CN111239438A - 光纤光栅加速度传感器 - Google Patents

光纤光栅加速度传感器 Download PDF

Info

Publication number
CN111239438A
CN111239438A CN202010112019.0A CN202010112019A CN111239438A CN 111239438 A CN111239438 A CN 111239438A CN 202010112019 A CN202010112019 A CN 202010112019A CN 111239438 A CN111239438 A CN 111239438A
Authority
CN
China
Prior art keywords
arm
grating
measuring device
fiber
acceleration sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010112019.0A
Other languages
English (en)
Inventor
张华�
胡宾鑫
宋广东
朱峰
王纪强
刘统玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laser Institute of Shandong Academy of Science
Original Assignee
Laser Institute of Shandong Academy of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laser Institute of Shandong Academy of Science filed Critical Laser Institute of Shandong Academy of Science
Priority to CN202010112019.0A priority Critical patent/CN111239438A/zh
Publication of CN111239438A publication Critical patent/CN111239438A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/03Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses by using non-electrical means
    • G01P15/032Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses by using non-electrical means by measuring the displacement of a movable inertial mass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明公开一种光纤光栅加速度传感器,包括壳体,设置在壳体内部的传感组件,以及,计算单元;传感组件包括:与壳体底部连接的板簧;与板簧顶部连接的质量块;梁体,梁体包括第一臂和第二臂,第一臂和第二臂通过转动件连接,转动件固定在壳体的侧壁,第二臂远离转动件的一端与质量块的顶部连接;悬置在梁体上方的光纤测量装置,光纤测量装置包括光栅测量装置,以及分别与光栅测量装置和计算单元连接的光纤,计算单元根据光栅测量装置的光参量的漂移量,计算被测结构的加速度。本发明中光纤是悬置在壳体内,不会出现光栅啁啾现象或反射波多峰现象,抗横向振动干扰,频带宽,具有较高的灵敏度和频率响应范围,提高了单一方向振动加速度的测量精度。

