CN111239828A - Multiple suppression method based on optimal hyperbolic integral path superposition - Google Patents
Multiple suppression method based on optimal hyperbolic integral path superposition Download PDFInfo
- Publication number
- CN111239828A CN111239828A CN202010155980.8A CN202010155980A CN111239828A CN 111239828 A CN111239828 A CN 111239828A CN 202010155980 A CN202010155980 A CN 202010155980A CN 111239828 A CN111239828 A CN 111239828A
- Authority
- CN
- China
- Prior art keywords
- vertices
- gather
- gathers
- survey line
- line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 230000001629 suppression Effects 0.000 title claims abstract description 29
- 230000009466 transformation Effects 0.000 claims abstract description 26
- 229910052704 radon Inorganic materials 0.000 claims description 37
- SYUHGPGVQRZVTB-UHFFFAOYSA-N radon atom Chemical compound [Rn] SYUHGPGVQRZVTB-UHFFFAOYSA-N 0.000 claims description 37
- 238000001514 detection method Methods 0.000 claims description 15
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 4
- 230000000295 complement effect Effects 0.000 claims description 3
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 claims description 2
- 238000013480 data collection Methods 0.000 claims description 2
- 238000003825 pressing Methods 0.000 abstract 2
- 238000010586 diagram Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000013499 data model Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/36—Effecting static or dynamic corrections on records, e.g. correcting spread; Correlating seismic signals; Eliminating effects of unwanted energy
- G01V1/362—Effecting static or dynamic corrections; Stacking
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/30—Noise handling
- G01V2210/32—Noise reduction
- G01V2210/322—Trace stacking
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Acoustics & Sound (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
技术领域technical field
本发明属于地球物理勘探中的噪声压制技术领域,具体涉及一种海洋地震勘探中的多次波压制方法,特别涉及一种基于最优双曲线积分路径叠加的多次波压制方法。The invention belongs to the technical field of noise suppression in geophysical exploration, in particular to a multiple-wave suppression method in marine seismic exploration, in particular to a multiple-wave suppression method based on the superposition of optimal hyperbolic integral paths.
背景技术Background technique
多次波在海洋地震勘探中,因其周期性和运动学形态特征,会降低地震数据的信噪比,常被作为一种需要去除的相干噪声。目前,较为常用的多次波压制技术是2D SRME技术。然而在地层倾斜情况时,真实的传播路径为三维空间函数,2D方法无法刻画联络测线方向的变化,因此多次波预测问题转变为3D,需引入3D SRME。但3D预测受限于观测系统采样稀疏,直接叠加会引入预测假象,引起波形畸变,使得多次波预测产生了严重的空间假频。In marine seismic exploration, multiples are often regarded as a kind of coherent noise that needs to be removed because of their periodicity and kinematic morphological characteristics, which will reduce the signal-to-noise ratio of seismic data. At present, the more commonly used multiple suppression technology is 2D SRME technology. However, when the stratum is tilted, the real propagation path is a three-dimensional space function, and the 2D method cannot describe the change of the direction of the tie line. Therefore, the multiple wave prediction problem is transformed into 3D, and 3D SRME needs to be introduced. However, 3D prediction is limited by the sparse sampling of the observation system, and direct superposition will introduce prediction artifacts and cause waveform distortion, resulting in severe spatial aliasing in multiple-wave prediction.
2D SRME方法是由Berkhout和Verschuur等人(Verschuur D J,Berkhout AJ,Wapenaar C P A.Adaptive surface-related multiple elimination[J].GEOPHYSICS,1992,57(9):1166-1177.)于1992年提出,该方法通过消除数据中表面反射率的影响来消除所有与表面相关的多次波,将多次波去除设计为一种反演过程,在该过程中,可以估计源和地表的反射率特性,反演残差就是预测的多次波,属于数据驱动,仅适用于简单地形情况。随着地震勘探难度的加大,3D SRME方法由E.J.van Dedem(Dedem E J V.3D surface-related multiple elimination and interpolation[J].SEG Technical ProgramExpanded Abstracts,1999,17(1):1321.)于1999年提出,在2D SRME基础上,引入联络测线方向,适应于更加复杂的地形。然而,3D预测过程受观测系统联络测线方向采样稀疏限制,因此一系列解决办法被相继提出。数据重建得到3D SRME所需要的密集采样数据方法由Anatoly Baumstein等人(Baumstein A.3D SRME:Data reconstruction and applicationto field data[J].SEG Technical Program Expanded Abstracts,1999,23(1).)于1999年提出;之后,基于稀疏反演的多次波压制方法于2002年由Van Dedem和Verschuur(DedemE J V,Verschuur D J.3D Surface-related Multiple Prediction Using SparseInversion:Experience With Field Data[J].Seg Technical Program ExpandedAbstracts,2002,21(1):2094.)提出,对稀疏的联络测线多次波贡献道集利用稀疏反演在模型空间重建,再通过振幅和相位进行校正叠加得到预测多次波;利用curvelet变换分离一次波与多次波由Xiang Wu(Wu X,Hung B.Adaptive primary-multiple separationusing 3D curvelet transform[J].ASEG Extended Abstracts,2015,2015(1):1155.)于2015年提出;基于数据规则化和稀疏反演的三维表面多次波压制方法由方云峰等人(方云峰,聂红梅,张丽梅,et al.基于数据规则化和稀疏反演的三维表面多次波压制方法[J].地球物理学报,2016,v.59(02):269-277.)于2016年提出,通过数据规则化与反规则化技术,使得数据分布满足三维SRME的要求,之后通过稀疏反演代替联络测线多次波贡献道集求和。但是,上述这些方法采用的稀疏反演方法以及数据重构或者curvelet变换的稳定性较弱,对于不同的复杂地形影响较大。The 2D SRME method was proposed by Berkhout and Verschuur et al. (Verschuur D J, Berkhout AJ, Wapenaar C P A. Adaptive surface-related multiple elimination [J]. GEOPHYSICS, 1992, 57(9): 1166-1177.) in 1992, The method removes all surface-related multiples by removing the effect of surface reflectivity in the data, designing multiple removal as an inversion process in which the source and surface reflectivity properties can be estimated, The inversion residual is the predicted multiple, which is data-driven and only suitable for simple terrain conditions. With the increasing difficulty of seismic exploration, the 3D SRME method was developed by E.J.van Dedem (Dedem E J V. 3D surface-related multiple elimination and interpolation[J].SEG Technical ProgramExpanded Abstracts,1999,17(1):1321.) in 1999 In 2008, it was proposed that on the basis of 2D SRME, the direction of the contact survey line was introduced to adapt to more complex terrain. However, the 3D prediction process is limited by the sparse sampling of the tie-line direction of the observation system, so a series of solutions have been proposed successively. The method of densely sampled data required for data reconstruction to obtain 3D SRME was introduced by Anatoly Baumstein et al. proposed in 2002; after that, the multiple suppression method based on sparse inversion was proposed in 2002 by Van Dedem and Verschuur (DedemE J V, Verschuur D J. 3D Surface-related Multiple Prediction Using SparseInversion: Experience With Field Data [J]. Seg Technical Program ExpandedAbstracts, 2002, 21(1):2094.) proposed that the sparse contact line multiple contribution gathers are reconstructed in the model space by sparse inversion, and then the predicted multiples are obtained by the correction and superposition of the amplitude and phase; Using curvelet transform to separate primary and multiple waves was proposed by Xiang Wu (Wu X, Hung B.Adaptive primary-multiple separation using 3D curvelet transform[J].ASEG Extended Abstracts,2015,2015(1):1155.) in 2015 ; 3D surface multiple suppression method based on data regularization and sparse inversion by Fang Yunfeng et al. (Fang Yunfeng, Nie Hongmei, Zhang Limei, et al. 3D surface multiple suppression method based on data regularization and sparse inversion[J] ] .Acta Geophysics, 2016, v.59(02):269-277.) proposed in 2016 that through data regularization and de-regularization techniques, the data distribution can meet the requirements of 3D SRME, and then sparse inversion is used instead of liaison Summation of line multiple contribution gathers. However, the sparse inversion methods and data reconstruction or curvelet transformation adopted by the above methods are less stable, and have a greater impact on different complex terrains.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种基于最优双曲线积分路径叠加的多次波压制方法,以克服常规的三维表面相关多次波压制方法由于地震数据采集联络测线方向过于稀疏产生空间假频的缺点。The purpose of the present invention is to provide a multiple suppression method based on the superposition of optimal hyperbolic integral paths, so as to overcome the problem of spatial aliasing generated by the conventional three-dimensional surface correlation multiple suppression method due to the sparse direction of the seismic data acquisition contact line. shortcoming.
本发明的目的是通过以下技术方案实现的:The purpose of this invention is to realize through the following technical solutions:
首先,从地震采集的数据中分离出共炮点道集与共检波点道集,将共炮点道集与共检波点道集褶积得到不同位置处的纵测线多次波贡献道集,纵测线多次波贡献道集沿纵测线方向求和得到联络测线多次波贡献道集,利用联络测线多次波贡献道集与其经抛物Raon变换得到的结果内积,通过拾取内积结果的局部极大值确定双曲线顶点坐标,并对其进行统计选取出现频次较高的少数顶点坐标作为路径叠加顶点,将顶点水平位置坐标作为联络测线多次波贡献道集的偏移距选取结果,得到若干个预测多次波子集,按照顶点位置的时间坐标确定不同区间,以区间振幅最大为原则选择筛选多次波子集,得到最终多次波预测结果,最后通过匹配减去实现多次波压制。First, the common shot gathers and the common receiver gathers are separated from the seismically collected data, and the multiple contribution gathers of the longitudinal survey line at different positions are obtained by convolving the common shot gathers and the common receiver gathers. The multiple contribution gathers of the survey line are summed along the direction of the longitudinal survey line to obtain the multiple contribution gathers of the connecting survey line. The inner product of the multiple contribution gathers of the connecting survey line and the result obtained by the parabolic Raon transform is used to pick the inner product. The local maximum value of the product result determines the hyperbolic vertex coordinates, and makes statistics on them. Select the few vertex coordinates with high frequency as the path superposition vertex, and use the vertex horizontal position coordinate as the offset of the multiple wave contribution gathers of the connecting survey line. From the selection results, several subsets of predicted multiples are obtained, different intervals are determined according to the time coordinates of the vertex positions, and the multiple subsets are selected and screened according to the principle of the maximum amplitude of the interval, and the final multiple prediction results are obtained. To achieve multiple suppression.
一种基于最优双曲线积分路径叠加的多次波压制方法,包括以下步骤:A multiple wave suppression method based on the superposition of optimal hyperbolic integral paths, comprising the following steps:
a、将三维海洋地震勘探采集的数据,通过互易定理补全数据,得到炮道相同的地震数据,并按照道头信息中的炮号(fldr)抽道集,得到共炮点道集d(xk,yk,t,xs,ys);按照检波号(tracl)抽道集,得到共检波点道集r(xr,yr,t,xk,yk),其中(xk,yk)为任一点位置(炮点或检波点),(xs,ys)为炮点坐标,(xr,yr)为检波点坐标,t为时间。a. Complement the data collected by 3D marine seismic exploration through the reciprocity theorem to obtain the same seismic data of the shot track, and extract the gathers according to the shot number (fldr) in the track header information to obtain the common shot gather d (x k , y k , t, x s , y s ); extract the gathers according to the detection number (tracl) to obtain a common detection point gather r(x r , y r , t, x k , y k ), where (x k , y k ) is the position of any point (shot or detection point), (x s , y s ) is the coordinates of the shot point, (x r , y r ) is the coordinates of the detection point, and t is the time.
b、对共炮点道集d(xk,yk,t,xs,ys)与共检波点道集r(xr,yr,t,xk,yk)进行傅里叶正变换得到频率域的共炮点道集D(xk,yk,w,xs,ys)与共检波点道集R(xr,yr,w,xk,yk),其中w为角频率。b. Perform Fourier positive on the common shot gather d(x k ,y k ,t,x s ,y s ) and the common receiver gather r(x r ,y r ,t,x k ,y k ) Transform to obtain the common shot gather D(x k ,y k ,w,x s ,y s ) and the common receiver gather R(x r ,y r ,w,x k ,y k ) in the frequency domain, where w is the angular frequency.
c、将共炮点道集D(xk,yk,w,xs,ys)与共检波点道集R(xr,yr,w,xk,yk)在频率域乘积得到对应不同位置(xk,yk)的纵测线多次波贡献道集Mxy(xr,yr,xs,ys,xk,yk,w)。c. Multiply the common shot gather D(x k ,y k ,w,x s ,y s ) and the common receiver gather R(x r ,y r ,w,x k ,y k ) in the frequency domain to get Contribution gathers M xy (x r , y r , x s , y s , x k , y k , w) of longitudinal line multiples corresponding to different positions (x k , y k ).
Mxy(xr,yr,xs,ys,xk,yk,w)=r0R(xr,yr,w;xk,yk)D(xk,yk,w;xs,ys)M xy (x r ,y r ,x s ,y s ,x k ,y k ,w)=r 0 R(x r ,y r ,w; x k ,y k )D(x k ,y k , w; x s , y s )
其中r0表示地层反射系数,一般取-1。Among them, r 0 represents the formation reflection coefficient, which is generally taken as -1.
d、对不同位置的纵测线多次波贡献道集Mxy(xr,yr,xs,ys,xk,yk,w)沿纵测线方向求和得到联络测线多次波贡献道集My(xr,yr,xs,ys,yk,w),并通过傅里叶逆变换变换回时间域,得到时间域的联络测线多次波贡献道集my(xr,yr,xs,ys,yk,t)。d. The multiple contribution gathers M xy (x r , y r , x s , y s , x k , y k , w) of the longitudinal survey line at different positions are summed along the longitudinal survey line direction to obtain the multi-connected survey line The secondary wave contribution gathers M y (x r , y r , x s , y s , y k , w) are transformed back to the time domain by inverse Fourier transform to obtain the time domain multiple wave contribution traces of the tie line Set m y (x r ,y r ,x s ,y s ,y k ,t).
e、对联络测线多次波贡献道集作抛物Radon变换,将抛物Radon变换的结果与未作抛物Radon变换的联络测线多次波贡献道集内积。e. Perform parabolic Radon transformation on the multiple contribution gathers of the tie-line survey line, and inner-product the result of the parabolic Radon transformation with the multiple wave contribution gathers of the tie-line survey line without parabolic Radon transformation.
myradon(xr,yr,xs,ys,yk,t)=Radon(my(xr,yr,xs,ys,yk,t))m yradon (x r ,y r ,x s ,y s ,y k ,t)=Radon(m y (x r ,y r ,x s ,y s ,y k ,t))
myradon(xr,yr,xs,ys,yk,t)为Radon变换后的结果,md(xr,yr,xs,ys,yk,t)为内积的结果。m yradon (x r ,y r ,x s ,y s ,y k ,t) is the result of Radon transformation, m d (x r ,y r ,x s ,y s ,y k ,t) is the inner product the result of.
f、利用matlab平台下findpeaks通过阈值限制对比振幅值拾取局部极大值,获取双曲线顶点坐标。f. Use findpeaks under the matlab platform to pick the local maximum value through the threshold limit and contrast amplitude value, and obtain the hyperbolic vertex coordinates.
[xm,tm]=findpeaks(md(xr,yr,xs,ys,yk,t))[x m ,t m ]=findpeaks(m d (x r ,y r ,x s ,y s ,y k ,t))
[xm,tm]为同相轴顶点的横向坐标组成的矩阵。[x m , t m ] is a matrix composed of the lateral coordinates of the event axis vertices.
g、对所有同相轴顶点坐标进行统计,选取出现频率最高的多个(一般3—5个,依实际情况而定),作为路径叠加的顶点。g. Count the coordinates of all event axis vertices, and select the ones with the highest frequency (usually 3-5, depending on the actual situation) as the vertices of the path superposition.
为路径叠加的顶点,i=1,2,3...。 Vertices for path stacking, i=1, 2, 3....
h、分别选取路径叠加的多个顶点的xmax(i)作为Radon变换的偏移距(offset),进行Radon变换,将Radon变换的结果叠加得到若干个预测的多次波m(i)(xr,yr,xs,ys,t),对比tmax(i)的大小找到时间方向的不同区间 h. Select the x max(i) of the multiple vertices superimposed on the path as the offset distance (offset) of the Radon transformation, perform the Radon transformation, and superimpose the results of the Radon transformation to obtain several predicted multiples m (i) ( x r , y r , x s , y s , t), compare the size of t max(i) to find different intervals in the time direction
my(i)(xr,yr,xs,ys,yk,t)=Radon(xmax(i))(my(xr,yr,xs,ys,yk,t))m y(i) (x r ,y r ,x s ,y s ,y k ,t)=Radon (xmax(i)) (m y (x r ,y r ,x s ,y s ,y k , t))
i、在不同区间中,选取上述若干个预测的多次波中振幅较大的部分组成最终的多次波预测结果。i, in different intervals , the part with larger amplitude among the above-mentioned several predicted multiples is selected to form the final multiple prediction result.
j、采用时间域匹配减去,得到不含多次波的地震数据。j. Use time domain matching and subtraction to obtain seismic data without multiples.
进一步地,步骤g,所述顶点一般为3—5个,依实际情况而定。Further, in step g, the number of vertices is generally 3-5, depending on the actual situation.
与现有技术相比,本发明的有益效果:Compared with the prior art, the beneficial effects of the present invention:
本发明通过选择最优双曲线积分路径叠加来实现多次波压制技术。利用联络测线多次波贡献道集与其经抛物Raon变换得到的结果内积,通过拾取内积结果的局部极大值确定双曲线顶点坐标,并对其进行统计选取出现频次较高的少数顶点坐标作为路径叠加顶点,将顶点水平位置坐标作为联络测线多次波贡献道集的偏移距选取结果,得到若干个预测多次波子集,按照顶点位置的时间坐标确定不同区间,以区间振幅最大为原则选择筛选多次波子集,得到最终多次波预测结果,最后通过匹配减去实现多次波压制,显著提高了多次波压制的精度和准确度。The invention realizes the multiple wave suppression technology by selecting the optimal hyperbolic integral path superposition. Using the inner product of the multiple wave contribution gathers of the tie line and the result obtained by the parabolic Raon transform, the coordinates of the hyperbola vertexes are determined by picking the local maximum value of the inner product result, and a few vertices with higher occurrence frequency are selected according to statistics. The coordinates are used as the vertices of the path stacking, and the horizontal position coordinates of the vertices are used as the offset selection results of the multiple contribution gathers of the contact line, and several subsets of predicted multiples are obtained, and different intervals are determined according to the time coordinates of the vertex positions. According to the principle of maximum amplitude, multiple subsets are selected and screened, and the final multiple prediction result is obtained. Finally, multiple suppression is realized by matching and subtraction, which significantly improves the precision and accuracy of multiple suppression.
本发明有以下优点:The present invention has the following advantages:
1、基于最优双曲线积分路径叠加来实现多次波压制技术属于数据驱动的方法,不需要地下介质的假设与先验信息,仅需要震源与检波点信息,即可以实现有效预测并压制多次波的目的。1. The multiple-wave suppression technology based on the superposition of the optimal hyperbolic integral paths is a data-driven method. It does not require the assumption and prior information of the underground medium, but only needs the information of the source and detection point, which can effectively predict and suppress multiple waves. purpose of the second wave.
2、该方法有效的解决了3D SRME要求数据采集密集的问题,针对不同地质模型均可获得高精度、高稳定性的多次波压制效果。2. This method effectively solves the problem that 3D SRME requires intensive data collection, and can obtain high-precision and high-stability multiple wave suppression effects for different geological models.
3、该方法相对于基于稀疏反演的多次波压制方法,具有更高的计算效率,降低了地震数据处理与解释的成本。3. Compared with the multiple suppression method based on sparse inversion, this method has higher computational efficiency and reduces the cost of seismic data processing and interpretation.
附图说明Description of drawings
图1基于最优双曲线积分路径叠加的多次波压制方法流程图。Figure 1. Flow chart of multiple suppression method based on optimal hyperbolic integral path superposition.
图2三维海上地震勘探数据采集观测系统示意图。Fig. 2 Schematic diagram of the 3D marine seismic exploration data acquisition and observation system.
图3三维效应路径传播示意图。Figure 3 Schematic diagram of three-dimensional effect path propagation.
图4表面多次波传播路径示意图。Fig. 4 Schematic diagram of the propagation path of surface multiples.
图5纵测线多次波贡献道集示意图。Fig. 5 Schematic diagram of the multiple contribution gathers of the longitudinal survey line.
图6联络测线多次波贡献道集示意图。Fig. 6 Schematic diagram of the multiple contribution gather of the tie line.
图7联络测线多次波贡献道集Radon变换结果示意图。Fig. 7 Schematic diagram of the Radon transform result of the multiple contribution gather of the tie line.
图8联络测线多次波贡献道集与其Radon变换结果内积结果示意图Figure 8. Schematic diagram of the inner product of the multiple contribution gathers of the tie line and their Radon transform results
图9三维模拟数据;图9a模拟地质模型,图9b Offset=-500作为路径叠加顶点预测的多次波示意图,图9c Offset=-300作为路径叠加顶点预测的多次波示意图,图9dOffset=0作为路径叠加顶点预测的多次波示意图,图9e多次波预测结果示意图,图9f原始数据示意图,图9g多次波压制结果示意图。Figure 9 3D simulation data; Figure 9a simulates the geological model, Figure 9b Offset=-500 as a schematic diagram of multiples predicted by the path stacking vertex, Figure 9c Offset=-300 as a schematic diagram of multiples predicted by the path stack vertex, Figure 9dOffset=0 As a schematic diagram of multiples predicted by the path stacking vertex, Figure 9e is a schematic diagram of the multiple wave prediction result, Figure 9f is a schematic diagram of the original data, and Figure 9g is a schematic diagram of the multiple wave suppression result.
具体实施方式Detailed ways
下面结合附图和实例对本发明进行进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings and examples.
本发明对常规的三维表面相关多次波压制方法(3D surface-related multipleselimination,3D SRME)进行优化改进,利用联络测线多次波贡献道集与其经抛物Raon变换得到的结果内积,通过拾取内积结果的局部极大值确定双曲线顶点坐标,并对其进行统计选取出现频次较高的少数顶点坐标作为路径叠加顶点,将顶点水平位置坐标作为联络测线多次波贡献道集的偏移距选取结果,得到若干个预测多次波子集,按照顶点位置的时间坐标确定不同区间,以区间振幅最大为原则选择筛选多次波子集,得到最终多次波预测结果,最后通过匹配减去实现多次波压制。基于最优双曲线积分路径叠加的多次波压制方法是通过Seismic Unix和MATLAB平台实现的。The present invention optimizes and improves the conventional three-dimensional surface-related multipleselimination (3D SRME) method, and utilizes the inner product of the multiple contribution gathers of the contact survey line and the result obtained by parabolic Raon transformation, and picks up The local maximum value of the inner product results determines the coordinates of the hyperbolic vertexes, and performs statistics on them. Select the result of the shift distance to obtain several subsets of predicted multiples, determine different intervals according to the time coordinates of the vertex positions, select and filter the multiple subsets based on the principle of the maximum amplitude of the interval, and obtain the final multiple prediction results, and finally pass the matching Subtract to achieve multiple suppression. The multiple suppression method based on the optimal hyperbolic integral path superposition is realized by Seismic Unix and MATLAB platform.
本发明基于最优双曲线积分路径叠加的多次波压制方法,包括以下步骤:The present invention is based on the multiple wave suppression method superimposed on the optimal hyperbolic integral path, comprising the following steps:
a、将三维海洋地震勘探观测系统(图2)采集的数据,通过互易定理补全数据,得到炮道相同的地震数据,并按照道头信息中的炮号(fldr)抽道集,得到共炮点道集d(xk,yk,t,xs,ys);按照检波号(tracl)抽道集,得到共检波点道集r(xr,yr,t,xk,yk),其中(xk,yk)为任一点位置(炮点或检波点),(xs,ys)为炮点坐标,(xr,yr)为检波点坐标,t为时间。a. Complement the data collected by the 3D marine seismic exploration and observation system (Fig. 2) through the reciprocity theorem to obtain the same seismic data of the gun track, and extract the gathers according to the gun number (fldr) in the track head information to obtain Common shot gather d(x k , y k , t, x s , y s ); extract gathers according to the detection signal (tracl) to obtain the common shot gather r(x r , y r , t, x k , y k ), where (x k , y k ) is the position of any point (shot point or receiver point), (x s , y s ) is the shot point coordinate, (x r , y r ) is the receiver point coordinate, t for time.
b、对共炮点道集d(xk,yk,t,xs,ys)与共检波点道集r(xr,yr,t,xk,yk)进行傅里叶正变换得到频率域的共炮点道集D(xk,yk,w,xs,ys)与共检波点道集R(xr,yr,w,xk,yk),其中w为角频率。b. Perform Fourier positive on the common shot gather d(x k ,y k ,t,x s ,y s ) and the common receiver gather r(x r ,y r ,t,x k ,y k ) Transform to obtain the common shot gather D(x k ,y k ,w,x s ,y s ) and the common receiver gather R(x r ,y r ,w,x k ,y k ) in the frequency domain, where w is the angular frequency.
c、考虑三维效应影响(图3),根据多次波传播路径的波场运动特征(图4),将共炮点道集D(xk,yk,w,xs,ys)与共检波点道集R(xr,yr,w,xk,yk)在频率域乘积得到对应不同位置(xk,yk)的纵测线多次波贡献道集Mxy(xr,yr,xs,ys,xk,yk,w)(图5)。c. Considering the influence of three-dimensional effects (Fig. 3), according to the wave field motion characteristics of the multiple wave propagation path (Fig. 4), the common shot gather D(x k , y k , w, x s , y s ) and the common shot gather D(x k , y k , w, x s , y s ) The detection point gathers R(x r , y r , w, x k , y k ) are multiplied in the frequency domain to obtain the longitudinal survey line multiples contribution gathers M xy (x r ) corresponding to different positions (x k , y k ) , y r , x s , y s , x k , y k , w) (Fig. 5).
Mxy(xr,yr,xs,ys,xk,yk,w)=r0R(xr,yr,w;xk,yk)D(xk,yk,w;xs,ys)M xy (x r ,y r ,x s ,y s ,x k ,y k ,w)=r 0 R(x r ,y r ,w; x k ,y k )D(x k ,y k , w; x s , y s )
其中r0表示地层反射系数,一般取-1。Among them, r 0 represents the formation reflection coefficient, which is generally taken as -1.
d、对纵测线多次波贡献道集Mxy(xr,yr,xs,ys,xk,yk,w)沿纵测线方向求和得到联络测线多次波贡献道集My(xr,yr,xs,ys,yk,w),并通过傅里叶逆变换变换回时间域,得到时间域的联络测线多次波贡献道集my(xr,yr,xs,ys,yk,t)(图6)。d. Sum the multiple contribution gathers M xy (x r , y r , x s , y s , x k , y k , w) along the longitudinal line direction to obtain the multiple contribution of the connecting line gather My (x r , y r , x s , y s , y k , w), and transform it back to the time domain through inverse Fourier transform to obtain the time domain tie-line multiple contribution gather my y (x r , y r , x s , y s , y k , t) (Fig. 6).
e、对联络测线多次波贡献道集作抛物Radon变换,将抛物Radon变换的结果(图7)与未作抛物Radon变换的联络测线多次波贡献道集内积(图8)。e. Perform parabolic Radon transform on the multiple contribution gathers of the tie-line survey line, and inner-product the result of the parabolic Radon transform (Fig. 7) with the multiple contribution gathers of the tie-line survey line without parabolic Radon transform (Fig. 8).
myradon(xr,yr,xs,ys,yk,t)=Radon(my(xr,yr,xs,ys,yk,t))m yradon (x r ,y r ,x s ,y s ,y k ,t)=Radon(m y (x r ,y r ,x s ,y s ,y k ,t))
myradon(xr,yr,xs,ys,yk,t)为Radon变换后的结果,md(xr,yr,xs,ys,yk,t)为内积的结果。m yradon (x r ,y r ,x s ,y s ,y k ,t) is the result of Radon transformation, m d (x r ,y r ,x s ,y s ,y k ,t) is the inner product the result of.
f、利用matlab平台下findpeaks通过阈值限制对比振幅值拾取局部极大值,获取双曲线顶点坐标。f. Use findpeaks under the matlab platform to pick the local maximum value through the threshold limit and contrast amplitude value, and obtain the hyperbolic vertex coordinates.
[xm,tm]=findpeaks(md(xr,yr,xs,ys,yk,t))[x m ,t m ]=findpeaks(m d (x r ,y r ,x s ,y s ,y k ,t))
[xm,tm]为同相轴顶点的横向坐标组成的矩阵。[x m , t m ] is a matrix composed of the lateral coordinates of the event axis vertices.
g、对所有同相轴顶点坐标进行统计,选取出现频率最高的若干个(一般3—5个,依实际情况而定),作为路径叠加的顶点。g. Count the coordinates of all the vertices of the event axis, and select the ones with the highest frequency (usually 3-5, depending on the actual situation) as the vertices of the path superposition.
为路径叠加的顶点,i=1,2,3...。 Vertices for path stacking, i=1, 2, 3....
h、分别选取路径叠加的若干个顶点的xmax(i)作为Radon变换的偏移距(offset),进行Radon变换,将Radon变换的结果叠加得到若干个预测的多次波m(i)(xr,yr,xs,ys,t),对比tmax(i)的大小找到时间方向的不同区间 h. Select the x max(i) of several vertices superimposed on the path as the offset distance (offset) of the Radon transformation, perform the Radon transformation, and superimpose the results of the Radon transformation to obtain several predicted multiples m (i) ( x r , y r , x s , y s , t), compare the size of t max(i) to find different intervals in the time direction
my(i)(xr,yr,xs,ys,yk,t)=Radon(xmax(i))(my(xr,yr,xs,ys,yk,t))m y(i) (x r ,y r ,x s ,y s ,y k ,t)=Radon (xmax(i)) (m y (x r ,y r ,x s ,y s ,y k , t))
i、在不同区间中,选取上述若干个预测的多次波中振幅较大的部分组成最终的多次波预测结果。i, in different intervals , the part with larger amplitude among the above-mentioned several predicted multiples is selected to form the final multiple prediction result.
j、从原始数据中在时间域匹配减去预测的多次波,得到不含多次波的地震数据。j. Match and subtract the predicted multiples from the original data in the time domain to obtain seismic data without multiples.
实施例1Example 1
a、模拟数据模型为三维倾斜地层模型(图9a)。观测系统设置为11条2000米长测线间距100米近平行展布(-500m—500m),每条测线上间隔25米均匀分布检波器接收(0m—2000m),震源随拖缆船在中心缆线水平位置处间隔25米激发地震波,并通过互易定理补全数据,得到中心测线上炮检相同的地震勘探数据。将其按照道头信息中的炮号(fldr,1-81)抽道集,得到共炮点道集d(xk,yk,t,xs,ys);按照检波号(tracl,(1-81,1-11))抽道集,得到共检波点道集r(xr,yr,t,xk,yk),其中(xk,yk)为任一点位置(炮点或检波点),(xs,ys)为炮点坐标,(xr,yr)为检波点坐标,t为时间。a. The simulated data model is a three-dimensional inclined stratigraphic model (Fig. 9a). The observation system is set up as 11 2000-meter-long survey lines that are distributed in near-parallel distances of 100 meters (-500m-500m), and evenly distributed detectors (0m-2000m) with an interval of 25 meters on each survey line. Seismic waves are excited at an interval of 25 meters at the horizontal position of the central cable, and the data is complemented by the reciprocity theorem to obtain the same seismic survey data on the central survey line. Extract the gather according to the shot number (fldr, 1-81) in the track header information, and obtain the common shot gather d(x k , y k , t, x s , y s ); according to the detection number (tracl, (1-81, 1-11)) extract the gathers to obtain the common detection point gathers r(x r , y r , t, x k , y k ), where (x k , y k ) is the position of any point ( shot point or detection point), (x s , y s ) are the coordinates of the shot point, (x r , y r ) are the coordinates of the detection point, and t is the time.
b、对共炮点道集d(xk,yk,t,xs,ys)与共检波点道集r(xr,yr,t,xk,yk)进行傅里叶正变换得到频率域的共炮点道集D(xk,yk,w,xs,ys)与共检波点道集R(xr,yr,w,xk,yk),其中w为角频率。b. Perform Fourier positive on the common shot gather d(x k ,y k ,t,x s ,y s ) and the common receiver gather r(x r ,y r ,t,x k ,y k ) Transform to obtain the common shot gather D(x k ,y k ,w,x s ,y s ) and the common receiver gather R(x r ,y r ,w,x k ,y k ) in the frequency domain, where w is the angular frequency.
c、将共炮点道集D(xk,yk,w,xs,ys)与共检波点道集R(xr,yr,w,xk,yk)在频率域乘积得到对应不同位置(xk,yk)的纵测线多次波贡献道集Mxy(xr,yr,xs,ys,xk,yk,w)(共计81*11个)。c. Multiply the common shot gather D(x k ,y k ,w,x s ,y s ) and the common receiver gather R(x r ,y r ,w,x k ,y k ) in the frequency domain to get Longitudinal line multiple contribution gathers M xy (x r , y r , x s , y s , x k , y k , w) corresponding to different positions (x k , y k ) (81*11 in total) .
Mxy(xr,yr,xs,ys,xk,yk,w)=r0R(xr,yr,w;xk,yk)D(xk,yk,w;xs,ys)M xy (x r ,y r ,x s ,y s ,x k ,y k ,w)=r 0 R(x r ,y r ,w; x k ,y k )D(x k ,y k , w; x s , y s )
其中r0表示地层反射系数,一般取-1。Among them, r 0 represents the formation reflection coefficient, which is generally taken as -1.
d、对纵测线多次波贡献道集Mxy(xr,yr,xs,ys,xk,yk,w)沿纵测线方向求和得到联络测线多次波贡献道集My(xr,yr,xs,ys,yk,w)(共计81个),并通过傅里叶逆变换变换回时间域,得到时间域的联络测线多次波贡献道集my(xr,yr,xs,ys,yk,t)。d. Sum the multiple contribution gathers M xy (x r , y r , x s , y s , x k , y k , w) along the longitudinal line direction to obtain the multiple contribution of the connecting line The gathers M y (x r , y r , x s , y s , y k , w) (81 in total), and transform them back to the time domain through inverse Fourier transform to obtain the time-domain contact line multiples Contribution gathers m y (x r ,y r ,x s ,y s ,y k ,t).
e、对联络测线多次波贡献道集作抛物Radon变换,参数设置中参考最大偏移距为2000m,最小时差为200,最大时差为1000。将抛物Radon变换的结果与未作抛物Radon变换的联络测线多次波贡献道集内积。e. Perform parabolic Radon transformation on the multiple wave contribution gathers of the tie line. In the parameter setting, the reference maximum offset distance is 2000m, the minimum time difference is 200, and the maximum time difference is 1000. The inner product of the parabolic Radon transform results and the multiple contribution gathers of the tie-line without parabolic Radon transform.
myradon(xr,yr,xs,ys,yk,t)=Radon(my(xr,yr,xs,ys,yk,t))m yradon (x r ,y r ,x s ,y s ,y k ,t)=Radon(m y (x r ,y r ,x s ,y s ,y k ,t))
myradon(xr,yr,xs,ys,yk,t)为Radon变换后的结果,md(xr,yr,xs,ys,yk,t)为m yradon (x r ,y r ,x s ,y s ,y k ,t) is the result of Radon transformation, m d (x r ,y r ,x s ,y s ,y k ,t) is
内积的结果。The result of the inner product.
f、利用matlab平台下findpeaks通过阈值限制对比振幅值拾取局部极大值,获取双曲线顶点坐标(表1),其中振幅阈值设置为0.01。f. Use findpeaks under the matlab platform to pick the local maximum value through the threshold limit contrast amplitude value, and obtain the hyperbolic vertex coordinates (Table 1), where the amplitude threshold is set to 0.01.
[xm,tm]=findpeaks(md(xr,yr,xs,ys,yk,t))[x m ,t m ]=findpeaks(m d (x r ,y r ,x s ,y s ,y k ,t))
[xm,tm]为同相轴顶点的横向坐标组成的矩阵。[x m , t m ] is a matrix composed of the lateral coordinates of the event axis vertices.
g、对所有同相轴顶点坐标进行统计,选取出现频率最高的3个,分别为x=-500、-300、0,作为路径叠加的顶点。g. Count the coordinates of all the vertices of the event axis, and select the three with the highest frequency, which are x=-500, -300, and 0, respectively, as the vertices of the path superposition.
为路径叠加的顶点,i=1,2,3...。 Vertices for path stacking, i=1, 2, 3....
h、分别选取路径叠加的3个顶点的x1=-500,x2=-300,x3=0作为Radon变换的偏移距(offset),进行Radon变换,将Radon变换的结果叠加得到3个预测的多次波(图9b,c,d),对比tmax(i)的大小找到时间方向的不同区间 h. Select x 1 =-500, x 2 =-300, and x 3 =0 of the three vertices of the superimposed path respectively as the offset of Radon transformation, perform Radon transformation, and superimpose the results of Radon transformation to obtain 3 Predicted multiples (Fig. 9b, c, d), compare the size of t max(i) to find different intervals in the time direction
my(i)(xr,yr,xs,ys,yk,t)=Radon(xmax(i))(my(xr,yr,xs,ys,yk,t))m y(i) (x r ,y r ,x s ,y s ,y k ,t)=Radon (xmax(i)) (m y (x r ,y r ,x s ,y s ,y k , t))
i、在不同区间中,选取上述3个预测的多次波中振幅较大的部分组成最终的多次波预测结果,可发现最终预测结果(图9e)相比于设置不同偏移距预测结果均好,预测到达时间准确,具有高精度高分辨率的优点。i, in different intervals In the above three predicted multiples, the larger amplitude part is selected to form the final multiple prediction result. It can be found that the final prediction result (Fig. 9e) is better than the prediction results with different offsets, and the prediction reaches The time is accurate, and it has the advantages of high precision and high resolution.
j、从原始数据(图9f)中时间域匹配减去,得到不含多次波的地震数据(图9g),多次波得到有效压制。j. Subtract the time domain matching from the original data (Fig. 9f) to obtain seismic data without multiples (Fig. 9g), and the multiples are effectively suppressed.
表1局部极大值获取双曲线顶点坐标表Table 1. Local maximum value to obtain hyperbolic vertex coordinate table
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010155980.8A CN111239828B (en) | 2020-03-09 | 2020-03-09 | Multiple Suppression Method Based on Optimal Hyperbolic Integral Path Superposition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010155980.8A CN111239828B (en) | 2020-03-09 | 2020-03-09 | Multiple Suppression Method Based on Optimal Hyperbolic Integral Path Superposition |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111239828A true CN111239828A (en) | 2020-06-05 |
CN111239828B CN111239828B (en) | 2021-07-30 |
Family
ID=70865941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010155980.8A Expired - Fee Related CN111239828B (en) | 2020-03-09 | 2020-03-09 | Multiple Suppression Method Based on Optimal Hyperbolic Integral Path Superposition |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111239828B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112462425A (en) * | 2020-10-28 | 2021-03-09 | 中国石油天然气集团有限公司 | Method and device for identifying cross interference source in mixed data of submarine nodes |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103869364A (en) * | 2014-03-25 | 2014-06-18 | 中国石油大学(华东) | Multiple wave suppression method based on dual parabolic Radon transformation |
WO2015144453A1 (en) * | 2014-03-24 | 2015-10-01 | Statoil Petroleum As | Removal of sea surface effects from seismic data |
US20170269247A1 (en) * | 2013-10-22 | 2017-09-21 | Cgg Services Sas | Demultiple using up/down separation of towed variable-depth streamer data |
CN107678062A (en) * | 2017-09-15 | 2018-02-09 | 上海海洋大学 | The integrated forecasting deconvolution of hyperbolic Radon domains and feedback loop methodology multiple suppression model building method |
CN109031421A (en) * | 2018-06-05 | 2018-12-18 | 广州海洋地质调查局 | A kind of stack velocity spectrum pick-up method and processing terminal based on deeply study |
CN109633752A (en) * | 2019-01-04 | 2019-04-16 | 吉林大学 | The adaptive ghost reflection drawing method of marine streamer data based on three-dimensional quickly Radon transformation |
CN110456417A (en) * | 2019-08-23 | 2019-11-15 | 中国海洋石油集团有限公司 | A kind of seismic data multiple wave drawing method |
-
2020
- 2020-03-09 CN CN202010155980.8A patent/CN111239828B/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170269247A1 (en) * | 2013-10-22 | 2017-09-21 | Cgg Services Sas | Demultiple using up/down separation of towed variable-depth streamer data |
WO2015144453A1 (en) * | 2014-03-24 | 2015-10-01 | Statoil Petroleum As | Removal of sea surface effects from seismic data |
CN103869364A (en) * | 2014-03-25 | 2014-06-18 | 中国石油大学(华东) | Multiple wave suppression method based on dual parabolic Radon transformation |
CN107678062A (en) * | 2017-09-15 | 2018-02-09 | 上海海洋大学 | The integrated forecasting deconvolution of hyperbolic Radon domains and feedback loop methodology multiple suppression model building method |
CN109031421A (en) * | 2018-06-05 | 2018-12-18 | 广州海洋地质调查局 | A kind of stack velocity spectrum pick-up method and processing terminal based on deeply study |
CN109633752A (en) * | 2019-01-04 | 2019-04-16 | 吉林大学 | The adaptive ghost reflection drawing method of marine streamer data based on three-dimensional quickly Radon transformation |
CN110456417A (en) * | 2019-08-23 | 2019-11-15 | 中国海洋石油集团有限公司 | A kind of seismic data multiple wave drawing method |
Non-Patent Citations (2)
Title |
---|
孙宇 等: "线性 Radon 域地震干涉层间多次波预测方法", 《世界地质》 * |
贾春梅 等: "频域稀疏双曲Radon变换去噪方法", 《物探与化探》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112462425A (en) * | 2020-10-28 | 2021-03-09 | 中国石油天然气集团有限公司 | Method and device for identifying cross interference source in mixed data of submarine nodes |
Also Published As
Publication number | Publication date |
---|---|
CN111239828B (en) | 2021-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9625593B2 (en) | Seismic data processing | |
CN108873066B (en) | Elastic medium wave equation reflected wave travel time inversion method | |
CN110780348B (en) | Combined imaging method and system of primary and multiple waves based on stereo imaging conditions | |
CN102298156B (en) | For the method and apparatus of deghosting geological data | |
CN100501449C (en) | A Seismic Data Splitting and Processing Method | |
CN106932824B (en) | The adaptive interlayer multiple suppression method of dimensionality reduction of land seismic prospecting data | |
US20120275267A1 (en) | Seismic Data Processing | |
CN103926622B (en) | Method for suppressing multiple waves based on L1 norm multichannel matched filtering | |
CN104914466B (en) | A kind of method for improving seismic data resolution | |
CN110187382B (en) | Traveling time inversion method for wave equation of reverse wave and reflected wave | |
US20140078860A1 (en) | Interference noise attenuation method and apparatus | |
CN110456417B (en) | Seismic data multiple suppression method | |
CN111856577B (en) | A Method for Reducing the Calculation of Surface Offset Gathers of Reverse Time Migration | |
CN111239827B (en) | Multiple Suppression Method for 3D Seismic Data Based on Local Similarity Coefficient | |
CN109557582B (en) | A kind of two dimension multi-component seismic data offset imaging method and system | |
CN107678062A (en) | The integrated forecasting deconvolution of hyperbolic Radon domains and feedback loop methodology multiple suppression model building method | |
CN102590862A (en) | Prestack time migration method for compensating absorptive attenuation | |
RU2570827C2 (en) | Hybrid method for full-waveform inversion using simultaneous and sequential source method | |
CN115755178A (en) | Time domain full waveform inversion method based on integral seismic wavelet | |
CN113687417A (en) | An Interlayer Multiple Prediction and Suppression Method for 3D Prestack Seismic Data | |
CN110967734B (en) | Virtual source reconstruction method and system based on fast Fourier transform | |
CN111239828A (en) | Multiple suppression method based on optimal hyperbolic integral path superposition | |
CN117388920A (en) | A near-offset data reconstruction method based on iterative seismic interferometry | |
Huff et al. | Near offset reconstruction for marine seismic data using a convolutional neural network | |
CN116381779A (en) | An Ultra-relaxed Iterative Prestack Migration Imaging Method Based on Thin Plate Approximation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20210730 |
|
CF01 | Termination of patent right due to non-payment of annual fee |