
Figure BDA0002355891460000035
输出层权值
Figure BDA0002355891460000036
的计算公式为:
Figure BDA0002355891460000037
其中,T为期望输出,用矩阵Hβ=T表示。
优选地,所述步骤3.2)中所用的激活函数为:
G(wi,bi,x)=1/(1+e-x) (13)。
优选地,所述的步骤3.1)中,确定ELM隐含层神经元个数N的步骤包括:
3.1.1)设定训练样品本集Mt={(xi,ti)|xi∈Rn,i=1,2,…,M};
3.1.2)初始化种群,设置隐层节点个数、种群数量NP和交叉概率CR的值、缩放因子F的最优取值范围和最大迭代次数Gmax
3.1.3)设定种群,生成一组初始种群GNP×D,选择隐含层神经元个数作为种群成员构成每个种群G,G也用于表示进化代数,其中,D为种群G的维数,其中,由平均分布函数对隐含层神经元节点数进行随机的产生,具体的操作过程如下:
xi=rand(0,1)·(xmax-xmin)+xmin (8);
3.1.4)计算适应度函数值:利用初始群体中的所有个体建立一个回归模型,利用训练数据集来进行预测,并利用适应度函数计算适应度函数值f(xbest),寻找适应度最小的个体,并且记为全局最优xbest
3.1.5)终止条件检验:如果自适应函数值在0~0.0001之内或当进化代数G以达到最大值Gmax,则进入步骤3.1.9,否则,进入步骤3.1.6;
3.1.6)变异操作:对于所有参数,得到了4个互不相同且与i也不相同的随机整数对r1,r2,r3,r4,进行变异操作得到了一个新个体,得到了一个新个体为:
Figure BDA0002355891460000041
如果得到的新个体的参数超出了设定的范围,则对其进行调整;
3.1.7)交叉操作:根据差分进化算法中的交叉操作对变异后的个体进行交叉操作,增加种群的多样性;
3.1.8)选择操作:利用之前得到的新一代群众中的每个新个体,即每组中新的参数而再一次的构建分类模型,并且进行分类,再利用适应度函数反复计算,生成新种群中的局部最优个体u(best,G+1),将局部最优个体f(ubest,G+1)和全局最优个体的适应度值进行比较,如果局部最优较小,则代替全局最优,即
Figure BDA0002355891460000042
3.1.9)通过该算法对整个数据的寻优选择,最终获得最优化的隐含层节点个数Nbest
优选地,所述的步骤3.1.4)中的适应度函数为:
Figure BDA0002355891460000043
优选地,所述的步骤3.1.6)中调整的公式为:
xnew=xmin+(xmax-xmin)*rand(1) (11)。
本发明采集活体和非活体手指的静脉图像,通过归一化处理并高斯滤波得到预处理图像,建立活体非活体正负样本的静脉图像数据库;接着提取静脉图像的多块LBP特征与多尺度HOG特征来表述正负样本的静脉图像特征;然后通过DE优化ELM隐层节点个数来构建DE-ELM分类器进行分类识别;最后得到的分类器能够在归一化后静脉图像中检测出是否为活体手指静脉。
采用本发明提供的技术方案,与现有技术相比,具有如下有益效果:
1、本发明采用LBP特征和HOG特征相结合的方式,利用多块LBP特征计算速度快、静脉图像描述能力较强的特点,提取多块LBP直方图特征,有效地加强了静脉图像描述能力;再利用多尺度HOG特征在光照变化下鲁棒性较强的特点,多尺度HOG特征在多块LBP特征的基础上更加细化地表达了静脉图像纹路的信息,然后将两者融合得到最终的融合特征,有效加强了图像细节表现能力;
2、本发明利用差分进化算法对ELM分类器的隐层节点个数进行优化选取,得到DE-ELM分类器,再利用构建好的DE-ELM分类器对采集的活体、非活体图像静脉库进行分类,检测出活体图像,具有检测速度快、检测精度高、鲁棒性强等优点。
附图说明
图1为本发明涉及的基于多特征融合和DE-ELM的手指静脉活体检测方法的流程图;
图2为采集到的活体手指静脉图像;
图3为采集到的非活体手指静脉图像;
图4为活体静脉图像经过归一化处理和高斯滤波后的图像;
图5为非活体静脉图像经过归一化处理和高斯滤波后的图像;
图6为单隐层前馈神经网络结构图;
图7为利用差分进化算法选取ELM参数隐层节点个数的流程图;
图8为多特征融合结构图;
图9为各种算法的检出率对比图。
具体实施方式
为进一步了解本发明的内容,结合实施例对本发明作详细描述,以下实施例用于说明本发明,但不用来限制本发明的范围。
结合附图1所示,本实施例涉及的基于多特征融合和DE-ELM的手指静脉活体检测方法,其包括以下步骤:
1)分别采集真手指静脉图像和假手指伪静脉图像作为正负训练样本,并对其进行大小归一化预处理,然后采用高斯滤波进行去噪处理,此处的噪声来源于手指或者设备,比如手指沾染了泥土或者钢笔墨水、油污等,处理前的活体和非活体静脉图像见图2和图3所示,处理后的活体和非活体图像见图4和图5所示。
2)如图8所示,分别提取静脉图像的多块LBP直方图特征与多尺度HOG特征,并融合成一个总的特征向量,用于表述静脉特征,其具体步骤包括:
2.1)计算多块LBP直方图特征,LBP(Local Binary Pattern)特征是一种用于描述图像局部纹理特征的算子,它计算简单,具有对光照不敏感、旋转不变性以及灰度不变性等显著的特点,且它表述的是图像中心像素与其周围像素间的量化关系;多块LBP特征计算过程的具体步骤如下:
2.1.1)设置各种不同大小的尺度,首先根据静脉图像模板的尺度定义多种局部块尺度,假设静脉图像模板的尺度为54*32,那么选择的局部块尺度可以为9*9、16*16、27*16、27*32、32*32、54*32等等;
2.1.2)根据给定的尺度按照平移的方式从静脉图像模板获得多个不同大小、不同位置的局部块,计算每个块的LBP直方图特征,每种尺度的局部块个数可由公式表示,计算公式为:
Figure BDA0002355891460000061
公式中的W与H分别表示静脉图像模板的宽度与高度,w与h分别表示块的宽度与高度,t1表示块左右移动的步长,t2表示块上下移动的步长;
2.1.3)计算每个局部块的LBP值,具体计算过程描述如下:区域内的每个像素都将其灰度值与其周围相邻的8个像素的灰度值进行比较,若中心像素的灰度值小于等于周围像素的灰度值,则将该像素点位置标记为1,否则为0,如此3*3邻域的中心像素的LBP值是一个8位二进制数,将其转换为十进制,其值域为[0,255],统计每个局部块各LBP值出现的次数,把所有局部块的LBP直方图特征连接起来得到多块LBP特征;
2.1.4)将所有局部块的LBP直方图特征连接起来得到最终的局部LBP直方图特征向量;
2.2)计算多尺度HOG特征,多尺度HOG主要的特点就是引入了共生矩阵,多尺度HOG将每个像素点的梯度方向进行成对的组合,同时将原来的梯度方向划分为8个,范围是从0度到360度,每两个像素点进行组合,可以得到共生矩阵的大小为8*8=64,多尺度HOG特征的计算包括以下步骤:
2.2.1)采用Gamma校正法对输入图像进行颜色空间的标准化,目的是调节静脉图像的对比度,减少图像局部的阴影和光照变化所造成的影响,同时可以抑制噪音的干扰;
2.2.2)计算静脉图像模板的方向梯度,将图像按照宽高比均分为m*n个小块,选定一种遍历方式对每个小块进行扫描,每个小块生成一个共生矩阵,使用多种遍历方式扫描静脉图像模板,图像中像素点(x,y)的梯度为:
Gx(x,y)=H(x+1,y)-H(x-1,y) (2),
Gy(x,y)=H(x,y+1)-H(x,y-1) (3),
式中Gx(x,y),Gy(x,y),H(x,y)分别表示输入图像中像素点(x,y)处的水平方向梯度、垂直方向梯度和像素值;
像素点(x,y)处的梯度幅值Gx’(x,y)和梯度方向αx(x,y)分别为:
Figure BDA0002355891460000071
Figure BDA0002355891460000072
进而得到静脉纹路信息,同时也进一步较少光照的影响;
2.2.3)将图像划分为大小相同的单元Cell,将相邻的单元组合成有重叠的块Block,有效利用重叠的边缘信息;
2.2.4)图像中每个像素点的梯度方向和梯度幅值各不相同,按梯度方向划分为若干个均匀的区间,将单元中的每个像素点的梯度幅值累加到对应区间Bin中,生成单元的梯度方向直方图;
2.2.5)统计整个块的直方图特征,2×2个单元格可以形成一个,这样一个块就形成36维的特征向量,并对每个块的梯度直方图进行L2归一化操作,即对于向量v,
Figure BDA0002355891460000073
2.2.6)将图像内的所有块的HOG特征串联起来得到该图像的多尺度HOG特征,其维度d为:
Figure BDA0002355891460000081
公式中,w、h为图像的宽度和高度,b、c分别为块、单元的大小,p为单元内梯度方向的数目,s为块移动的步长。
这就是最终可供DE-ELM分类器使用的多尺度HOG特征向量。
2.3)把多块LBP直方图特征与多尺度HOG特征融合成一个总的特征向量。
3)ELM(极限学习机,Extreme Learning Machine)是一种新型的快速学习算法,对于单隐层神经网络,ELM可以随机初始化输入权重和偏置并得到相应的输出权重,对于一个单隐层神经网络,见图6,假设有N个任意的样本(Xi,ti),
其中,Xi=[xi1,xi2,…,xin]T∈Rn (15),
ti=[ti1,ti2,…,tin]T∈Rm (16);
对于一个有L个隐层节点的单隐层神经网络可以表示为
Figure BDA0002355891460000082
其中,g(x)为激活函数,Wi=[Wi1,Wi2,…,Win]T为输入权重,βi输出权重,bi是第i个隐层单元的偏置;Wi·Xj表示Wi和Xj的内积;单隐层神经网络学习的目标是使得输出的误差最小,可以表示为:
Figure BDA0002355891460000083
即存在βi,Wi和bi,使得
Figure BDA0002355891460000084
矩阵可以表示为
Hβ=T (20),
其中,H是隐层节点的输出,β为输出权重,T为期望输出;
Figure BDA0002355891460000085
Figure BDA0002355891460000091
Figure BDA0002355891460000092
为了能够训练单隐层神经网络,需得到
Figure BDA0002355891460000093
Figure BDA0002355891460000094
使得
Figure BDA0002355891460000095
其中,i=1,…,L,这等价于最小化损失函数
Figure BDA0002355891460000096
综上所述,在ELM算法中,一旦输入权重Wi和隐层的偏置bi被随机确定,隐层的输出矩阵H就被唯一确定,训练单隐层神经网络可以转化为求解一个线性系统Hβ=T,并且输出权重β可以确定为
Figure BDA0002355891460000097
其中,H+是矩阵的Moore-Penrose广义逆,且可证明求得的解的范数是最小的并且唯一。
本实施例中该步骤就是基于ELM算法,设置隐藏层神经元的激活函数和利用差分进化算法确定隐藏层神经元的个数,构建DE-ELM分类模型,在构建DE-ELM分类器的过程中,随机设定输入层和隐含层的连接权值W以及隐含层神经元的阈值b,采用DE优化ELM的隐含层神经元个数,得到DE-ELM模型,选择sigmoid函数作为隐含层神经元的激活函数,进而计算出隐含层输出矩阵H,可得输出层权值β,如图7所示,利用差分进化算法确定ELM隐含层神经元个数的具体步骤:
3.1)利用差分进化算法确定ELM隐含层神经元个数N,设定输入层与隐含层的输入权重和隐含层神经元的偏置,并得到相应的输出权重β,该步骤又包括以下具体步骤:
3.1.1)设定训练样品本集Mt={(xi,ti)|xi∈Rn,i=1,2,…,M};
3.1.2)初始化种群,设置隐层节点个数、种群数量NP和交叉概率CR的值、缩放因子F的最优取值范围和最大迭代次数Gmax,本实施例中,设置种群数量NP的初始值为30,Gmax设置为50,由于参数的数目分别为1和2,所以维数D置为1和2,F设置为0.5,CR为0.75,误差限度为0.001;
3.1.3)设定种群,生成一组初始种群GNP×D,选择隐含层神经元个数作为种群成员构成每个种群G,G也用于表示进化代数,进化次数初始值为G=0,其中,由平均分布函数对隐含层神经元节点数进行随机的产生,具体的操作过程如下:
xi=rand(0,1)·(xmax-xmin)+xmin (8);
3.1.4)计算适应度函数值:利用初始群体中的所有个体建立一个回归模型,利用训练数据集来进行预测,并利用适应度函数计算适应度函数值f(xbest),寻找适应度最小的个体,并且记为全局最优xbest,并将它作为整个数据的最优参数保存下来并用来跟下一代继续进行比较,上述适应度函数公式如下:
Figure BDA0002355891460000101
3.1.5)终止条件检验:如果自适应函数值在0~0.0001之内或当进化代数G以达到最大值Gmax,则进入步骤3.1.9,否则,进入步骤3.1.6;
3.1.6)变异操作:对于所有参数,得到了4个互不相同且与i也不相同的随机整数对r1,r2,r3,r4,根据下式重新变异并产生下一代,得到了一个新个体:
Figure BDA0002355891460000102
如果得到的新个体的参数超出了设定的范围,则通过下面公式对其进行调整:
xnew=xmin+(xmax--xmin)*rand(1) (11);
3.1.7)交叉操作:根据差分进化算法中的交叉操作对变异后的个体进行交叉操作,增加种群的多样性;
3.1.8)选择操作:利用之前得到的新一代群众中的每个新个体,即每组中新的参数而再一次的构建分类模型,并且进行分类,再利用适应度函数反复计算,生成新种群中的局部最优个体u(best,G+1),将局部最优个体f(ubest,G+1)和全局最优个体的适应度值进行比较,如果局部最优较小,则代替全局最优:
Figure BDA0002355891460000103
3.1.9)通过该算法对整个数据的寻优选择,最终获得最优化的隐含层节点个数Nbest
3.2)采用无限可微的函数作为隐含层神经元的激活函数,计算隐含层输出矩阵H,本实施例中选择的激活函数为sigmoid函数:
G(wi,bi,x)=1/(1+e-x) (13);
3.3)计算输出层权值
Figure BDA0002355891460000111
其中,T为期望输出,用矩阵Hβ=T表示。
4)训练数据输入到DE-ELM分类模型中进行训练;
5)将测试图像数据输入到训练好的DE-ELM分类模型中进行活体数据的检测和识别,确定测试图像数据是否为活体手指静脉。
本实例中首先对活体和非活体静脉纹路信息提取多尺度HOG特征和多块LBP特征,其次将从训练集图像提取到的多尺度HOG特征和多块LBP特征集合起来作为训练特征向量集送至DE-ELM分类器进行训练,得到一个训练好的DE-ELM分类器,最后再将从测试集图像提取到的多尺度HOG特征和多块LBP特征集合起来作为测试特征向量集送至已训练好的DE-ELM分类器进行识别,以得出匹配结果。
以下是利用本发明所提算法对几种图像数据库的实验结果与分析。
本实施例采集了3组由不同设备采集的正负样本指静脉图像数据库,其中第一组图像由600个正样本和600个负样本组成,第二组由10000个正样本和7150个负样本组成,第三组由2970个正样本和1500个负样本组成。其中取每组图像库的一半图像作为训练集,另一半作为测试集。以MATLAB2018a为编译软件,所用电脑的操作系统为64位Window10,内存8G,主频率2.30GHz。对于每组图像库,首先依次对图像进行预处理及图像滤波处理以获取手指静脉纹路信息,然后对纹路信息提取多块LBP特征与多尺度HOG特征,其次将从训练集图像提取到的多块LBP直方图特征与多尺度HOG特征集合起来作为训练特征向量集送至DE-ELM分类器进行训练,得到一个训练好的DE-ELM分类器,最后再将从测试集图像提取到的融合特征作为测试特征向量集送至已训练好的DE-ELM分类器进行分类识别,以得出分类结果,识别结果如图9所示,以本发明提取的特征对不同图像库的活体检出率均达到100%,非活体检出率也达到了99.13%以上,可见本发明提出的基于多特征融合和DE-ELM的手指静脉活体检测方法可以有效提取出活体与非活体指静脉图像的关键信息,可以达到较好的活体检测效果。
以上结合实施例对本发明进行了详细说明,但所述内容仅为本发明的较佳实施例,不能被认为用于限定本发明的实施范围。凡依本发明申请范围所作的均等变化与改进等,均应仍属于本发明的专利涵盖范围之内。

Claims (10)

1.一种基于多特征融合和DE-ELM的手指静脉活体检测方法,其特征在于:其包括以下步骤:
1)分别采集真手指静脉图像和假手指伪静脉图像作为正负训练样本,并对其进行大小归一化预处理和高斯滤波处理;
2)分别提取静脉图像的多块LBP直方图特征与多尺度HOG特征,并融合成一个总的特征向量,用于表述静脉特征;
3)设置隐藏层神经元的激活函数和利用差分进化算法确定隐藏层神经元的个数,构建DE-ELM分类模型;
4)训练数据输入到DE-ELM分类模型中进行训练;
5)将测试图像数据输入到训练好的DE-ELM分类模型中进行活体数据的检测和识别,确定测试图像数据是否为活体手指静脉。
2.根据权利要求1所述的基于多特征融合和DE-ELM的手指静脉活体检测方法,其特征在于:所述的步骤2)具体包括以下步骤:
2.1)计算多块LBP直方图特征,即设置各种不同大小的尺度,根据给定的尺度从静脉图像模板获得多个不同大小、不同位置的块,计算每个块的LBP直方图特征,把所有局部块的LBP直方图特征连接起来得到多块LBP特征;
2.2)计算多尺度HOG特征,即计算静脉图像模板的方向梯度,将图像按照宽高比均分为m*n个小块,选定一种遍历方式对每个小块进行扫描,每个小块生成一个共生矩阵,使用多种遍历方式扫描静脉图像模板,生成多尺度HOG特征;
2.3)把多块LBP直方图特征与多尺度HOG特征融合成一个总的特征向量。
3.根据权利要求2所述的基于多特征融合和DE-ELM的手指静脉活体检测方法,其特征在于:所述步骤2.1)中,每个块的尺度通过公式计算得到,计算公式为:
Figure FDA0002355891450000011
其中,W与H分别表示静脉图像模板的宽度与高度,w与h分别表示块的宽度与高度,t1表示块左右移动的步长,t2表示块上下移动的步长。
4.根据权利要求2所述的基于多特征融合和DE-ELM的手指静脉活体检测方法,其特征在于:所述步骤2.2)中,计算多尺度HOG特征的步骤包括:
2.2.1)采用Gamma校正法对输入图像进行颜色空间的标准化;
2.2.2)计算图像每个像素的梯度值,包括大小和方向两个方面的值,图像中像素点(x,y)的梯度为:
Gx(x,y)=H(x+1,y)-H(x-1,y) (2),
Gy(x,y)=H(x,y+1)-H(x,y-1) (3),
式中Gx(x,y),Gy(x,y),H(x,y)分别表示输入图像中像素点(x,y)处的水平方向梯度、垂直方向梯度和像素值;
进一步计算像素点(x,y)处的梯度幅值Gx’(x,y)和梯度方向αx(x,y),
Figure FDA0002355891450000021
Figure FDA0002355891450000022
2.2.3)把图像平均分成多个正方形的单元格;
2.2.4)统计每个单元格的梯度直方图;
2.2.5)将单元格放到一个块中,分别标准化每个块,对整个块进行归一化操作,即对于向量v,
Figure FDA0002355891450000023
2.2.6)将图像内的所有块的HOG特征串联起来得到该图像的多尺度HOG特征。
5.根据权利要求4所述的基于多特征融合和DE-ELM的手指静脉活体检测方法,其特征在于:所述步骤2.2.5)中的多尺度HOG特征的维度为d,
Figure FDA0002355891450000024
式中,w、h为图像的宽度和高度,b、c分别为块、单元的大小,p为单元内梯度方向的数目,s为块移动的步长。
6.根据权利要求1所述的基于多特征融合和DE-ELM的手指静脉活体检测方法,其特征在于:所述的步骤3)具体包括以下步骤:
3.1)利用差分进化算法确定ELM隐含层神经元个数N,设定输入层与隐含层间的输入权重w和隐含层神经元的偏置b;
3.2)采用无限可微的函数作为隐含层神经元的激活函数,计算隐含层输出矩阵H;
3.3)计算输出层权值
Figure FDA0002355891450000025
输出层权值
Figure FDA0002355891450000026
的计算公式为:
Figure FDA0002355891450000027
其中,T为期望输出,用矩阵Hβ=T表示。
7.根据权利要求6所述的基于多特征融合和DE-ELM的手指静脉活体检测方法,其特征在于:所述步骤3.2)中所用的激活函数为:
G(wi,bi,x)=1/(1+e-x) (13)。
8.根据权利要求6所述的基于多特征融合和DE-ELM的手指静脉活体检测方法,其特征在于:所述的步骤3.1)中,确定ELM隐含层神经元个数N的步骤包括:
3.1.1)设定训练样品本集Mt={(xi,ti)|xi∈Rn,i=1,2,…,M};
3.1.2)初始化种群,设置隐层节点个数、种群数量NP和交叉概率CR的值、缩放因子F的最优取值范围和最大迭代次数Gmax
3.1.3)设定种群,生成一组初始种群GNP×D,选择隐含层神经元个数作为种群成员构成每个种群G,G也用于表示进化代数,其中,D为种群G的维数,其中,
由平均分布函数对隐含层神经元节点数进行随机的产生,具体的操作过程如下:
xi=rand(0,1)·(xmax-xmin)+xmin (8);
3.1.4)计算适应度函数值:利用初始群体中的所有个体建立一个回归模型,利用训练数据集来进行预测,并利用适应度函数计算适应度函数值f(xbest),寻找适应度最小的个体,并且记为全局最优xbest
3.1.5)终止条件检验:如果自适应函数值在0~0.0001之内或当进化代数G以达到最大值Gmax,则进入步骤3.1.9,否则,进入步骤3.1.6;
3.1.6)变异操作:对于所有参数,得到了4个互不相同且与i也不相同的随机整数对r1,r2,r3,r4,进行变异操作得到了一个新个体,得到了一个新个体为:
Figure FDA0002355891450000031
如果得到的新个体的参数超出了设定的范围,则对其进行调整;
3.1.7)交叉操作:根据差分进化算法中的交叉操作对变异后的个体进行交叉操作,增加种群的多样性;
3.1.8)选择操作:利用之前得到的新一代群众中的每个新个体,即每组中新的参数而再一次的构建分类模型,并且进行分类,再利用适应度函数反复计算,生成新种群中的局部最优个体u(best,G+1),将局部最优个体f(ubest,G+1)和全局最优个体的适应度值进行比较,如果局部最优较小,则代替全局最优,即
Figure FDA0002355891450000032
3.1.9)通过该算法对整个数据的寻优选择,最终获得最优化的隐含层节点个数Nbest
9.根据权利要求8所述的基于多特征融合和DE-ELM的手指静脉活体检测方法,其特征在于:所述的步骤3.1.4)中的适应度函数为:
Figure FDA0002355891450000041
10.根据权利要求8所述的基于多特征融合和DE-ELM的手指静脉活体检测方法,其特征在于:所述的步骤3.1.6)中调整的公式为:
xnew=xmin+(xmax-xmin)*rand(1) (11)。
CN202010007626.0A 2020-01-04 2020-01-04 一种基于多特征融合和de-elm的手指静脉活体检测方法 Pending CN111241957A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010007626.0A CN111241957A (zh) 2020-01-04 2020-01-04 一种基于多特征融合和de-elm的手指静脉活体检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010007626.0A CN111241957A (zh) 2020-01-04 2020-01-04 一种基于多特征融合和de-elm的手指静脉活体检测方法

Publications (1)

Publication Number Publication Date
CN111241957A true CN111241957A (zh) 2020-06-05

Family

ID=70874235

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010007626.0A Pending CN111241957A (zh) 2020-01-04 2020-01-04 一种基于多特征融合和de-elm的手指静脉活体检测方法

Country Status (1)

Country Link
CN (1) CN111241957A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112200156A (zh) * 2020-11-30 2021-01-08 四川圣点世纪科技有限公司 基于聚类辅助的静脉识别模型训练方法及装置
CN112329997A (zh) * 2020-10-26 2021-02-05 国网河北省电力有限公司雄安新区供电公司 电力需求负荷预测方法及系统、电子设备和存储介质
CN113509178A (zh) * 2021-06-02 2021-10-19 圣点世纪科技股份有限公司 一种基于差温状态监控的无创血糖检测方法及装置
CN113963427A (zh) * 2021-12-22 2022-01-21 浙江工商大学 一种快速活体检测的方法与系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104091157A (zh) * 2014-07-09 2014-10-08 河海大学 一种基于特征融合的行人检测方法
CN107067029A (zh) * 2017-03-20 2017-08-18 新智认知数据服务有限公司 一种基于多通道特征的elm和de相结合的图像分类方法
CN107292312A (zh) * 2017-06-19 2017-10-24 中国科学院苏州生物医学工程技术研究所 肿瘤识别方法
CN107578007A (zh) * 2017-09-01 2018-01-12 杭州电子科技大学 一种基于多特征融合的深度学习人脸识别方法
CN108664763A (zh) * 2018-05-14 2018-10-16 浙江大学 一种参数最优的肺癌癌细胞检测仪
CN109583279A (zh) * 2017-09-29 2019-04-05 山西圣点世纪科技股份有限公司 一种指纹和指静脉联合识别算法
CN109948198A (zh) * 2019-02-28 2019-06-28 大连海事大学 一种基于非线性函数的围岩分级可靠性评价方法
CN110263125A (zh) * 2019-06-10 2019-09-20 陕西师范大学 一种基于极限学习机的服务发现方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104091157A (zh) * 2014-07-09 2014-10-08 河海大学 一种基于特征融合的行人检测方法
CN107067029A (zh) * 2017-03-20 2017-08-18 新智认知数据服务有限公司 一种基于多通道特征的elm和de相结合的图像分类方法
CN107292312A (zh) * 2017-06-19 2017-10-24 中国科学院苏州生物医学工程技术研究所 肿瘤识别方法
CN107578007A (zh) * 2017-09-01 2018-01-12 杭州电子科技大学 一种基于多特征融合的深度学习人脸识别方法
CN109583279A (zh) * 2017-09-29 2019-04-05 山西圣点世纪科技股份有限公司 一种指纹和指静脉联合识别算法
CN108664763A (zh) * 2018-05-14 2018-10-16 浙江大学 一种参数最优的肺癌癌细胞检测仪
CN109948198A (zh) * 2019-02-28 2019-06-28 大连海事大学 一种基于非线性函数的围岩分级可靠性评价方法
CN110263125A (zh) * 2019-06-10 2019-09-20 陕西师范大学 一种基于极限学习机的服务发现方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BAZI, Y.;ALAJLAN, N.;MELGANI, F.;ALHICHRI, H.;MALEK, S.;YAGER, R.R.: "Differential Evolution Extreme Learning Machine for the Classification of Hyperspectral Images" *
刘国明;: "基于HOG-LBP特征的静态图像中的行人检测" *
文武;乔龙辉;何鹏;: "基于自适应差分进化极限学习机的车牌识别算法" *
蒋朝辉;尹菊萍;桂卫华;阳春华;: "基于复合差分进化算法与极限学习机的高炉铁水硅含量预报" *
魏英姿;欧阳海飞;谭龙田;: "基于差分进化极端学习机的汽车商标图像检索" *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112329997A (zh) * 2020-10-26 2021-02-05 国网河北省电力有限公司雄安新区供电公司 电力需求负荷预测方法及系统、电子设备和存储介质
CN112200156A (zh) * 2020-11-30 2021-01-08 四川圣点世纪科技有限公司 基于聚类辅助的静脉识别模型训练方法及装置
CN112200156B (zh) * 2020-11-30 2021-04-30 四川圣点世纪科技有限公司 基于聚类辅助的静脉识别模型训练方法及装置
CN113509178A (zh) * 2021-06-02 2021-10-19 圣点世纪科技股份有限公司 一种基于差温状态监控的无创血糖检测方法及装置
CN113509178B (zh) * 2021-06-02 2022-07-08 圣点世纪科技股份有限公司 一种基于差温状态监控的无创血糖检测方法及装置
CN113963427A (zh) * 2021-12-22 2022-01-21 浙江工商大学 一种快速活体检测的方法与系统
CN113963427B (zh) * 2021-12-22 2022-07-26 浙江工商大学 一种快速活体检测的方法与系统

Similar Documents

Publication Publication Date Title
CN107610087B (zh) 一种基于深度学习的舌苔自动分割方法
CN111241957A (zh) 一种基于多特征融合和de-elm的手指静脉活体检测方法
Deng et al. Saliency detection via a multiple self-weighted graph-based manifold ranking
CN109033978B (zh) 一种基于纠错策略的cnn-svm混合模型手势识别方法
CN108596195B (zh) 一种基于稀疏编码特征提取的场景识别方法
Oliva et al. Multilevel thresholding by fuzzy type II sets using evolutionary algorithms
CN113361542A (zh) 一种基于深度学习的局部特征提取方法
CN111968124B (zh) 基于半监督语义分割的肩部肌骨超声结构分割方法
Abualigah et al. Multilevel thresholding image segmentation using meta-heuristic optimization algorithms: Comparative analysis, open challenges and new trends
Liu et al. A image segmentation algorithm based on differential evolution particle swarm optimization fuzzy c-means clustering
Zhang et al. Improved adaptive image retrieval with the use of shadowed sets
CN113011243A (zh) 基于胶囊网络的面部表情分析方法
CN112784921A (zh) 任务注意力引导的小样本图像互补学习分类算法
CN112883931A (zh) 基于长短期记忆网络的实时真假运动判断方法
Wang OCT image recognition of cardiovascular vulnerable plaque based on CNN
Montagner et al. Staff removal using image operator learning
Hazgui et al. Evolutionary-based generation of rotation and scale invariant texture descriptors from SIFT keypoints
Konopka et al. Classification of soil bacteria based on machine learning and image processing
Ziegelmeier et al. Sparse locally linear embedding
CN112509017A (zh) 一种基于可学习差分算法的遥感影像变化检测方法
INTHIYAZ et al. YOLO (YOU ONLY LOOK ONCE) Making Object detection work in Medical Imaging on Convolution detection System.
Jena et al. Elitist TLBO for identification and verification of plant diseases
Meng et al. Pneumonia diagnosis on chest X-rays with machine learning
Rajesh et al. Automatic data acquisition and spot disease identification system in plants pathology domain: agricultural intelligence system in plant pathology domain
Li et al. Research on hybrid information recognition algorithm and quality of golf swing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200605

RJ01 Rejection of invention patent application after publication