Description

光纤光栅加速度传感器
技术领域
本发明涉及振动监测技术领域,尤其涉及一种光纤光栅加速度传感器。
背景技术
对于一些环境复杂的大型地质结构,比如隧道和矿山等,需要定期进行振动监测,预先将用于测量振动参数的传感器埋设在地质结构内部,当地质结构中产生地震波时,地震波传递到传感器中,传感器即可测量振动参数,从而发现地质结构中潜伏的地震活动,达到预警和防灾的目的。
加速度是常规的振动参数之一,用于反映地震波的冲击力,目前多采用光纤光栅加速度传感器来测量加速度,光纤光栅具有抗电磁干扰、防爆和耐高温等优点,可以适应于地质结构的复杂和恶劣环境,当埋设在地质结构内部的光纤光栅加速度传感器检测到振动信号时,光纤光栅的光参量会发生相应的变化,通过解调光参量的变化,即可获取大型结构工程振动的加速度。
图1示出一种光纤光栅加速度传感器的结构,光纤光栅101粘贴于悬臂梁201的固定端(Fi)的表面上,悬臂梁201的自由端(Fr)与质量块结构301柔性连接,质量块结构301的振动使悬臂梁201发生弯曲,从而使光纤光栅101的中心波长发生漂移,通过检测中心波长的漂移量即可计算地质结构振动的加速度。但是由于光纤光栅101是直接粘贴在悬臂梁201上,悬臂梁201的力学特性会导致光纤光栅101的栅格周期沿轴向变化,即出现光栅啁啾现象,从而导致测量结果不准确。
发明内容
本发明提供一种光纤光栅加速度传感器,以解决加速度测量准确性低的问题。
第一方面,本发明提供的一种光纤光栅加速度传感器,包括:壳体,设置在所述壳体内部的传感组件,以及,计算单元;所述传感组件包括:
与所述壳体底部连接的板簧,所述板簧为至少一层弹簧钢叠加而成的板状弹性件;
与所述板簧顶部连接的质量块;
梁体,所述梁体包括第一臂和第二臂,所述第一臂和所述第二臂通过转动件连接,所述转动件固定在所述壳体的侧壁,所述第二臂远离转动件的一端与所述质量块的顶部连接;
悬置在梁体上方的光纤测量装置,所述光纤测量装置包括光栅测量装置,以及,分别与所述光栅测量装置和所述计算单元连接的光纤。
所述计算单元用于根据所述光栅测量装置的光参量的漂移量,计算被测结构的加速度。
第一方面中,将传感器放置于被测结构中,当被测结构受到外界振动时,传感器随被测结构一并振动,使得质量块受到惯性力而发生振动,驱动梁体中的第一臂绕转动件产生一定的角位移,从而使光栅测量装置因受到拉伸而产生形变,这样光栅的光参量就会产生漂移,通过光参量的漂移量可以解调出被测结构的加速度。本发明中光纤光栅是悬置在壳体内,不会出现光栅啁啾现象或反射波多峰现象,第二臂与板簧通过质量块连接,板簧是具有相对较大尺寸和刚度弹性件,可以降低质量块受到的横向振动干扰,并且板簧中的干扰振动经质量块衰减后,再传递至第二臂,使得第二臂所受的横向振动干扰被大幅度降低,提高了单一方向上振动加速度的测量精度,频带宽,并具有较高的灵敏度和频率响应范围。
第二方面,本发明提供的一种光纤光栅加速度传感器,包括:壳体,设置在所述壳体内部的传感组件,以及,计算单元;所述传感组件包括:
与所述壳体底部连接的板簧,所述板簧为至少一层弹簧钢叠加而成的板状弹性件;
梁体,所述梁体包括第一臂和第二臂,所述第一臂和所述第二臂通过转动件连接,所述转动件固定在所述壳体的侧壁,所述第二臂与所述板簧的顶部连接,所述板簧和所述第一臂的长度都所述小于所述第二臂的长度;
悬置在梁体上方的光纤测量装置,所述光纤测量装置包括光栅测量装置,以及,分别与所述光栅测量装置和所述计算单元连接的光纤。
所述计算单元用于根据所述光栅测量装置的光参量的漂移量,计算被测结构的加速度。
第二方面中,第二臂为长臂,在长臂底部连接有板簧,板簧具有较大的尺寸和刚度,能够为第二臂提供更稳定的支撑,并降低第二臂振动中的横向振动干扰,从而提高单一方向上振动加速度的测量精度,频带宽,并具有较高的灵敏度和频率响应范围。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有的一种光纤光栅加速度传感器的结构示意图;
图2为本发明实施例一示出的光纤光栅加速度传感器的结构示意图;
图3为实施例一所示传感器的等效受力模型;
图4为本发明实施例二示出的光纤光栅加速度传感器的结构示意图;
图5为实施例二所示传感器的等效受力模型。
图中,1-壳体;2-传感组件,21-板簧,22-质量块,23-梁体,231-第一臂,232-第二臂,233-转动件,24-光纤测量装置,241-光栅测量装置,242-光纤,25-螺栓;3-计算单元。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图2所示,本发明实施例一提供的光纤光栅加速度传感器可埋设在被测结构的内部,用于测量被测结构的加速度参量,所述传感器整体上包括壳体1、计算单元3以及设置在所述壳体1内部的传感组件2。其中,壳体1用于对传感组件2进行封装,传感组件2用于将被测结构的震动转化为光栅应变的变化,进一步,产生应变的光栅的光参量也会发生变化。所述光参量可以是波长、频率、相位或偏振等。光栅的种类不同,对应变敏感的光参量也可能不同,具体的光栅,例如,可以选择光纤布拉格光栅(Fiber BraggGrat ing,FBG)。计算单元3可以为外置的光信号解调设备,用于对检测到的光参量进行解调,从而得到被测结构的加速度。
