CN111238583A - A method for detecting the flow rate of low-velocity gas extraction pipeline by using mixed air - Google Patents
A method for detecting the flow rate of low-velocity gas extraction pipeline by using mixed air Download PDFInfo
- Publication number
- CN111238583A CN111238583A CN201811441027.9A CN201811441027A CN111238583A CN 111238583 A CN111238583 A CN 111238583A CN 201811441027 A CN201811441027 A CN 201811441027A CN 111238583 A CN111238583 A CN 111238583A
- Authority
- CN
- China
- Prior art keywords
- nozzle
- air
- gas
- flow
- extraction pipeline
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000605 extraction Methods 0.000 title claims abstract description 95
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000005259 measurement Methods 0.000 claims abstract description 25
- 238000007789 sealing Methods 0.000 claims abstract description 23
- 238000001514 detection method Methods 0.000 claims abstract description 11
- 239000003570 air Substances 0.000 claims description 141
- 238000011144 upstream manufacturing Methods 0.000 claims description 9
- 239000007921 spray Substances 0.000 claims description 8
- 239000012080 ambient air Substances 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 239000000284 extract Substances 0.000 claims 1
- 238000005507 spraying Methods 0.000 claims 1
- 239000003245 coal Substances 0.000 abstract description 14
- 238000005553 drilling Methods 0.000 abstract description 7
- 230000009286 beneficial effect Effects 0.000 abstract description 4
- 230000002265 prevention Effects 0.000 abstract description 4
- 238000012360 testing method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
- G01F1/34—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
- G01F1/36—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
- G01F1/40—Details of construction of the flow constriction devices
- G01F1/42—Orifices or nozzles
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
技术领域technical field
本发明涉及煤矿瓦斯抽采技术领域,具体涉及一种采用掺混空气检测低流速瓦斯抽采管路流量的方法。The invention relates to the technical field of gas extraction in coal mines, in particular to a method for detecting the flow rate of a gas extraction pipeline with low flow velocity by using mixed air.
背景技术Background technique
瓦斯抽采是我国煤矿最重要的瓦斯防治措施之一。准确测定负压、浓度、流量、温度、湿度等瓦斯抽采管路参数,对于瓦斯抽采量的精准计量,抽采达标准确评判,保障煤矿安全等具有重要意义。经过多年发展,目前煤矿现场的仪器设备已经实现了对负压、浓度、温度、湿度等参数较为精准的测量,但是流量参数的检测却没有得到有效解决,仍然存在很大的问题。现阶段,煤矿井下瓦斯抽采管路流量检测主要采用孔板流量计、皮托管流量计、V锥流量计、涡街流量计等方法,普遍存在低流速条件下测量精度低、准确性差的问题,不能满足煤矿现场钻孔、钻场等小流量环境的瓦斯抽采流量计量的需要。因此,低流速瓦斯抽采管路流量参数的测量,一直是煤矿瓦斯抽采参数检测、计量方面的技术难题之一。Gas drainage is one of the most important gas control measures in my country's coal mines. Accurate measurement of gas extraction pipeline parameters such as negative pressure, concentration, flow rate, temperature, and humidity is of great significance for accurate measurement of gas extraction volume, accurate assessment of gas extraction standards, and protection of coal mine safety. After years of development, the instruments and equipment on the coal mine site have achieved relatively accurate measurement of parameters such as negative pressure, concentration, temperature, and humidity, but the detection of flow parameters has not been effectively solved, and there are still big problems. At present, the flow detection of underground gas drainage pipelines in coal mines mainly adopts orifice flowmeters, pitot tube flowmeters, V-cone flowmeters, vortex flowmeters and other methods. There are generally problems of low measurement accuracy and poor accuracy under low flow rate conditions. , it cannot meet the needs of gas drainage flow measurement in small-flow environments such as on-site drilling and drilling sites in coal mines. Therefore, the measurement of flow parameters of low-flow gas extraction pipelines has always been one of the technical difficulties in the detection and measurement of gas extraction parameters in coal mines.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于针对现有技术的缺陷和不足,提供一种采用掺混空气检测低流速瓦斯抽采管路流量的方法,通过向抽采管路中掺混一定量的空气,并检测掺混空气前后瓦斯浓度变化,实现低流速瓦斯抽采管路瓦斯流量的准确测量,对于煤矿瓦斯防治具有重要意义。The purpose of the present invention is to aim at the defects and deficiencies of the prior art, and to provide a method for detecting the flow rate of a low-velocity gas extraction pipeline by using mixed air. The change of gas concentration before and after mixing with air to achieve accurate measurement of gas flow in low-velocity gas extraction pipelines is of great significance for coal mine gas prevention and control.
为实现上述目的,本发明采用以下技术方案是:To achieve the above object, the present invention adopts the following technical solutions:
掺混空气检测低流速瓦斯抽采管路流量的测定装置,它包含主体1、喷嘴2、气帽3、喷嘴接头密封盖4、连接件5、法兰11、第二气嘴12、第一气嘴13、喷嘴接头14、第三气嘴15,所述主体1进气端、出气端均设置有法兰11,主体1自进气端向出气端依次设置有第二气嘴12、第一气嘴13、喷嘴接头14、第三气嘴15;A measuring device for detecting the flow rate of gas extraction pipelines with low flow rate by mixing air, it includes a main body 1, a
所述主体1的直径等于抽采管路的直径,且主体1进气端、出气端均与抽采管路通过法兰11连接;The diameter of the main body 1 is equal to the diameter of the extraction pipeline, and the inlet end and the gas outlet end of the main body 1 are connected to the extraction pipeline through the
所述第二气嘴12、第三气嘴15上均设置有气帽3;The
所述第一气嘴13与气压计连接;The
所述喷嘴接头14上设置有连接件5,连接件5包含喷嘴2或喷嘴接头密封盖4中的一种。The
所述喷嘴接头14与第一气嘴13间距不小于2倍的主体1内径,喷嘴接头14与第三气嘴15间距不小于4倍的主体1内径。The distance between the
所述喷嘴2为系列标准件。The
所述喷嘴接头14内壁设置有内螺纹。The inner wall of the
所述喷嘴2的外形结构为六棱柱与圆柱的组合形式,喷嘴2上部为短六棱柱,喷嘴2下部为圆柱,短六棱柱、圆柱二者同轴,中间为喷孔,圆柱外侧设置有螺纹。The shape structure of the
所述气帽3为橡胶帽。The
所述喷嘴接头密封盖4外形与喷嘴2相同,喷嘴接头密封盖4中间没有喷孔,且喷嘴接头密封盖4为实心结构、圆柱外侧设置有螺纹。The shape of the nozzle
掺混空气检测低流速瓦斯抽采管路流量的测定方法,它包含如下步骤:The method for measuring the flow rate of gas extraction pipelines with low flow velocity with mixed air includes the following steps:
步骤S1:在被测瓦斯抽采管路中安装掺混空气检测低流速瓦斯抽采管路流量的测定装置;Step S1: install a measuring device for mixing air in the gas extraction pipeline under test to detect the flow rate of the gas extraction pipeline with low flow velocity;
步骤S2:测定瓦斯抽采管路所处环境空气中的瓦斯浓度;Step S2: Measure the gas concentration in the ambient air where the gas extraction pipeline is located ;
步骤S3:将气压计与掺混空气检测低流速瓦斯抽采管路流量的测定装置的第一气嘴13连接,测定瓦斯抽采管路的工况负压;Step S3: Connect the barometer to the
步骤S4:选择合适型号的喷嘴2安装于掺混空气检测低流速瓦斯抽采管路流量的测定装置的喷嘴接头14上,向管路中喷射空气,并计算获得负压下喷嘴2的喷射流量,计算公式如下:Step S4: Select an appropriate type of
其中:为喷嘴2的流量系数,确定喷嘴2型号后为固定值;in: is the flow coefficient of
步骤S5:通过掺混空气检测低流速瓦斯抽采管路流量的测定装置的第二气嘴12采集瓦斯抽采管路中气体的气样,测定上游管路中未掺混空气的管道气体的瓦斯浓度;Step S5: Collect a gas sample of the gas in the gas extraction pipeline through the
步骤S6:通过掺混空气检测低流速瓦斯抽采管路流量的测定装置的第三气嘴15采集气样,测定下游管路中掺混空气后的管路气体的瓦斯浓度;Step S6: Collect gas samples through the
步骤S7:计算获得工况下瓦斯抽采管路中气体的混合流量:Step S7: Calculate and obtain the mixed flow of gas in the gas extraction pipeline under working conditions :
。 .
所述喷嘴2型号的选择是否合适,其判定方法为:喷嘴2对管路上游抽采负压的影响在±10%以内,认为喷嘴2型号合适,否则认为不合适。Whether the selection of the
本发明的工作原理:主体1进气端、出气端均设置有法兰11,主体1自进气端向出气端依次设置有第二气嘴12、第一气嘴13、喷嘴接头14、第三气嘴15;所述主体1的直径等于抽采管路的直径,且主体1进气端、出气端均与抽采管路通过法兰11连接;所述第二气嘴12、第三气嘴15上均设置有气帽3;第二气嘴12用于采集上游未掺混空气的抽采管路气样,测定未掺混空气的管路瓦斯浓度,第三气嘴15用于采集下游掺混空气后的抽采管路气样,测定掺混空气后管路瓦斯浓度,第二气嘴12、第三气嘴15上均设置有气帽3,在非瓦斯抽采管路流量测定期间封堵第二气嘴12、第三气嘴15;所述第一气嘴13与气压计连接;第一气嘴13与气压计连接测定管路抽采负压;所述喷嘴接头14上设置有连接件5,连接件5包含喷嘴2或喷嘴接头密封盖4中的一种。在瓦斯抽采管路流量测定过程中,喷嘴接头14上设置有喷嘴2,向主体1内部喷射空气,在主体1空间内实现空气与抽采管路瓦斯气体的掺混;在非瓦斯抽采管路流量测定期间,喷嘴接头14上设置有喷嘴接头密封盖4封堵喷嘴接头14,空气入口安装喷嘴2,提高了空气的掺混效率,缩短了掺混距离,确保了空气与管道气体的充分混合,保证了检测结果的准确性;喷嘴2采用系列标准件,根据喷嘴2的负压-流量关系快速计算获得掺混的空气流量,充分考虑了煤矿井下瓦斯抽采的复杂性和多变性,确保了该方法的便捷性和广泛适应性,能够用于不同条件下的低流速瓦斯抽采管路流量的准确测定。The working principle of the present invention: the main body 1 is provided with
采用上述技术方案后,本发明有益效果为:检测装置测量精度高、准确性好,通过向瓦斯抽采管道掺混一定量的空气,测定掺混空气前后瓦斯抽采管路中瓦斯浓度的变化情况,实现了低流速瓦斯抽采管路流量的准确测量,能够用于钻孔、钻场等抽采系统末端流量检测,有助于瓦斯抽采量的精准计量,提高瓦斯抽采达标评判的准确性,对于煤矿瓦斯防治具有重要意义。After the above technical scheme is adopted, the beneficial effects of the present invention are: the detection device has high measurement precision and good accuracy, and by mixing a certain amount of air into the gas extraction pipeline, the change of the gas concentration in the gas extraction pipeline before and after mixing with air is measured. It realizes the accurate measurement of the flow rate of the gas drainage pipeline at low flow rate, and can be used for the flow detection at the end of the drainage system such as drilling holes and drilling sites, which is helpful for the accurate measurement of the gas drainage amount and improves the evaluation of gas drainage compliance. Accuracy is of great significance for coal mine gas prevention and control.
提高了空气的掺混效率,缩短了掺混距离,确保了空气与管道气体的充分混合,保证了检测结果的准确性;充分考虑了煤矿井下瓦斯抽采的复杂性和多变性,确保了该方法的便捷性和广泛适应性,能够用于不同条件下的低流速瓦斯抽采管路流量的准确测定。The air mixing efficiency is improved, the mixing distance is shortened, the air and the pipeline gas are fully mixed, and the accuracy of the detection results is ensured; The convenience and wide adaptability of the method can be used to accurately measure the flow rate of gas drainage pipelines with low flow velocity under different conditions.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention, and for those of ordinary skill in the art, other drawings can also be obtained from these drawings without any creative effort.
图1是本发明的结构示意图;Fig. 1 is the structural representation of the present invention;
图2是本发明中喷嘴2的结构示意图;Fig. 2 is the structural representation of
图3是对应图2的俯视图;Fig. 3 is the top view corresponding to Fig. 2;
图4是本发明中气帽3的结构示意图;Fig. 4 is the structural representation of
图5是对应图4的俯视图;Fig. 5 is the top view corresponding to Fig. 4;
图6是本发明中喷嘴接头密封盖4的结构示意图;6 is a schematic structural diagram of the nozzle
图7是对应图6的俯视图;Fig. 7 is the top view corresponding to Fig. 6;
图8是本发明中连接件5的结构示意图;Fig. 8 is the structural representation of the
图9是本发明的步骤示意框图。FIG. 9 is a schematic block diagram of the steps of the present invention.
附图标记说明:主体1、喷嘴2、气帽3、喷嘴接头密封盖4、连接件5、法兰11、第二气嘴12、第一气嘴13、喷嘴接头14、第三气嘴15。Description of reference numerals: main body 1,
具体实施方式Detailed ways
参看图1-图9所示,本具体实施方式采用的技术方案是:1-9, the technical solution adopted in this specific embodiment is:
掺混空气检测低流速瓦斯抽采管路流量的测定装置,它包含主体1、喷嘴2、气帽3、喷嘴接头密封盖4、连接件5、法兰11、第二气嘴12、第一气嘴13、喷嘴接头14、第三气嘴15,所述主体1进气端、出气端均设置有法兰11,主体1自进气端向出气端依次设置有第二气嘴12、第一气嘴13、喷嘴接头14、第三气嘴15;A measuring device for detecting the flow rate of gas extraction pipelines with low flow rate by mixing air, it includes a main body 1, a
所述主体1的直径等于抽采管路的直径,且主体1进气端、出气端均与抽采管路通过法兰11连接;The diameter of the main body 1 is equal to the diameter of the extraction pipeline, and the inlet end and the gas outlet end of the main body 1 are connected to the extraction pipeline through the
所述第二气嘴12、第三气嘴15上均设置有气帽3;第二气嘴12用于采集上游未掺混空气的抽采管路气样,测定未掺混空气的管路瓦斯浓度,第三气嘴15用于采集下游掺混空气后的抽采管路气样,测定掺混空气后管路瓦斯浓度,第二气嘴12、第三气嘴15上均设置有气帽3,在非瓦斯抽采管路流量测定期间封堵第二气嘴12、第三气嘴15;The
所述第一气嘴13与气压计连接;第一气嘴13与气压计连接测定管路抽采负压;The
所述喷嘴接头14上设置有连接件5,连接件5包含喷嘴2或喷嘴接头密封盖4中的一种。在瓦斯抽采管路流量测定过程中,喷嘴接头14上设置有喷嘴2,向主体1内部喷射空气,在主体1空间内实现空气与抽采管路瓦斯气体的掺混;在非瓦斯抽采管路流量测定期间,喷嘴接头14上设置有喷嘴接头密封盖4封堵喷嘴接头14。The nozzle joint 14 is provided with a connecting
所述喷嘴接头14与第一气嘴13间距不小于2倍的主体1内径,喷嘴接头14与第三气嘴15间距不小于4倍的主体1内径。The distance between the nozzle joint 14 and the
所述喷嘴2为系列标准件。喷嘴2按照结构不同分为多个系列,每个系列按照喷嘴2直径和喷孔大小不同包含多个型号,每个型号喷嘴2的流量系数μ在实验室检测获得。The
所述喷嘴接头14内壁设置有内螺纹。The inner wall of the nozzle joint 14 is provided with internal threads.
所述喷嘴2的外形结构为六棱柱与圆柱的组合形式,喷嘴2上部为短六棱柱,喷嘴2下部为圆柱,短六棱柱、圆柱二者同轴,中间为喷孔,圆柱外侧设置有螺纹。The shape structure of the
所述气帽3为橡胶帽。The
所述喷嘴接头密封盖4外形与喷嘴2相同,喷嘴接头密封盖4中间没有喷孔,且喷嘴接头密封盖4为实心结构、圆柱外侧设置有螺纹。The shape of the nozzle
掺混空气检测低流速瓦斯抽采管路流量的测定方法,它包含如下步骤:The method for measuring the flow rate of gas extraction pipelines with low flow velocity with mixed air includes the following steps:
步骤S1:在被测瓦斯抽采管路中安装掺混空气检测低流速瓦斯抽采管路流量的测定装置;Step S1: install a measuring device for mixing air in the gas extraction pipeline under test to detect the flow rate of the gas extraction pipeline with low flow velocity;
步骤S2:测定瓦斯抽采管路所处环境空气中的瓦斯浓度;Step S2: Measure the gas concentration in the ambient air where the gas extraction pipeline is located ;
步骤S3:将气压计与掺混空气检测低流速瓦斯抽采管路流量的测定装置的第一气嘴13连接,测定瓦斯抽采管路的工况负压;Step S3: Connect the barometer to the
步骤S4:选择合适型号的喷嘴2安装于掺混空气检测低流速瓦斯抽采管路流量的测定装置的喷嘴接头14上,向管路中喷射空气,并计算获得负压下喷嘴2的喷射流量,计算公式如下:Step S4: Select an appropriate type of
其中:为喷嘴2的流量系数,确定喷嘴2型号后为固定值;in: is the flow coefficient of
步骤S5:通过掺混空气检测低流速瓦斯抽采管路流量的测定装置的第二气嘴12采集瓦斯抽采管路中气体的气样,测定上游管路中未掺混空气的管道气体的瓦斯浓度;Step S5: Collect a gas sample of the gas in the gas extraction pipeline through the
步骤S6:通过掺混空气检测低流速瓦斯抽采管路流量的测定装置的第三气嘴15采集气样,测定下游管路中掺混空气后的管路气体的瓦斯浓度;Step S6: Collect gas samples through the
步骤S7:计算获得工况下瓦斯抽采管路中气体的混合流量:Step S7: Calculate and obtain the mixed flow of gas in the gas extraction pipeline under working conditions :
。 .
所述喷嘴2型号的选择是否合适,其判定方法为:喷嘴2对管路上游抽采负压的影响在±10%以内,认为喷嘴2型号合适,否则认为不合适。Whether the selection of the
本发明的工作原理:主体1进气端、出气端均设置有法兰11,主体1自进气端向出气端依次设置有第二气嘴12、第一气嘴13、喷嘴接头14、第三气嘴15;所述主体1的直径等于抽采管路的直径,且主体1进气端、出气端均与抽采管路通过法兰11连接;所述第二气嘴12、第三气嘴15上均设置有气帽3;第二气嘴12用于采集上游未掺混空气的抽采管路气样,测定未掺混空气的管路瓦斯浓度,第三气嘴15用于采集下游掺混空气后的抽采管路气样,测定掺混空气后管路瓦斯浓度,第二气嘴12、第三气嘴15上均设置有气帽3,在非瓦斯抽采管路流量测定期间封堵第二气嘴12、第三气嘴15;所述第一气嘴13与气压计连接;第一气嘴13与气压计连接测定管路抽采负压;所述喷嘴接头14上设置有连接件5,连接件5包含喷嘴2或喷嘴接头密封盖4中的一种。在瓦斯抽采管路流量测定过程中,喷嘴接头14上设置有喷嘴2,向主体1内部喷射空气,在主体1空间内实现空气与抽采管路瓦斯气体的掺混;在非瓦斯抽采管路流量测定期间,喷嘴接头14上设置有喷嘴接头密封盖4封堵喷嘴接头14,空气入口安装喷嘴2,提高了空气的掺混效率,缩短了掺混距离,确保了空气与管道气体的充分混合,保证了检测结果的准确性;喷嘴2采用系列标准件,根据喷嘴2的负压-流量关系快速计算获得掺混的空气流量,充分考虑了煤矿井下瓦斯抽采的复杂性和多变性,确保了该方法的便捷性和广泛适应性,能够用于不同条件下的低流速瓦斯抽采管路流量的准确测定。The working principle of the present invention: the main body 1 is provided with
列举实例进行说明:例如,按照结构不同分为柱形喷嘴、锥形喷嘴、文丘里喷嘴等多个系列,每个系列包含有多个型号,不同型号喷嘴的喷嘴直径和喷孔大小不同,喷嘴直径包括4分、6分、1寸、1.5寸、2寸、2.5寸、3寸、4寸等规格,喷孔直径包括4mm、6mm、8mm、10mm、15mm、20mm、30mm、40mm、50mm等规格。不同直径的喷嘴能够满足不同抽采管路尺寸的要求,不同喷孔大小能够满足不同空气掺混量的要求,使得该方法具有很强的现场适应性,能够实现不同条件下的低流速瓦斯抽采管路流量的测定。Examples are given to illustrate: for example, according to different structures, it is divided into multiple series such as cylindrical nozzles, conical nozzles, Venturi nozzles, etc. Each series contains multiple models. The diameter includes 4 minutes, 6 minutes, 1 inch, 1.5 inches, 2 inches, 2.5 inches, 3 inches, 4 inches, etc., and the diameter of the nozzle holes includes 4mm, 6mm, 8mm, 10mm, 15mm, 20mm, 30mm, 40mm, 50mm, etc. Specification. Different diameter nozzles can meet the requirements of different extraction pipeline sizes, and different nozzle hole sizes can meet the requirements of different air mixing amounts, which makes the method have strong field adaptability and can realize low flow rate gas extraction under different conditions. Measurement of pipeline flow.
采用上述技术方案后,本发明有益效果为:检测装置测量精度高、准确性好,通过向瓦斯抽采管道掺混一定量的空气,测定掺混空气前后瓦斯抽采管路中瓦斯浓度的变化情况,实现了低流速瓦斯抽采管路流量的准确测量,能够用于钻孔、钻场等抽采系统末端流量检测,有助于瓦斯抽采量的精准计量,提高瓦斯抽采达标评判的准确性,对于煤矿瓦斯防治具有重要意义。After the above technical scheme is adopted, the beneficial effects of the present invention are: the detection device has high measurement precision and good accuracy, and by mixing a certain amount of air into the gas extraction pipeline, the change of the gas concentration in the gas extraction pipeline before and after mixing with air is measured. It realizes the accurate measurement of the flow rate of the gas drainage pipeline at low flow rate, and can be used for the flow detection at the end of the drainage system such as drilling holes and drilling sites, which is helpful for the accurate measurement of the gas drainage amount and improves the evaluation of gas drainage compliance. Accuracy is of great significance for coal mine gas prevention and control.
提高了空气的掺混效率,缩短了掺混距离,确保了空气与管道气体的充分混合,保证了检测结果的准确性;充分考虑了煤矿井下瓦斯抽采的复杂性和多变性,确保了该方法的便捷性和广泛适应性,能够用于不同条件下的低流速瓦斯抽采管路流量的准确测定。The air mixing efficiency is improved, the mixing distance is shortened, the air and the pipeline gas are fully mixed, and the accuracy of the detection results is ensured; The convenience and wide adaptability of the method can be used to accurately measure the flow rate of gas drainage pipelines with low flow velocity under different conditions.
以上所述,仅用以说明本发明的技术方案而非限制,本领域普通技术人员对本发明的技术方案所做的其它修改或者等同替换,只要不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。The above is only used to illustrate the technical solution of the present invention and not to limit it. Other modifications or equivalent replacements made by those of ordinary skill in the art to the technical solution of the present invention, as long as they do not depart from the spirit and scope of the technical solution of the present invention, should be Included within the scope of the claims of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811441027.9A CN111238583A (en) | 2018-11-29 | 2018-11-29 | A method for detecting the flow rate of low-velocity gas extraction pipeline by using mixed air |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811441027.9A CN111238583A (en) | 2018-11-29 | 2018-11-29 | A method for detecting the flow rate of low-velocity gas extraction pipeline by using mixed air |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111238583A true CN111238583A (en) | 2020-06-05 |
Family
ID=70870124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811441027.9A Pending CN111238583A (en) | 2018-11-29 | 2018-11-29 | A method for detecting the flow rate of low-velocity gas extraction pipeline by using mixed air |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111238583A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112096447A (en) * | 2020-10-24 | 2020-12-18 | 淄博水环真空泵厂有限公司 | Coal mine gas extraction system pipeline negative pressure control system and 'prediction + increment PID' negative pressure control method thereof |
CN112836350A (en) * | 2021-01-11 | 2021-05-25 | 中国矿业大学 | A real-time solution method for gas drainage parameters of coal mine underground pipe network |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5567885A (en) * | 1993-05-12 | 1996-10-22 | British Nuclear Fuels Plc | Measuring fluid flow rate |
WO2001018496A2 (en) * | 1999-09-03 | 2001-03-15 | Microbridge Technologies Inc. | Several gas flow measuring devices and signal processing methods |
CN201819709U (en) * | 2010-10-11 | 2011-05-04 | 河南理工大学 | Flangeless orifice flowmeter for gas drainage |
CN202083421U (en) * | 2011-05-25 | 2011-12-21 | 河南百川畅银实业有限公司 | Flow rate measuring orifice plate and collecting well flow rate measuring and throttling device |
CN102928034A (en) * | 2011-08-10 | 2013-02-13 | 淮南矿业(集团)有限责任公司 | Method and device for metering gas during extraction |
CN203408643U (en) * | 2013-07-22 | 2014-01-29 | 首钢总公司 | Gas distributing device for detecting high-temperature metallurgical properties of iron ore |
CN104718438A (en) * | 2012-09-21 | 2015-06-17 | 皮德罗菲奥伦蒂尼有限公司 | System for measuring the flow rate of a gas and use of said measuring system in a method for determining the error of a flow meter during normal operation without disconnecting it from any pipes |
CN105526996A (en) * | 2015-10-13 | 2016-04-27 | 辽宁省计量科学研究院 | A high-precision pVTt method gas flow standard device |
CN106237880A (en) * | 2016-09-13 | 2016-12-21 | 中国科学院工程热物理研究所 | A kind of coal mine gas mixing device |
CN207111070U (en) * | 2017-06-19 | 2018-03-16 | 河南理工大学 | The experimental provision of negative pressure and flux distribution characteristics in measurement drilling |
CN208937113U (en) * | 2018-11-29 | 2019-06-04 | 河北金广科技有限公司 | Low flow velocity methane gas extraction pipeline flow rate-measuring device is detected using dilution air |
-
2018
- 2018-11-29 CN CN201811441027.9A patent/CN111238583A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5567885A (en) * | 1993-05-12 | 1996-10-22 | British Nuclear Fuels Plc | Measuring fluid flow rate |
WO2001018496A2 (en) * | 1999-09-03 | 2001-03-15 | Microbridge Technologies Inc. | Several gas flow measuring devices and signal processing methods |
CN201819709U (en) * | 2010-10-11 | 2011-05-04 | 河南理工大学 | Flangeless orifice flowmeter for gas drainage |
CN202083421U (en) * | 2011-05-25 | 2011-12-21 | 河南百川畅银实业有限公司 | Flow rate measuring orifice plate and collecting well flow rate measuring and throttling device |
CN102928034A (en) * | 2011-08-10 | 2013-02-13 | 淮南矿业(集团)有限责任公司 | Method and device for metering gas during extraction |
CN104718438A (en) * | 2012-09-21 | 2015-06-17 | 皮德罗菲奥伦蒂尼有限公司 | System for measuring the flow rate of a gas and use of said measuring system in a method for determining the error of a flow meter during normal operation without disconnecting it from any pipes |
CN203408643U (en) * | 2013-07-22 | 2014-01-29 | 首钢总公司 | Gas distributing device for detecting high-temperature metallurgical properties of iron ore |
CN105526996A (en) * | 2015-10-13 | 2016-04-27 | 辽宁省计量科学研究院 | A high-precision pVTt method gas flow standard device |
CN106237880A (en) * | 2016-09-13 | 2016-12-21 | 中国科学院工程热物理研究所 | A kind of coal mine gas mixing device |
CN207111070U (en) * | 2017-06-19 | 2018-03-16 | 河南理工大学 | The experimental provision of negative pressure and flux distribution characteristics in measurement drilling |
CN208937113U (en) * | 2018-11-29 | 2019-06-04 | 河北金广科技有限公司 | Low flow velocity methane gas extraction pipeline flow rate-measuring device is detected using dilution air |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112096447A (en) * | 2020-10-24 | 2020-12-18 | 淄博水环真空泵厂有限公司 | Coal mine gas extraction system pipeline negative pressure control system and 'prediction + increment PID' negative pressure control method thereof |
CN112096447B (en) * | 2020-10-24 | 2021-06-15 | 淄博水环真空泵厂有限公司 | Coal mine gas extraction system pipeline negative pressure control system and 'prediction + increment PID' negative pressure control method thereof |
CN112836350A (en) * | 2021-01-11 | 2021-05-25 | 中国矿业大学 | A real-time solution method for gas drainage parameters of coal mine underground pipe network |
CN112836350B (en) * | 2021-01-11 | 2024-03-08 | 中国矿业大学 | Real-time calculation method for gas extraction parameters of underground coal mine pipe network |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105974062B (en) | A kind of gas sensor calibrating installation and its calibration method | |
CN101382445B (en) | Double differential pressure throttling humidity measuring device | |
US8701497B2 (en) | Fluid flow testing system | |
CN205426890U (en) | Supporting device of gas analysis appearance examination | |
US10514283B2 (en) | Exhaust gas flow rate measuring unit and exhaust gas analyzing apparatus | |
CN102288263A (en) | Device for calibrating gas flow meter in pipeline on line | |
CN102012331B (en) | Pressure and gas taking method with anti-blocking function for gas metering | |
CN111238583A (en) | A method for detecting the flow rate of low-velocity gas extraction pipeline by using mixed air | |
CN105301059B (en) | The apparatus and method for determining gas-liquid eddy flow liquid phase residence time destribution | |
CN207081470U (en) | A kind of sonic nozzle calibrating installation | |
CN104165664B (en) | Pitot bar integrated mass flow meter | |
CN103900665B (en) | Container combination and commutation valve type pVTt method gas flow meter | |
CN208937113U (en) | Low flow velocity methane gas extraction pipeline flow rate-measuring device is detected using dilution air | |
CN202149804U (en) | Device for on-line calibration on gas flowmeter in pipeline | |
CN210742049U (en) | A kind of ammonia desulfurization slurry density online testing device | |
CN106500931A (en) | The detection means and detection method of on-condensible gas in a kind of steam | |
CN107505104B (en) | A gas-water mixing valve detection device and detection method thereof | |
CN206648702U (en) | Gas displacement measurement apparatus | |
CN206470284U (en) | The measurement apparatus of gas in pipelines flow velocity | |
CN207215404U (en) | A kind of mixing wastewater with air valve detection device | |
CN205991821U (en) | Double ratio method dampness liquid phase content measurement apparatus | |
CN209117081U (en) | A kind of bypass measuring device of pipeline water flow amount | |
CN205353007U (en) | Detect oxygen concentration's device | |
CN209372811U (en) | A kind of measuring device detecting tank car liquid nitrogen gas moisture | |
US10107656B1 (en) | Flow-rate measurement nozzle with velocity pressure pickup channel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |