CN111234429A - PTFE/boron nitride composite material and preparation method thereof - Google Patents
PTFE/boron nitride composite material and preparation method thereof Download PDFInfo
- Publication number
- CN111234429A CN111234429A CN202010189542.3A CN202010189542A CN111234429A CN 111234429 A CN111234429 A CN 111234429A CN 202010189542 A CN202010189542 A CN 202010189542A CN 111234429 A CN111234429 A CN 111234429A
- Authority
- CN
- China
- Prior art keywords
- boron nitride
- ptfe
- composite material
- temperature
- nitride composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920001343 polytetrafluoroethylene Polymers 0.000 title claims abstract description 68
- 239000004810 polytetrafluoroethylene Substances 0.000 title claims abstract description 68
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 title claims abstract description 54
- 229910052582 BN Inorganic materials 0.000 title claims abstract description 46
- 239000002131 composite material Substances 0.000 title claims abstract description 34
- 238000002360 preparation method Methods 0.000 title claims abstract description 8
- 238000005245 sintering Methods 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 21
- 238000002156 mixing Methods 0.000 claims abstract description 16
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000002135 nanosheet Substances 0.000 claims abstract description 13
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims abstract description 12
- 238000003825 pressing Methods 0.000 claims abstract description 12
- 239000011812 mixed powder Substances 0.000 claims abstract description 10
- 229920002545 silicone oil Polymers 0.000 claims abstract description 10
- 239000007791 liquid phase Substances 0.000 claims abstract description 9
- 239000000843 powder Substances 0.000 claims abstract description 9
- 239000000839 emulsion Substances 0.000 claims abstract description 5
- 239000000203 mixture Substances 0.000 claims abstract description 5
- 230000007935 neutral effect Effects 0.000 claims abstract description 4
- -1 polytetrafluoroethylene Polymers 0.000 claims abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 4
- 238000010438 heat treatment Methods 0.000 claims description 16
- 230000008569 process Effects 0.000 claims description 12
- 239000002245 particle Substances 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 238000000465 moulding Methods 0.000 abstract description 4
- 238000003756 stirring Methods 0.000 abstract description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 229910021389 graphene Inorganic materials 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 125000001153 fluoro group Chemical group F* 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000000967 suction filtration Methods 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical class [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 239000002113 nanodiamond Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/38—Boron-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/38—Boron-containing compounds
- C08K2003/382—Boron-containing compounds and nitrogen
- C08K2003/385—Binary compounds of nitrogen with boron
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Ceramic Products (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本发明公开了一种PTFE/氮化硼复合材料及其制备方法。采用液相混合的方法先得到混合粉末,再进行冷压烧结制得复合材料。依次包括下述步骤:1)氮化硼(BN)的剥离:将六方氮化硼粉末用熔融柠檬酸处理24h后水洗至中性,再进行过滤、干燥得到氮化硼纳米片(n‑BN);2)聚四氟乙烯(PTFE)和n‑BN的混合:分别将PTFE粉末、氮化硼纳米片(n‑BN)各自分散于硅油中形成稳定乳液,再经强烈搅拌均匀混合,过滤,用二氯甲烷洗涤,干燥后得到混合粉末;3)冷压成型与烧结:将混合粉末放入模压模具中,在一定的压力下进行冷压,取出型坯,放置于烧结炉中,按一定温度曲线进行烧结,最终得到PTFE/氮化硼复合材料。本发明采用的液相混合法有效改善了混合均匀性,制得的PTFE/氮化硼复合材料具有优异的耐磨性能和导热性能。The invention discloses a PTFE/boron nitride composite material and a preparation method thereof. The mixed powder is first obtained by liquid phase mixing, and then cold-pressed and sintered to obtain a composite material. The following steps are included in sequence: 1) Stripping of boron nitride (BN): the hexagonal boron nitride powder is treated with molten citric acid for 24 hours, washed with water until neutral, and then filtered and dried to obtain boron nitride nanosheets (n-BN ); 2) Mixing of polytetrafluoroethylene (PTFE) and n-BN: Disperse PTFE powder and boron nitride nanosheets (n-BN) in silicone oil to form a stable emulsion, and then mix them evenly by vigorous stirring, filter , washed with dichloromethane, and dried to obtain mixed powder; 3) Cold pressing and sintering: put the mixed powder into a molding die, cold-press under a certain pressure, take out the parison, place it in a sintering furnace, press A certain temperature curve is sintered to finally obtain a PTFE/boron nitride composite material. The liquid phase mixing method adopted in the present invention effectively improves the mixing uniformity, and the prepared PTFE/boron nitride composite material has excellent wear resistance and thermal conductivity.
Description
技术领域technical field
本发明涉及一种PTFE/氮化硼复合材料及其制备方法,特别是提供了一种用液相混合结合冷压烧结制备PTFE/氮化硼复合材料的方法。The invention relates to a PTFE/boron nitride composite material and a preparation method thereof, in particular to a method for preparing a PTFE/boron nitride composite material by liquid phase mixing combined with cold pressing and sintering.
背景技术Background technique
聚四氟乙烯( PTFE) 具有优异的化学稳定性、抗辐射性、介电性,以及极低的摩擦系数和自润滑性,成为氟塑料中最先进、运用最广泛的树脂之一。它不仅在机械、化学化工和电子电气等方面有着广泛应用,而且在宇航、军事领域也有巨大的应用价值。然而由于PTFE分子的结构特点,大分子间吸引力较小,带状晶体易被片状剥离,因而表现为力学性能差、抗蠕变性差、易冷流、回弹性差、不耐磨、不导电、不导热、线膨胀系数大等缺点,这极大限制了它在某些行业的广泛应用。因此,深入研究聚四氟乙烯的结构和物化特性,特别是通过化学、物理改性以研制开发综合性能优异的新型PTFE材料,已成为目前聚四氟乙烯研究和发展的主要方向。无机纳米填料填充改性是聚四氟乙烯最常用的改性方法之一。Polytetrafluoroethylene (PTFE) has excellent chemical stability, radiation resistance, dielectric properties, and extremely low coefficient of friction and self-lubrication, making it one of the most advanced and widely used resins in fluoroplastics. It not only has a wide range of applications in machinery, chemical engineering and electrical and electronic fields, but also has great application value in aerospace and military fields. However, due to the structural characteristics of PTFE molecules, the attraction between macromolecules is small, and the band-shaped crystals are easily peeled off by flakes, thus showing poor mechanical properties, poor creep resistance, easy cold flow, poor resilience, no wear resistance, no wear resistance. The shortcomings of electrical conductivity, non-thermal conductivity, and large coefficient of linear expansion greatly limit its wide application in some industries. Therefore, in-depth research on the structure and physicochemical properties of PTFE, especially the development of new PTFE materials with excellent comprehensive properties through chemical and physical modification, has become the main direction of current PTFE research and development. Inorganic nanofiller filling modification is one of the most commonly used modification methods of PTFE.
目前用于填充改性PTFE的无机纳米填料主要有纳米级的金刚石、CaCO3、CaTiO3、碳纳米管以及石墨烯等。Marcus等用玻璃纤维填充PTFE,复合材料摩擦和磨损性能获得了较高的提升,然而Lim等向PTFE中加入2%的纳米金刚石就获得了最小的摩擦系数及磨损伤害。蔡雄等采用改性的CaCO3填充聚四氟乙烯以期改善其力学性能。但是这些报道都存在填料与PTFE基体混合不够均匀的问题。宋永要等通过添加偶联剂改善填料与基体的混合均匀性,但是偶联剂的加入导致制备工艺的复杂化以及加重环境污染,而且在后续的PTFE烧结过程中,高温条件可能导致偶联剂的分解。见雪珍等采用石墨烯填充PTFE,首先对石墨烯进行羧基化和氨基化,再与PTFE复合,供电基团表面电子云会偏向氟原子,即偏向于PTFE。在范德华力作用下,诱导效应产生的电子云流动,加强了石墨烯和PTFE之间的界面粘合力,可在一定程度上改善PTFE的性能。但是这种分子间作用力相对较小,因此性能改善有限。The inorganic nanofillers currently used to fill modified PTFE mainly include nanoscale diamond, CaCO 3 , CaTiO 3 , carbon nanotubes, and graphene. Marcus et al. filled PTFE with glass fiber, and the friction and wear properties of the composite were improved. However, Lim et al. added 2% nanodiamond to PTFE to obtain the smallest friction coefficient and wear damage. Cai Xiong et al. used modified CaCO3 to fill PTFE in order to improve its mechanical properties. However, these reports all have the problem that the filler and the PTFE matrix are not mixed uniformly enough. Song Yongyao et al. improved the mixing uniformity of filler and matrix by adding coupling agent, but the addition of coupling agent complicates the preparation process and aggravates environmental pollution, and in the subsequent PTFE sintering process, high temperature conditions may lead to coupling decomposition of the agent. Jian Xuezhen et al. used graphene to fill PTFE. First, graphene is carboxylated and aminated, and then compounded with PTFE. The electron cloud on the surface of the power supply group will be biased towards fluorine atoms, that is, towards PTFE. Under the action of van der Waals force, the electron cloud flow generated by the induced effect strengthens the interfacial adhesion between graphene and PTFE, which can improve the performance of PTFE to a certain extent. But this intermolecular force is relatively small, so the performance improvement is limited.
作为与石墨烯类似结构的二维材料,六方氮化硼纳米片(n-BN)是一种非常有前景的填充材料,具有很好的导热性,其热导率优于大多数金属和陶瓷材料。并且随着片层厚度的减小,热导率的值会增大,单层BN纳米片的热导率大于多层和块体的BN。此外,与石墨烯一样,n-BN也是机械强度非常好的纳米材料。正是由于其具备极高的导热性和良好的机械性能,n-BN已被广泛作为有机聚合物的二维无机填料,用来改善有机聚合物的热导性和力学性能。As a two-dimensional material with a structure similar to graphene, hexagonal boron nitride nanosheets (n-BN) are a very promising filler material with good thermal conductivity, which is superior to most metals and ceramics Material. And with the decrease of sheet thickness, the value of thermal conductivity increases, and the thermal conductivity of single-layer BN nanosheets is greater than that of multilayer and bulk BN. In addition, like graphene, n-BN is also a nanomaterial with very good mechanical strength. It is precisely because of its extremely high thermal conductivity and good mechanical properties that n-BN has been widely used as a two-dimensional inorganic filler for organic polymers to improve the thermal conductivity and mechanical properties of organic polymers.
六方氮化硼可以对 PTFE 起到良好的改性效果,但是目前主要采用的是块体BN,容易造成复合材料的组织不均反而成为应力集中点,降低了材料的使用性能。此外,目前所报道的BN填充改性PTFE基本都是采用高速机械混合两种原料,再对混合粉体进行冷压烧结。机械混合很难均匀,而且在烧结过程中,PTFE分子链会发生热运动,很可能造成BN的聚集,导致复合材料结构的不均匀性,影响复合材料的性能。Hexagonal boron nitride can have a good modification effect on PTFE, but at present, the main use is bulk BN, which is easy to cause the uneven structure of the composite material to become a stress concentration point, which reduces the performance of the material. In addition, the reported BN-filled modified PTFE basically uses high-speed mechanical mixing of two raw materials, and then cold-presses and sinters the mixed powder. Mechanical mixing is difficult to be uniform, and during the sintering process, the PTFE molecular chain will undergo thermal motion, which may cause the aggregation of BN, resulting in the inhomogeneity of the composite structure and affecting the performance of the composite.
根据现有技术中存在的问题,为了改善PTFE的力学性能、摩擦磨损性能以及导热性能,本项目拟采用BN纳米片对PTFE进行改性:(1)采用熔融柠檬酸热处理块体BN,可将其B-N 键断开造成了大量的B、N空位缺陷,这有利于在氮化硼纳米片层的缺陷和边缘处形成-OH和-NH-官能团,将氮化硼层间距撑开,进而得到纳米片。(2)PTFE中氟原子与硅油中氢原子的大电负性差,引起强烈的偶极相互作用,使PTFE粉末可以分散于硅油中形成稳定乳液。而氮化硼也可以分散于硅油中形成乳液,采用液相混合,较固相混合更有利于均匀分散。另外,剥离的n-BN表面B原子具有空轨道,PTFE的氟原子则具有未成对电子,因此两者可以产生配位作用,也有利于PTFE与n-BN的均匀混合。(3)PTFE由于熔融时粘度非常大,因此采用冷压烧结的成型工艺制备复合材料。如此得到的复合材料中PTFE与n-BN分散效果更好,可得到性能优异的复合材料。According to the existing problems in the prior art, in order to improve the mechanical properties, friction and wear properties and thermal conductivity of PTFE, this project plans to use BN nanosheets to modify PTFE: (1) Using molten citric acid to heat treat block BN, it can be The breaking of the B-N bond results in a large number of B and N vacancy defects, which is conducive to the formation of -OH and -NH- functional groups at the defects and edges of the boron nitride nanosheets, and the spacing between the boron nitride layers is stretched. Nanosheets. (2) The large electronegativity of fluorine atoms in PTFE and hydrogen atoms in silicone oil is poor, causing strong dipole interaction, so that PTFE powder can be dispersed in silicone oil to form a stable emulsion. Boron nitride can also be dispersed in silicone oil to form an emulsion. Liquid phase mixing is more conducive to uniform dispersion than solid phase mixing. In addition, the B atoms on the exfoliated n-BN surface have empty orbitals, and the fluorine atoms of PTFE have unpaired electrons, so the two can produce coordination, which is also conducive to the uniform mixing of PTFE and n-BN. (3) Due to the very high viscosity of PTFE when it is melted, the composite material is prepared by the molding process of cold pressing and sintering. In the composite material thus obtained, the dispersion effect of PTFE and n-BN is better, and a composite material with excellent performance can be obtained.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种用液相混合结合冷压烧结制备PTFE/氮化硼复合材料的方法,按质量百分比由以下组分构成:The object of the present invention is to provide a method for preparing PTFE/boron nitride composite material with liquid phase mixing combined with cold pressing and sintering, which is made up of the following components by mass percentage:
PTFE:90-99 wt%;PTFE: 90-99 wt%;
氮化硼:1-10 wt%。Boron Nitride: 1-10 wt%.
其特征在于,所述PTFE/氮化硼复合材料的制备方法包括:It is characterized in that, the preparation method of described PTFE/boron nitride composite material comprises:
(1)氮化硼(BN)的剥离(1) Stripping of boron nitride (BN)
将六方氮化硼粉末用熔融柠檬酸处理24h后水洗至中性,再进行过滤、干燥得到氮化硼纳米片(n-BN);The hexagonal boron nitride powder was treated with molten citric acid for 24h, washed with water until neutral, filtered and dried to obtain boron nitride nanosheets (n-BN);
(2)PTFE和n-BN的液相混合(2) Liquid phase mixing of PTFE and n-BN
将PTFE和n-BN按比例称取,分别将PTFE粉末、氮化硼纳米片(n-BN)各自分散于硅油中形成稳定乳液,再均匀混合后过滤,用二氯甲烷洗涤,干燥后得到混合粉末;Weigh PTFE and n-BN in proportion, respectively disperse PTFE powder and boron nitride nanosheets (n-BN) in silicone oil to form a stable emulsion, then uniformly mix, filter, wash with dichloromethane, and dry to obtain mixed powder;
(3)冷压成型与烧结(3) Cold pressing and sintering
将混合粉末放入模具中,在压力下进行冷压成型,保压一段时间;再将形坯放入烧结炉中,按一定温度控制程序进行烧结,烧结完成后随炉冷却即得产品。Put the mixed powder into the mold, carry out cold pressing under pressure, and hold the pressure for a period of time; then put the blank into the sintering furnace, and sinter it according to a certain temperature control program. After the sintering is completed, the product is obtained by cooling with the furnace.
上述所述PTFE/氮化硼复合材料,其特征在于:所述六方氮化硼粒径为1-10 μm。The above-mentioned PTFE/boron nitride composite material is characterized in that: the particle size of the hexagonal boron nitride is 1-10 μm.
上述所述PTFE/氮化硼复合材料,其特征在于:所述聚四氟乙烯为粒径20 μm-80 μm的悬浮细粉。The above-mentioned PTFE/boron nitride composite material is characterized in that: the polytetrafluoroethylene is a suspended fine powder with a particle size of 20 μm-80 μm.
上述所述PTFE/氮化硼复合材料,其特征在于:所述步骤1)中,反应温度为160-180℃。The above-mentioned PTFE/boron nitride composite material is characterized in that: in the step 1), the reaction temperature is 160-180°C.
上述所述PTFE/氮化硼复合材料,其特征在于:所述步骤2)中,n-BN的质量分数为1-10 wt%。The above-mentioned PTFE/boron nitride composite material is characterized in that: in the step 2), the mass fraction of n-BN is 1-10 wt%.
上述所述PTFE/氮化硼复合材料,其特征在于:所述步骤3)中,冷压压力为100-140MPa。The above-mentioned PTFE/boron nitride composite material is characterized in that: in the step 3), the cold pressing pressure is 100-140MPa.
上述所述PTFE/氮化硼复合材料,其特征在于:所述步骤3)中,烧结过程中,温度控制程序如下:The above-mentioned PTFE/boron nitride composite material is characterized in that: in the step 3), during the sintering process, the temperature control procedure is as follows:
I.升温速率1.5℃/min,目标温度130℃,保温1h;I. The heating rate is 1.5°C/min, the target temperature is 130°C, and the temperature is kept for 1h;
II.升温速率1.4℃/min,目标温度250℃,保温1h;II. The heating rate is 1.4°C/min, the target temperature is 250°C, and the temperature is kept for 1h;
III.升温速率1.1℃/min,目标温度327℃,保温2h;III. The heating rate is 1.1°C/min, the target temperature is 327°C, and the temperature is kept for 2h;
IV.升温速率1℃/min,目标温度345℃,保温1h;IV. The heating rate is 1°C/min, the target temperature is 345°C, and the temperature is kept for 1h;
V.升温速率0.4℃/min,目标温度375℃,保温1-5h;V. The heating rate is 0.4°C/min, the target temperature is 375°C, and the temperature is kept for 1-5h;
Ⅵ.随炉冷却。Ⅵ. Cool with the furnace.
具体实施方式Detailed ways
下面结合具体实施例对本发明进一步描述,但本发明的保护范围并不仅限于此。The present invention is further described below with reference to specific embodiments, but the protection scope of the present invention is not limited thereto.
实施例1-4,其组分及工艺参数见表1。Examples 1-4, its components and process parameters are shown in Table 1.
本复合材料的制备方法为:The preparation method of the composite material is as follows:
(1)氮化硼(BN)的剥离(1) Stripping of boron nitride (BN)
将六方氮化硼粉末用熔融柠檬酸处理24h后水洗至中性,再进行过滤、干燥得到六方氮化硼纳米片(n-BN);The hexagonal boron nitride powder was treated with molten citric acid for 24 hours, washed with water until neutral, then filtered and dried to obtain hexagonal boron nitride nanosheets (n-BN);
(2)PTFE和n-BN的液相混合(2) Liquid phase mixing of PTFE and n-BN
称取一定量的PTFE粉末,将其与硅油混合,机械搅拌约1h使得PTFE在硅油中均匀分散;同样称取一定量的n-BN粉末,以硅油为介质在机械搅拌作用下形成良好的分散液。最后,将两种分散体混合在一起以形成均匀分散的混合液体。将搅拌均匀的分散液进行抽滤,抽滤至一定程度后,用二氯甲烷洗涤粉末中残余的硅油,待混合粉末基本抽滤干燥后,再将其放入铁盘中进行进一步烘干,在150 ℃烘箱中烘至4-5小时;Weigh a certain amount of PTFE powder, mix it with silicone oil, and stir it mechanically for about 1 hour to make the PTFE evenly dispersed in the silicone oil; also weigh a certain amount of n-BN powder, and use silicone oil as a medium to form a good dispersion under the action of mechanical stirring. liquid. Finally, the two dispersions are mixed together to form a homogeneously dispersed mixed liquid. The uniformly stirred dispersion liquid is subjected to suction filtration, after suction filtration to a certain extent, the residual silicone oil in the powder is washed with dichloromethane, and after the mixed powder is basically suction filtered and dried, it is then placed in an iron pan for further drying. Bake in an oven at 150 °C for 4-5 hours;
(3)冷压成型与烧结(3) Cold pressing and sintering
称取一定量完全烘干的混合粉末,均匀地铺在模具内,目的是希望样品在压制过程中受力均匀,坯体密度均匀,然后在平板硫化机上以一定压力进行压制。模压结束后,取出模具中样品。作为在整个样品制备过程中最关键的一步就是烧结,烧结工艺是复合材料性能最直接的影响因素。经过多次实验后的总结归纳,采取以下烧结工艺较为合适:Weigh a certain amount of completely dried mixed powder and spread it evenly in the mold. The purpose is to hope that the sample will be uniformly stressed during the pressing process and the green body density will be uniform, and then press it on a flat vulcanizer with a certain pressure. After the molding is finished, take out the sample from the mold. As the most critical step in the whole sample preparation process is sintering, the sintering process is the most direct factor affecting the properties of composite materials. After many experiments, the following sintering process is more appropriate:
1)由于烧结炉的铁盘上圆孔较大,为避免对样品烧结过程中产生影响,在样品下面垫上孔径为0.8 mm,厚度为0.8 mm的铁片。开启烧结炉并同时打开转盘和鼓风以保证样品在烧结炉中受热均匀;1) Due to the large circular holes on the iron plate of the sintering furnace, in order to avoid affecting the sintering process of the sample, an iron sheet with a diameter of 0.8 mm and a thickness of 0.8 mm was placed under the sample. Turn on the sintering furnace and turn on the turntable and blast at the same time to ensure that the sample is heated evenly in the sintering furnace;
2)因为PTFE的热导性较差,如果烧结过程中的升温速率没有严格控制,将会对样品产生较大的影响。因此,在整个实验烧结过程中,温度控制程序如下:2) Because of the poor thermal conductivity of PTFE, if the heating rate during sintering is not strictly controlled, it will have a greater impact on the sample. Therefore, during the whole experimental sintering process, the temperature control procedure is as follows:
I.升温速率1.5℃/min,目标温度130℃,保温1h;I. The heating rate is 1.5°C/min, the target temperature is 130°C, and the temperature is kept for 1h;
II.升温速率1.4℃/min,目标温度250℃,保温1h;II. The heating rate is 1.4°C/min, the target temperature is 250°C, and the temperature is kept for 1h;
III.升温速率1.1℃/min,目标温度327℃,保温2h;III. The heating rate is 1.1°C/min, the target temperature is 327°C, and the temperature is kept for 2h;
IV.升温速率1℃/min,目标温度345℃,保温1h;IV. The heating rate is 1°C/min, the target temperature is 345°C, and the temperature is kept for 1h;
V.升温速率0.4℃/min,目标温度375℃,保温1-5h;V. The heating rate is 0.4°C/min, the target temperature is 375°C, and the temperature is kept for 1-5h;
Ⅵ.随炉冷却。Ⅵ. Cool with the furnace.
(4)对制得的成品进行性能测试,测试结果见表2。可以得出所制得的PTFE/氮化硼复合材料具有优异的耐磨性能和导热性能。(4) The performance test of the finished product is carried out, and the test results are shown in Table 2. It can be concluded that the prepared PTFE/boron nitride composite material has excellent wear resistance and thermal conductivity.
表1 实施案例的组分及工艺参数表Table 1 The components and process parameters of the implementation case
表2 实施案例产品性能测试Table 2 Implementation case product performance test
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010189542.3A CN111234429A (en) | 2020-03-18 | 2020-03-18 | PTFE/boron nitride composite material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010189542.3A CN111234429A (en) | 2020-03-18 | 2020-03-18 | PTFE/boron nitride composite material and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111234429A true CN111234429A (en) | 2020-06-05 |
Family
ID=70869162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010189542.3A Pending CN111234429A (en) | 2020-03-18 | 2020-03-18 | PTFE/boron nitride composite material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111234429A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113881172A (en) * | 2021-10-25 | 2022-01-04 | 西北橡胶塑料研究设计院有限公司 | Boron nitride modified polytetrafluoroethylene material and preparation method thereof |
CN113929430A (en) * | 2021-10-26 | 2022-01-14 | 清华大学深圳国际研究生院 | Preparation method of pure or composite hexagonal boron nitride densified macroscopic body |
CN113980307A (en) * | 2021-10-20 | 2022-01-28 | 清华大学深圳国际研究生院 | High-thermal-conductivity low-dielectric composite material and preparation method thereof |
CN118478578A (en) * | 2024-05-29 | 2024-08-13 | 四川大学 | PTFE composite material with high heat conduction and low dielectric loss and preparation method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104558323A (en) * | 2014-12-22 | 2015-04-29 | 汕头大学 | High-water-solubility nanometer hexagonal boron nitride and preparation method of polymer composite hydrogel of high-water-solubility nanometer hexagonal boron nitride |
CN106084285A (en) * | 2016-06-17 | 2016-11-09 | 中国石油化工股份有限公司 | A kind of nanometer BN fills the method that PTFE prepares Wear-resistant, high-temperature resistant composite |
JP2017052913A (en) * | 2015-09-11 | 2017-03-16 | 株式会社豊田中央研究所 | Resin composite material and manufacturing method thereof |
CN107163290A (en) * | 2017-05-18 | 2017-09-15 | 清华-伯克利深圳学院筹备办公室 | A kind of functionalization boron nitride nanosheet and its preparation method and application |
CN108529574A (en) * | 2018-07-16 | 2018-09-14 | 青岛大学 | A kind of preparation method of ultrathin boron nitride nanosheet and its dispersion liquid |
CN109280332A (en) * | 2018-08-03 | 2019-01-29 | 吉林大学 | A kind of preparation method of boron nitride/epoxy thermally conductive insulating composite material |
-
2020
- 2020-03-18 CN CN202010189542.3A patent/CN111234429A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104558323A (en) * | 2014-12-22 | 2015-04-29 | 汕头大学 | High-water-solubility nanometer hexagonal boron nitride and preparation method of polymer composite hydrogel of high-water-solubility nanometer hexagonal boron nitride |
JP2017052913A (en) * | 2015-09-11 | 2017-03-16 | 株式会社豊田中央研究所 | Resin composite material and manufacturing method thereof |
CN106084285A (en) * | 2016-06-17 | 2016-11-09 | 中国石油化工股份有限公司 | A kind of nanometer BN fills the method that PTFE prepares Wear-resistant, high-temperature resistant composite |
CN107163290A (en) * | 2017-05-18 | 2017-09-15 | 清华-伯克利深圳学院筹备办公室 | A kind of functionalization boron nitride nanosheet and its preparation method and application |
CN108529574A (en) * | 2018-07-16 | 2018-09-14 | 青岛大学 | A kind of preparation method of ultrathin boron nitride nanosheet and its dispersion liquid |
CN109280332A (en) * | 2018-08-03 | 2019-01-29 | 吉林大学 | A kind of preparation method of boron nitride/epoxy thermally conductive insulating composite material |
Non-Patent Citations (1)
Title |
---|
XIAOZHEN HU等: "Aqueous compatible boron nitride nanosheets for high-performance hydrogels" * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113980307A (en) * | 2021-10-20 | 2022-01-28 | 清华大学深圳国际研究生院 | High-thermal-conductivity low-dielectric composite material and preparation method thereof |
CN113881172A (en) * | 2021-10-25 | 2022-01-04 | 西北橡胶塑料研究设计院有限公司 | Boron nitride modified polytetrafluoroethylene material and preparation method thereof |
CN113929430A (en) * | 2021-10-26 | 2022-01-14 | 清华大学深圳国际研究生院 | Preparation method of pure or composite hexagonal boron nitride densified macroscopic body |
CN118478578A (en) * | 2024-05-29 | 2024-08-13 | 四川大学 | PTFE composite material with high heat conduction and low dielectric loss and preparation method thereof |
CN118478578B (en) * | 2024-05-29 | 2025-06-10 | 四川大学 | A PTFE composite material with high thermal conductivity and low dielectric loss and a preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111234429A (en) | PTFE/boron nitride composite material and preparation method thereof | |
Ouyang et al. | Simultaneously enhance thermal conductive property and mechanical properties of silicon rubber composites by introducing ultrafine Al2O3 nanospheres prepared via thermal plasma | |
CN107936547B (en) | Nylon/graphene/carbon fiber composite powder and its preparation method and application in selective laser sintering technology | |
CN103396653B (en) | A kind of preparation method of graphene microchip/epoxy resin nano composites | |
CN107722612B (en) | Graphene composite nylon powder material and its preparation method and application in 3D printing | |
CN105949760A (en) | In-situ polymerization preparation method of spinning-level high-heat-conductivity graphene/nylon composite material | |
CN104017313A (en) | Graphite-like carbon nitride/polyvinylidene fluoride composite material and preparation method thereof | |
CN106633037A (en) | Preparation method of graphene/nylon-6 composite | |
CN108715684A (en) | The preparation method of the heat-resisting electromagnetic shielding material of carbon nanotube macromolecule | |
CN115583835A (en) | A kind of carbon graphite material with low porosity and high mechanical strength and preparation method thereof | |
CN113845740B (en) | Preparation method of high-thermal-conductivity polytetrafluoroethylene composite film material | |
CN110129607B (en) | A kind of self-generated titanium carbide reinforced copper matrix composite material and preparation method thereof | |
CN115491009A (en) | A kind of anisotropic composite material and preparation method thereof | |
CN108752722A (en) | A kind of antistatic eva foam composite material and preparation method | |
CN104987633A (en) | Preparation method for halloysite, ultrafine inorganic powder and PTFE micro-nano composite material | |
CN107474221A (en) | The preparation method of the silane coupler modified epoxy resin composite materials of CB/CFDSF/AG 80 | |
CN1990538A (en) | High-wearing polytetrafluoroethylene composite material and preparing method thereof | |
WO2017128834A1 (en) | Preparation method for high-temperature-resisting and high-conductivity conductive plastic | |
CN105623161A (en) | Glass fiber/calcium carbonate/polytetrafluoroethylene three-element composite material and preparation method thereof | |
CN107522961B (en) | Polystyrene-based high thermal conductivity composite material and preparation method thereof | |
CN106832522B (en) | Electromagnetic shielding composite material with orientation isolation structure and preparation method thereof | |
CN103980710A (en) | Heat-conducting type carbon fiber composite material and preparation method thereof | |
CN104892009B (en) | A kind of high volume stability does not burn modified resin of slide plate and preparation method thereof | |
CN100439886C (en) | An electric heating composite material for temperature measurement and its preparation method | |
CN110093001A (en) | High directional thermal conductivity graphene-perfluoroalkoxy resin composite material and preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200605 |
|
WD01 | Invention patent application deemed withdrawn after publication |