图2中,所述传感组件2包括与壳体1的底部固定连接的板簧21、与板簧21的顶部连接的梁体23,以及与梁体23连接的光纤测量装置24,光纤测量装置24悬置在梁体23的上方。
光纤测量装置24包括光参量在被测结构振动时发生变化的光栅测量装置241,以及,分别与光栅测量装置241和计算单元3连接的光纤242。其中,光栅测量装置241可以采用专门用于测量加速度的光栅,在其他可能的实现方式中,采用将光栅直接刻入光纤242纤芯内的方式,而形成光栅测量装置241。
梁体23包括第一臂231和第二臂232,第一臂231和第二臂232通过转动件233连接,转动件233固定在壳体1的侧壁,第一臂231的A端与光栅测量装置241连接;如果采用光栅刻入光纤242的方式,则第一臂231的A端直接与光纤242连接,这种情况下,光纤242和光栅具有相同的形变量。梁体23采用L形梁,第二臂232与光纤测量装置24平行。若要提高第二臂232振动的惯性,还可在第二臂232的B端附加连接质量块22。
壳体1、板簧21和第二臂232可选择通过螺栓25连接为一体,使壳体1、板簧21和梁体23构成了z方向上的振动感知-传递结构,振动感知-传递结构以板簧21为支撑基础,通过螺栓25使振动感知-传递结构实现刚性连接,避免受外界振动时振动感知-传递结构产生非z方向上的位移,提高了加速度的测量精度,还能保证结构的稳定性,另外,这种螺栓连接的方式便于零部件的拆卸和更换。壳体1、板簧21和第二臂232之间不限于采用螺栓连接,还可以采用其他的刚性连接方式,比如,板簧21与壳体1的底部焊接,第二臂232与板簧21的顶部焊接。
申请人在实际应用中发现,当利用普通弹簧来支撑第二臂232时,由于弹簧的尺寸和弹性刚度都较小,会导致弹簧对第二臂232的支撑不够稳定,并且弹簧对振动非常敏感,当被测结构的振动传递到壳体1,然后经过弹簧传递到第二臂232时,会导致第二臂232和质量块22不仅沿z方向上下振动,还会在水平面内出现横向振动干扰,即质量块22不仅仅在z方向上产生位移Δx1,还会因横向振动干扰而产生横向位移Δxh,导致光栅测量装置241的应变是Δx1和Δxh共同作用的结果,光栅测量装置241产生应变会使得其光参量发生变化,由此光参量解调出的加速度与z方向振动实际产生的加速度之间就会出现偏差,导致z方向上振动的加速度计算不准确。
对此,本实施例中采用板簧21来支撑第二臂232,板簧21也称板弹簧,是由至少一层弹簧钢叠加组合而成的板状弹性件,板簧21可以设置较大的长宽度,并且具有较大的弹性刚度,板簧21对第二臂232的支撑更加稳定,并且抗横向振动干扰能力强。由于板簧21与第二臂232直接连接,应使板簧21的长度Lbh小于第二臂232的长度L2,以消除板簧21对转动件233的运行阻碍,保证转动件233能够在第二臂232振动驱动下,自然带动第一臂231的转动,保证光栅的应变与实际振动相符合,进而保证光栅测量装置241测量的准确性。
板簧21的长度Lbh优选为第二臂232的长度L2的4/5,即预留了0.2比例的长度差,这种设计既能保证转动件233灵活运转,还使板簧21与第二臂232具有较大的接触面积,从而能更大化地降低干扰振动的影响。板簧21可设置在第二臂232底部的任意位置,比如设置在第二臂232底部靠近质量块22的位置。作为本实施例的优选,板簧21设置在第二臂232底部的中央,这种设置可以使得板簧21能够更稳定的支撑第二臂232,板簧21对振动的传递更加均衡,从而进一步降低第二臂232和质量块22所受到的横向振动干扰,提高z方向上振动的加速度测量的准确性。实施例一中,第二臂232的长度L2为转动件233的轴心C与质量块22(B端)的距离。
当被测结构所在的环境中出现震动时,传感器会受到被测结构的作用力,作用力依次经壳体1和板簧21传递到第二臂232上,第二臂232具有一定的质量,第二臂232由于惯性而发生振动,第二臂232的振动会驱动第一臂231绕转动件233产生一定的角位移,使光栅测量装置241因受到拉伸而产生应变,进而使光栅测量装置241的光参量产生漂移,计算单元3根据光参量的漂移量可以解调出被测结构的加速度。
其中,转动件233可采用轴承和转轴等部件,本实施例中优选轴承,轴承用于连接和支撑机械旋转体(即梁体23),能降低第一臂231转动过程中的摩擦系数,并保证第一臂231的回转精度,提高了梁体23的机械灵敏性,并且有利于降低振动在传递过程中的损耗,进而提高传感器的测量精度。
图3展示了实施例一所述传感器的等效受力模型,第二臂232产生位移为Δx1,光栅测量装置中光栅产生位移为Δx2,L1为第一臂231的长度,L2为第二臂232的长度,第一臂231的长度L1小于第二臂232的长度L2,即第一臂231为短臂,第二臂232为长臂,这种设计可以使第二臂232产生位移Δx1小于光栅产生位移Δx2,即减小了光栅测量装置241受拉伸而产生的形变,相当于进行了信号缩小处理,这样传感器就可埋设在受振动比较强烈的被测结构内部,比如铁路、隧道等,从而对光栅测量装置241中的光栅的形变量进行限制。避免光栅因过度拉伸或弯折而断裂。
如图4所示,本发明实施例二提供的光纤光栅加速度传感器整体上包括壳体1、计算单元3以及设置在所述壳体1内部的传感组件2。其中,壳体1用于对传感组件2进行封装,传感组件2用于将被测结构的振动转化为光栅应变的变化,产生应变的光栅的光参量会发生变化。所述光参量可以是波长、频率、相位或偏振等。光栅的种类不同,对应变敏感的光参量可能不同,光栅可选择光纤布拉格光栅(Fiber Bragg Grating,FBG)。计算单元3可以为外置的解调设备,用于对检测到的光参量进行解调,从而得到被测结构的加速度。
图4中,所述传感组件2包括与壳体1的底部连接的板簧21、与板簧21的顶部连接的质量块22、与质量块22的顶部连接的梁体23,以及与梁体23连接的光纤测量装置24,光纤测量装置24悬置在梁体23的上方。
光纤测量装置24包括光参量在被测结构振动时发生变化的光栅测量装置241,以及,分别与光栅测量装置241和计算单元3连接的光纤242。在其他可能的实现方式中,采用将光栅刻入光纤242纤芯内的方式。梁体23包括第一臂231和第二臂232,第一臂231和第二臂232通过转动件233连接,转动件233固定在壳体1的侧壁,第二臂232远离转动件233的一端(即B端)与质量块22的顶部连接,第一臂231的A端与光栅测量装置241连接;如果采用光栅刻入光纤242的方式,则第一臂231的A端直接与光纤242连接,这种情况下光纤242和光栅具有相同的形变量。
壳体1、板簧21、质量块22和第二臂232可选择通过螺栓25连接为一体,使壳体1、板簧21、质量块22和梁体23构成了z方向上的振动感知-传递结构,振动感知-传递结构以板簧21为支撑基础,通过螺栓25使振动感知-传递结构实现刚性连接,避免受外界振动时振动感知-传递结构产生非z方向上的位移,提高了加速度的测量精度,还能保证结构的稳定性,另外,这种螺栓连接的方式便于零部件的拆卸和更换。壳体1、板簧21、质量块22和第二臂232不限于采用螺栓连接,还可以采用其他刚性连接的方式,比如,板簧21与壳体1的底部焊接,质量块22与板簧21的顶部焊接,第二臂232远离转动件233的一端(即B端)与质量块22的顶部焊接。
板簧21、质量块22和第二臂232是沿z方向从下至上依次连接,埋设在被测结构内部的传感器受力后,板簧21-质量块22结构产生振动(谐振),板簧21抗具备横向振动干扰的特性,使得与板簧21直接相连的质量块22所受横向振动干扰被降低,质量块22近乎沿z方向上下振动,相较于实施例一中板簧21与第二臂232直接相连的结构,实施例二中板簧21剩余的横向振动传递到质量块22后,会产生一定程度的衰减,这样质量块22再将振动传递至第二臂232时,第二臂232所受的横向振动干扰就被进一步降低,即横向振动干扰从下至上逐渐衰减,光栅的应变近似为质量块22在z方向上的位移Δx1作用的结果,从而提高z方向加速度测量的准确性和可靠性,同时板簧21还能提高传感器的灵敏度和频率响应范围。
由于第二臂232和板簧21通过质量块22连接,板簧21不会影响转动件233的运转,因此板簧21的尺寸可以不作具体限定,板簧21尺寸越大,其刚度越大且支撑性能越稳定,那么其抗横向振动干扰的能力也越强,板簧21的长度小于或等于壳体1的长度,板簧21的宽度小于或等于壳体1的宽度,板簧21的高度取决于叠加的弹簧钢的层数,板簧21的高度小于壳体1的高度,壳体1的长度和宽度是壳体1的内部尺寸,即是外部尺寸减去壳体1的厚度。
实施例二中优选地,板簧21的宽度等于壳体1的宽度,板簧21的长度等于壳体1的长度,相当于利用壳体1对板簧21进行限位,使得板簧21真正只能在z方向上振动,进而限制了板簧21、质量块22和第二臂232活动的自由度,这种尺寸设计可以完全消除质量块22受到的横向干扰,从而进一步降低加速度的测量偏差,提高传感器在单一方向上振动的加速度的测量精度。
转动件233可以采用轴承和转轴等部件,本实施例中优选轴承,轴承用于连接和支撑机械旋转体(即梁体23),能降低第一臂231转动过程中的摩擦系数,并保证第一臂231的回转精度,提高了梁体23的机械灵敏性,并且有利于降低振动在传递过程中的损耗,进而提高传感器的测量精度。
梁体23采用L形梁,使得梁体23相当于杠杆机构,转动件233相当于杠杆支点,从而在壳体1的内部建立起动力平衡机构,进行振动的传递,如图4所示,第二臂232与质量块22为垂直连接,使得第二臂232保持为水平状态,即第二臂232为固定臂,这样第二臂232会随质量块22受到z方向上的振动,振动的惯性力可以作为转动件233的驱动力,使得转动件233驱动第一臂231产生一定的角位移,即第一臂231为动力臂,从而拉伸光栅测量装置241,当光纤测量装置24沿与第二臂232平行的方向悬置时,光栅测量装置241中的光栅出现水平方向上的形变,即图4中光栅是向左产生拉应变,从而将质量块22在z方向上的位移Δx1转换为光栅在水平方向上的位移Δx2,Δx2使得光栅测量装置241光参量发生漂移,通过对光参量进行解调,即可获得被测结构的加速度。
图5为图4所示传感器结构的等效受力模型,设板簧21的弹性系数为k1,光纤242的弹性模量为E2,光纤242的横向面积为A2,光纤242的固定点A和M之间的长度为L,则光纤242的弹性系数k2=E2·A2/L,传感器所受合力为F,质量块22在z方向上的位移为Δx1,则系统的总刚度k为k=F/Δx1,合力F可以分解为作用于板簧21的分量F1以及质量块22作用于第二臂232的分量F2,分量F1使板簧21和质量块22产生位移Δx1,第二臂232受到质量块22传递的F2后,通过L形梁的作用,在光纤242中产生FT,FT使光栅测量装置241产生位移Δx2,即FT为F2的分量,由于光栅测量装置241和质量块22的位移较小,因此认为F1和FT始终垂直于作用线,则有:
F1=k1Δx1 (1)
FT=k2Δx2 (2)
根据杠杆原理和L形梁的几何特性,可得:
F2L2=FTL1 (3)
Figure BDA0002390349750000061
其中,L1为第一臂231的长度,L2为第二臂232的长度,第二臂232的长度L2为转动件233的轴心C与质量块22中轴线LC在x方向上的距离,第二臂232的长度L2大于零,因此质量块22与转动件233之间具有x方向上的间距,质量块22不会影响转动件233的运转,继续计算得到:
Figure BDA0002390349750000062
Figure BDA0002390349750000063
由公式(5)可知,当第一臂231的长度L1大于第二臂232的长度L2,即第一臂231为长臂,第二臂232为短臂时,L形梁可以起到放大信号的作用,从而提高传感器的测量精度。合力F=F1+F2,则可以得到:
Figure BDA0002390349750000064
通过公式(7)可得传感器的总刚度k为:
Figure BDA0002390349750000065
由公式(8)可知,传感器的总刚度k与板簧21和光纤242的弹性系数,以及L形梁的臂长有关。本实施例中,光栅测量装置241中的光栅选择光纤布拉格光栅(Fiber BraggGrating,FBG),在不考虑温度影响的情况下,光纤布拉格光栅的中心波长与应变具有线性关系,设光纤布拉格光栅的应变为ε,板簧21的偏移量为ρ,ρ=F/k=ma/k,m质量块22的质量,单位为Kg,a为被测结构的加速度,则有:
Figure BDA0002390349750000066
光栅布拉格光栅的应变传感特性为:
Figure BDA0002390349750000067
其中,Δλ为光栅测量装置241的波长漂移量,λB为光栅测量装置241的初始波长,Pe为光纤242的有效弹光系数,Pe一般取值为0.22,则得到被测结构的加速度a与波长漂移量Δλ的关系为:
Figure BDA0002390349750000068
计算单元3接收光栅测量装置241的检测信号后,可以通过公式(11),根据波长漂移量Δλ,计算出被测结构的加速度a,该加速度为z方向上振动信号对应的加速度。
传感器的灵敏度S为单位加速度上的波长漂移量,则灵敏度S如公式(12)所示:
Figure BDA0002390349750000071
传感器的谐振频率ωn如公式(13)所示:
Figure BDA0002390349750000072
本实施例中,第一臂231的长度L1大于第二臂232的长度L2,即第一臂231为长臂,第二臂232为短臂,传感器被埋设在受外界震动比较微弱的被测结构内部,比如应用于矿石结构的微震监测场景中,在发生微震活动的矿石结构内部埋设用于光纤光栅加速度传感器,由上述公式(5)可知,当第一臂231的长度L1大于第二臂232的长度L2时,L形梁可以起到放大信号的作用,从而在传感器内部对外界微弱的振动信号进行放大,并且由于实施例二的传感器消除了横向振动干扰,因此是将z方向上的振动信号放大,而不会将非z方向上的干扰振动信号放大,因此对于受微震作用的被测结构,也能提高单一方向上的振动加速度的精度测量。
由公式(12)和公式(13)可知,当第一臂231的长度L1大于第二臂232的长度L2时,还能增大传感器的灵敏度S和谐振频率ωn,从而进一步提高了传感器的性能。此外,本发明中光纤测量装置24是悬置在壳体1内,不会出现光栅啁啾现象或反射波多峰现象,并且具有很好的抗横向干扰能力,提高了单一方向上的振动加速度的测量精度。
实施例一和实施例二中相同的部分可相互参照。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本申请旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本发明未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由所附的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (10)

1.一种光纤光栅加速度传感器,其特征在于,包括:壳体(1),设置在所述壳体(1)内部的传感组件(2),以及,计算单元(3);所述传感组件(2)包括:
与所述壳体(1)底部连接的板簧(21),所述板簧(21)为至少一层弹簧钢叠加而成的板状弹性件;
与所述板簧(21)顶部连接的质量块(22);
梁体(23),所述梁体(23)包括第一臂(231)和第二臂(232),所述第一臂(231)和所述第二臂(232)通过转动件(233)连接,所述转动件(233)固定在所述壳体(1)的侧壁,所述第二臂(232)远离转动件(233)的一端与所述质量块(22)的顶部连接;
悬置在梁体(23)上方的光纤测量装置(24),所述光纤测量装置(24)包括光栅测量装置(241),以及,分别与所述光栅测量装置(241)和所述计算单元(3)连接的光纤(242);
所述计算单元(3)用于根据所述光栅测量装置(241)的光参量的漂移量,计算被测结构的加速度。
2.根据权利要求1所述的光纤光栅加速度传感器,其特征在于,所述第一臂(231)的长度大于所述第二臂(232)的长度。
3.根据权利要求1或2所述的光纤光栅加速度传感器,其特征在于,所述计算单元(3)按照如下关系计算被测结构的加速度:
Figure FDA0002390349740000011
式中,Δλ为所述光栅测量装置(241)的波长漂移量,λB为所述光栅测量装置(241)的初始中心波长,Pe为所述光纤(242)的有效弹光系数,m所述质量块(22)的质量,单位为Kg,k为所述光纤光栅加速度传感器的总刚度,a为被测结构的加速度,L1为所述第一臂(231)的长度,L2为所述第二臂(232)的长度;
所述光纤光栅加速度传感器的总刚度k为:
Figure FDA0002390349740000012
式中,k1为所述板簧(21)的弹性系数,k2为所述光纤(242)的弹性系数。
4.根据权利要求1所述的光纤光栅加速度传感器,其特征在于,所述梁体(23)采用L形梁,所述第二臂(232)与所述光纤测量装置(24)平行。
5.根据权利要求1所述的光纤光栅加速度传感器,其特征在于,所述转动件(233)采用轴承。
6.根据权利要求1所述的光纤光栅加速度传感器,其特征在于,所述板簧(21)的宽度等于所述壳体(1)的宽度,所述板簧(21)的长度等于所述壳体(1)的长度。
7.根据权利要求1所述的光纤光栅加速度传感器,其特征在于,所述壳体(1)、所述板簧(21)、所述质量块(22)和所述第二臂(232)通过螺栓(25)连接为一体。
8.一种光纤光栅加速度传感器,其特征在于,包括:壳体(1),设置在所述壳体(1)内部的传感组件(2),以及,计算单元(3);所述传感组件(2)包括:
与所述壳体(1)底部连接的板簧(21),所述板簧(21)为至少一层弹簧钢叠加而成的板状弹性件;
梁体(23),所述梁体(23)包括第一臂(231)和第二臂(232),所述第一臂(231)和所述第二臂(232)通过转动件(233)连接,所述转动件(233)固定在所述壳体(1)的侧壁,所述第二臂(232)与所述板簧(21)的顶部连接,所述板簧(21)和所述第一臂(231)的长度都小于所述第二臂(232)的长度;
悬置在梁体(23)上方的光纤测量装置(24),所述光纤测量装置(24)包括光栅测量装置(241),以及,分别与所述光栅测量装置(241)和所述计算单元(3)连接的光纤(242);
所述计算单元(3)用于根据所述光栅测量装置(241)的光参量的漂移量,计算被测结构的加速度。
9.根据权利要求1所述的光纤光栅加速度传感器,其特征在于,所述板簧(21)的长度为所述第二臂(232)的长度的4/5。
10.根据权利要求1所述的光纤光栅加速度传感器,其特征在于,所述板簧(21)设置在第二臂232底部的中央。
CN202010112019.0A 2020-02-24 2020-02-24 光纤光栅加速度传感器 Pending CN111239438A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010112019.0A CN111239438A (zh) 2020-02-24 2020-02-24 光纤光栅加速度传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010112019.0A CN111239438A (zh) 2020-02-24 2020-02-24 光纤光栅加速度传感器

Publications (1)

Publication Number Publication Date
CN111239438A true CN111239438A (zh) 2020-06-05

Family

ID=70873135

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010112019.0A Pending CN111239438A (zh) 2020-02-24 2020-02-24 光纤光栅加速度传感器

Country Status (1)

Country Link
CN (1) CN111239438A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113804281A (zh) * 2021-08-03 2021-12-17 西安理工大学 一种基于f-p光纤法珀传感原理的声波振动测量装置
CN114878858A (zh) * 2022-07-11 2022-08-09 之江实验室 基于多芯光纤光栅的建筑拉索摆动加速度测量装置及方法

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2812009Y (zh) * 2005-06-17 2006-08-30 上海紫珊光电技术有限公司 温度自补偿增敏光纤光栅加速度传感器
JP3999705B2 (ja) * 2003-06-05 2007-10-31 いであ株式会社 光振動センサ
CN101285846A (zh) * 2007-04-11 2008-10-15 中国科学院半导体研究所 基于悬臂梁挠度的光纤光栅加速度计
CN201203508Y (zh) * 2008-05-29 2009-03-04 同济大学 高灵敏度温度自补偿型光纤光栅加速度传感装置
US20090059727A1 (en) * 2002-10-07 2009-03-05 Vascular Imaging Corporation Systems and methods for minimally-invasive optical-acoustic imaging
KR20100113815A (ko) * 2009-04-14 2010-10-22 웰텍 주식회사 파이프라인 모니터링 시스템
CN102128952A (zh) * 2010-12-31 2011-07-20 南京航空航天大学 一种光纤光栅加速度传感器及其测试方法
CN103197099A (zh) * 2013-03-21 2013-07-10 电子科技大学 一种双悬臂梁光纤光栅加速度传感器
CN103743463A (zh) * 2013-12-31 2014-04-23 国网电力科学研究院武汉南瑞有限责任公司 一种用于液体介质的双光纤光栅振动传感器
CN104880243A (zh) * 2014-02-27 2015-09-02 同方威视技术股份有限公司 光纤光栅振动传感器
CN105651319A (zh) * 2016-01-05 2016-06-08 武汉理工大学 一种光纤光栅传感器施加恒定预应力的封装装置
CN106814216A (zh) * 2017-01-24 2017-06-09 武汉理工大学 一体式直圆型柔性铰链光纤光栅加速度传感器
CN107144705A (zh) * 2017-07-06 2017-09-08 山东省科学院激光研究所 一种光纤光栅加速度计
CN107478860A (zh) * 2017-08-31 2017-12-15 山东省科学院激光研究所 一种光纤光栅加速度传感器
CN207366071U (zh) * 2017-05-19 2018-05-15 中南大学 一种低频加速度传感器
US20180372566A1 (en) * 2017-06-27 2018-12-27 Fibos Optical sensor having pi-phase shifted bragg grating and optical sensing system using same
CN208780722U (zh) * 2018-07-04 2019-04-23 石家庄铁道大学 一种高灵敏度光纤光栅加速度传感器
CN110531109A (zh) * 2019-08-14 2019-12-03 武汉理工大学 一种小型弹性板结构的光纤光栅加速度传感器及其测量方法

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090059727A1 (en) * 2002-10-07 2009-03-05 Vascular Imaging Corporation Systems and methods for minimally-invasive optical-acoustic imaging
JP3999705B2 (ja) * 2003-06-05 2007-10-31 いであ株式会社 光振動センサ
CN2812009Y (zh) * 2005-06-17 2006-08-30 上海紫珊光电技术有限公司 温度自补偿增敏光纤光栅加速度传感器
CN101285846A (zh) * 2007-04-11 2008-10-15 中国科学院半导体研究所 基于悬臂梁挠度的光纤光栅加速度计
CN201203508Y (zh) * 2008-05-29 2009-03-04 同济大学 高灵敏度温度自补偿型光纤光栅加速度传感装置
KR20100113815A (ko) * 2009-04-14 2010-10-22 웰텍 주식회사 파이프라인 모니터링 시스템
CN102128952A (zh) * 2010-12-31 2011-07-20 南京航空航天大学 一种光纤光栅加速度传感器及其测试方法
CN103197099A (zh) * 2013-03-21 2013-07-10 电子科技大学 一种双悬臂梁光纤光栅加速度传感器
CN103743463A (zh) * 2013-12-31 2014-04-23 国网电力科学研究院武汉南瑞有限责任公司 一种用于液体介质的双光纤光栅振动传感器
CN104880243A (zh) * 2014-02-27 2015-09-02 同方威视技术股份有限公司 光纤光栅振动传感器
CN105651319A (zh) * 2016-01-05 2016-06-08 武汉理工大学 一种光纤光栅传感器施加恒定预应力的封装装置
CN106814216A (zh) * 2017-01-24 2017-06-09 武汉理工大学 一体式直圆型柔性铰链光纤光栅加速度传感器
CN207366071U (zh) * 2017-05-19 2018-05-15 中南大学 一种低频加速度传感器
US20180372566A1 (en) * 2017-06-27 2018-12-27 Fibos Optical sensor having pi-phase shifted bragg grating and optical sensing system using same
CN107144705A (zh) * 2017-07-06 2017-09-08 山东省科学院激光研究所 一种光纤光栅加速度计
CN107478860A (zh) * 2017-08-31 2017-12-15 山东省科学院激光研究所 一种光纤光栅加速度传感器
CN208780722U (zh) * 2018-07-04 2019-04-23 石家庄铁道大学 一种高灵敏度光纤光栅加速度传感器
CN110531109A (zh) * 2019-08-14 2019-12-03 武汉理工大学 一种小型弹性板结构的光纤光栅加速度传感器及其测量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
曾宇杰: "《基于L形刚性梁与弹性膜片结构的低频光纤光栅加速度传感器》", 《光学学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113804281A (zh) * 2021-08-03 2021-12-17 西安理工大学 一种基于f-p光纤法珀传感原理的声波振动测量装置
CN114878858A (zh) * 2022-07-11 2022-08-09 之江实验室 基于多芯光纤光栅的建筑拉索摆动加速度测量装置及方法
CN114878858B (zh) * 2022-07-11 2022-11-18 之江实验室 基于多芯光纤光栅的建筑拉索摆动加速度测量装置及方法

Similar Documents

Publication Publication Date Title
CA2535057C (en) Optical accelerometer, optical inclinometer and seismic sensor system using such accelerometer and inclinometer
US4893930A (en) Multiple axis, fiber optic interferometric seismic sensor
US7349591B2 (en) Pressure compensated optical accelerometer, optical inclinometer and seismic sensor system
US9176166B2 (en) Micro/nano multiaxial inertial sensor of movements
CA1129061A (en) Method and system for monitoring the angular deformation of structural elements
US20080307885A1 (en) Method and Apparatus for Precisely Measuring Wire Tension and Other Conditions, and High-Sensitivity Vibration Sensor Constructed in Accordance Therewith
JP2010175545A (ja) 高感度加速度計
JP2004528538A (ja) 高感度交差軸加速度計
US20100089157A1 (en) Micro-Machined Accelerometer
CN111239438A (zh) 光纤光栅加速度传感器
CN110672067A (zh) 一种光纤光栅倾角传感器
US7612886B2 (en) Fiber-optic seismic sensor
US20090323075A1 (en) Flexural disc fiber optic sensor
CN202285022U (zh) 双光纤光栅加速度计探头
CN116519113A (zh) 基于光纤光栅的待测物振动的测量方法及振动传感器
CN116609548B (zh) 一种可测倾角的三维光纤加速度传感器系统
US7661313B2 (en) Acceleration strain transducer
WO2018199786A1 (en) Measurement method of vibrations, especially of seismic type, and a device for the measurement of vibrations, especially of seismic type
JP4009390B2 (ja) ブラッグ格子型振動計
GB2592274A (en) Optical fiber grating acceleration sensor
NL2024979B1 (en) Optical fiber grating acceleration sensor
JP2014032054A (ja) 加速度センサ
KR101166182B1 (ko) 광섬유 센서를 이용한 경사계/가속도계
JPH0626852Y2 (ja) 加速度センサー
CN117928713B (zh) 一种基于光纤光栅的待测物振动测量方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination