CN111233778A - A high-temperature and high-pressure preparation and atmospheric-pressure interception method of confined high-density anhydrous alkali metal polymeric nitrogen NaN5 - Google Patents
A high-temperature and high-pressure preparation and atmospheric-pressure interception method of confined high-density anhydrous alkali metal polymeric nitrogen NaN5 Download PDFInfo
- Publication number
- CN111233778A CN111233778A CN202010053376.4A CN202010053376A CN111233778A CN 111233778 A CN111233778 A CN 111233778A CN 202010053376 A CN202010053376 A CN 202010053376A CN 111233778 A CN111233778 A CN 111233778A
- Authority
- CN
- China
- Prior art keywords
- pressure
- nan
- confined
- alkali metal
- anhydrous alkali
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 title claims abstract description 104
- 229910052783 alkali metal Inorganic materials 0.000 title claims abstract description 54
- 150000001340 alkali metals Chemical class 0.000 title claims abstract description 54
- 229910052757 nitrogen Inorganic materials 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000002360 preparation method Methods 0.000 title claims abstract description 19
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 claims abstract description 36
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims abstract description 23
- 238000004093 laser heating Methods 0.000 claims abstract description 17
- 239000000463 material Substances 0.000 claims abstract description 9
- 239000002071 nanotube Substances 0.000 claims abstract description 3
- 229910003460 diamond Inorganic materials 0.000 claims description 20
- 239000010432 diamond Substances 0.000 claims description 20
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 18
- 239000007788 liquid Substances 0.000 claims description 12
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims description 11
- 229910052786 argon Inorganic materials 0.000 claims description 9
- 230000005540 biological transmission Effects 0.000 claims description 8
- 229920000642 polymer Polymers 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 238000007373 indentation Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 4
- 229910052754 neon Inorganic materials 0.000 claims description 3
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 claims description 3
- 238000005553 drilling Methods 0.000 claims description 2
- 229910052582 BN Inorganic materials 0.000 abstract description 2
- 239000007858 starting material Substances 0.000 abstract 1
- 238000011065 in-situ storage Methods 0.000 description 20
- 238000001069 Raman spectroscopy Methods 0.000 description 14
- 230000005469 synchrotron radiation Effects 0.000 description 14
- 238000001237 Raman spectrum Methods 0.000 description 13
- 239000006185 dispersion Substances 0.000 description 10
- 239000011734 sodium Substances 0.000 description 9
- WUHLVXDDBHWHLQ-UHFFFAOYSA-N pentazole Chemical class N=1N=NNN=1 WUHLVXDDBHWHLQ-UHFFFAOYSA-N 0.000 description 8
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 7
- 239000013078 crystal Substances 0.000 description 7
- 229910052708 sodium Inorganic materials 0.000 description 7
- 238000001228 spectrum Methods 0.000 description 7
- 238000002441 X-ray diffraction Methods 0.000 description 6
- 239000004005 microsphere Substances 0.000 description 6
- 239000002114 nanocomposite Substances 0.000 description 6
- 239000010979 ruby Substances 0.000 description 6
- 229910001750 ruby Inorganic materials 0.000 description 6
- 238000005452 bending Methods 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- ZXPSRPAUXQIYID-UHFFFAOYSA-N [N].[Na] Chemical compound [N].[Na] ZXPSRPAUXQIYID-UHFFFAOYSA-N 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 150000001540 azides Chemical class 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000005036 potential barrier Methods 0.000 description 3
- 230000029058 respiratory gaseous exchange Effects 0.000 description 3
- 229910001415 sodium ion Inorganic materials 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- ANGRFWYTDAONDD-UHFFFAOYSA-N [Na].N1N=NN=N1 Chemical class [Na].N1N=NN=N1 ANGRFWYTDAONDD-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 150000003853 pentazoles Chemical class 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- -1 sodium pentazolium salts Chemical class 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010421 standard material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D259/00—Heterocyclic compounds containing rings having more than four nitrogen atoms as the only ring hetero atoms
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本发明涉及高能量密度材料制备的技术领域,提供了一种限域高密度无水碱金属聚合氮NaN5的高温高压制备和常压截获方法。本发明以限域在氮化硼纳米管中的叠氮化钠为起始物,经过高压处理,获得在高压下稳定存在的限域高密度无水碱金属聚合氮Cm‑NaN5;经过高压及激光加热处理,获得在高压下稳定存在的限域高密度无水碱金属聚合氮Pmn21‑NaN5;经过高压及激光加热处理后卸压,获得在常压下稳定存在的限域高密度无水碱金属聚合氮P2/c‑NaN5。本发明方法简单,易于操作,首次实现了限域高密度无水碱金属聚合氮NaN5的高温高压制备和常压截获,为新型无水碱金属聚合氮的实验制备提供了有效的技术途径。
The invention relates to the technical field of high-energy density material preparation, and provides a high-temperature and high-pressure preparation and atmospheric-pressure interception method of confined high-density anhydrous alkali metal polymeric nitrogen NaN5 . In the present invention, the sodium azide confined in the boron nitride nanotube is used as the starting material, and the high-pressure anhydrous alkali metal polymeric nitrogen Cm-NaN 5 is obtained stably existing under high pressure through high pressure treatment; and laser heating treatment to obtain confined high-density anhydrous alkali metal polymeric nitrogen Pmn2 1 ‑NaN 5 stably existing under high pressure; pressure relief after high pressure and laser heating treatment to obtain confined high-density stably existing under normal pressure Anhydrous alkali metal polymeric nitrogen P2/c-NaN 5 . The method of the invention is simple and easy to operate, realizes the high-temperature and high-pressure preparation and atmospheric trapping of confined high-density anhydrous alkali metal polymeric nitrogen NaN 5 for the first time, and provides an effective technical approach for the experimental preparation of novel anhydrous alkali metal polymeric nitrogen.
Description
技术领域technical field
本发明涉及高能量密度材料制备的技术领域,尤其涉及一种限域高密度无水碱金属聚合氮NaN5的高温高压制备和常压截获方法。The invention relates to the technical field of high-energy density material preparation, in particular to a high-temperature and high-pressure preparation and atmospheric-pressure interception method of confined high-density anhydrous alkali metal polymeric nitrogen NaN5 .
背景技术Background technique
聚合氮是一种典型的高能量密度材料(HEDM),其中的氮原子以N-N键或N=N键相连接,由于N-N键能(160KJ/mol)/N=N键能(418KJ/mol)远远低于氮气中的N≡N键能(954KJ/mol),在其解聚恢复成N2分子时将会释放出巨大的能量。五唑化合物是一类典型的聚合氮材料,其氮五环(N5 -)中的氮原子在同一个平面上,氮氮键键长介于氮氮单键(N-N)和双键(N=N)之间。Polymeric nitrogen is a typical high energy density material (HEDM), in which nitrogen atoms are connected by NN bonds or N=N bonds, due to the NN bond energy (160KJ/mol)/N=N bond energy (418KJ/mol) Much lower than the N≡N bond energy in nitrogen (954KJ/mol), huge energy will be released when its depolymerization is restored to N2 molecules. Pentazole compounds are a class of typical polymeric nitrogen materials. The nitrogen atoms in the nitrogen pentacycle (N 5 - ) are on the same plane, and the nitrogen-nitrogen bond length is between the nitrogen-nitrogen single bond (NN) and the double bond (N =N) between.
近年来人们利用化学合成方法得到了许多可以在环境条件下稳定存在的五唑盐,其中包括钠基五唑盐[Na8(N5)8(H2O)3]n及[Na(N5)(H2O)]·2H2O。在这两种钠基五唑骨架结构中,钠离子、结合水及自由水对稳定其中的氮五环(N5 -)起着重要的作用。值得注意的是,在这两种钠基五唑骨架结构中都含有大量水分子,其中的钠基五唑结构无法脱离水分子在环境条件下稳定存在,而且这两种钠基五唑骨架的笼状结构也导致了其中钠基五唑结构密度的极大降低。In recent years, many pentazolium salts that can exist stably under ambient conditions have been obtained by chemical synthesis methods, including sodium pentazolium salts [Na 8 (N 5 ) 8 (H 2 O) 3 ] n and [Na(N 5 )(H 2 O)]·2H 2 O. In these two sodium-based pentazole skeleton structures, sodium ion, bound water and free water play an important role in stabilizing the nitrogen pentacycle (N 5 - ) therein. It is worth noting that there are a lot of water molecules in these two sodium-based pentazole skeleton structures, and the sodium-based pentazole structure cannot be separated from water molecules and exists stably under environmental conditions, and the two sodium-based pentazole skeletons are stable. The cage-like structure also leads to a great reduction in the density of the sodium-based pentazole structure.
迄今为止,仅含有金属钠离子配位的钠基五唑结构尚未见报道,更高密度的无水碱金属聚合氮结构NaN5也尚未见报道。So far, the sodium-based pentazole structure containing only metal sodium ion coordination has not been reported, and the higher-density anhydrous alkali metal polymeric nitrogen structure NaN5 has not been reported either.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明提供了一种限域高密度无水碱金属聚合氮NaN5的高温高压制备和常压截获方法。本发明首次在高压下获得可以稳定存在的限域高密度无水碱金属聚合氮Cm-NaN5及Pmn21-NaN5,并且实现常压下截获稳定存在的限域高密度无水碱金属聚合氮P2/c-NaN5。In view of this, the present invention provides a high-temperature and high-pressure preparation and normal-pressure interception method of confined high-density anhydrous alkali metal polymeric nitrogen NaN 5 . The invention obtains the confined high-density anhydrous alkali metal polymer nitrogen Cm-NaN 5 and Pmn2 1 -NaN 5 which can exist stably under high pressure for the first time, and realizes the interception of the confined high-density anhydrous alkali metal polymerization under normal pressure. Nitrogen P2/c- NaN5 .
为了实现上述发明目的,本发明提供以下技术方案:In order to achieve the above-mentioned purpose of the invention, the present invention provides the following technical solutions:
一种限域高密度无水碱金属聚合氮Cm-NaN5的高压制备方法,包括以下步骤:A high-pressure preparation method of confined high-density anhydrous alkali metal polymeric nitrogen Cm-NaN 5 , comprising the following steps:
在金刚石对顶砧高压腔中封装限域在氮化硼纳米管中的叠氮化钠,然后加压至35GPa以上,得到高压下稳定存在的限域高密度无水碱金属聚合氮Cm-NaN5。The sodium azide confined in boron nitride nanotubes was encapsulated in a high-pressure cavity of a diamond anvil, and then pressurized to above 35 GPa to obtain a confined high-density anhydrous alkali metal polymer nitrogen Cm-NaN stably existing under high pressure 5 .
一种限域高密度无水碱金属聚合氮Pmn21-NaN5的高温高压制备方法,包括以下步骤:A high-temperature and high-pressure preparation method of confined high-density anhydrous alkali metal polymeric nitrogen Pmn2 1 -NaN 5 , comprising the following steps:
在金刚石对顶砧高压腔中封装限域在氮化硼纳米管中的叠氮化钠,加压至50GPa以上,然后进行2000~2300K激光加热处理,得到高压下稳定存在的限域高密度无水碱金属聚合氮Pmn21-NaN5。The sodium azide confined in boron nitride nanotubes was encapsulated in a high-pressure cavity of a diamond anvil, pressurized to more than 50GPa, and then subjected to 2000-2300K laser heat treatment to obtain a confined high-density nanotube that stably exists under high pressure. Water alkali metal polynitrogen Pmn2 1 -NaN 5 .
一种限域高密度无水碱金属聚合氮P2/c-NaN5的常压截获方法,包括以下步骤:A method for trapping at atmospheric pressure of confined high-density anhydrous alkali metal polymeric nitrogen P2/c-NaN 5 , comprising the following steps:
在金刚石对顶砧高压腔中封装限域在氮化硼纳米管中的叠氮化钠,加压至50GPa以上,然后进行2000~2300K激光加热处理,然后卸压至常压,得到在常压下稳定存在的限域高密度无水碱金属聚合氮P2/c-NaN5。The sodium azide confined in boron nitride nanotubes was encapsulated in a high-pressure cavity of diamond anvil, pressurized to more than 50GPa, then subjected to 2000-2300K laser heating treatment, and then decompressed to normal pressure to obtain Confinement high-density anhydrous alkali metal polymeric nitrogen P2/c-NaN 5 that exists stably under the condition.
优选的,所述加压的传压介质为液氩或液氖。Preferably, the pressurized pressure transmission medium is liquid argon or liquid neon.
优选的,所述金刚石对顶砧高压腔的制备方法为:使用铼箔作为封垫材料,利用金刚石对顶砧对铼箔进行预压,形成压痕;利用激光打孔机在所述压痕的中心成型一个孔洞,作为高压腔。Preferably, the method for preparing the diamond-to-anvil high-pressure cavity is as follows: using rhenium foil as a gasket material, using diamond to pre-press the rhenium foil on the anvil to form an indentation; A hole is formed in the center as a high pressure cavity.
优选的,所述预压后铼箔的厚度为40~60μm。Preferably, the thickness of the pre-pressed rhenium foil is 40-60 μm.
本发明提供了上述方案所述方法得到的限域高密度无水碱金属聚合氮Cm-NaN5。The present invention provides the confined high-density anhydrous alkali metal polymeric nitrogen Cm-NaN 5 obtained by the method described in the above scheme.
本发明提供了上述方案所述方法得到的限域高密度无水碱金属聚合氮Pmn21-NaN5。The present invention provides the confined high-density anhydrous alkali metal polymeric nitrogen Pmn2 1 -NaN 5 obtained by the method described in the above scheme.
本发明提供了上述方案所述的方法得到的限域高密度无水碱金属聚合氮P2/c-NaN5。The present invention provides confined high-density anhydrous alkali metal polymeric nitrogen P2/c-NaN 5 obtained by the method described in the above scheme.
本发明提供了一种限域高密度无水碱金属聚合氮Cm-NaN5的高压制备方法,包括以下步骤:在金刚石对顶砧高压腔中封装限域在氮化硼纳米管中的叠氮化钠,然后加压至35GPa以上,得到高压下稳定存在的限域高密度无水碱金属聚合氮Cm-NaN5。本发明利用高压条件使NaN3发生结构相变,其中的叠氮根N3 -解离并聚合形成N5 -环,从而在高压下获得可以稳定存在的限域高密度无水碱金属聚合氮Cm-NaN5。The invention provides a high-pressure preparation method of confined high-density anhydrous alkali metal polymeric nitrogen Cm- NaN5 , comprising the following steps: encapsulating azide confined in boron nitride nanotubes in a high-pressure cavity of a diamond anvil and then pressurized to above 35GPa to obtain confined high-density anhydrous alkali metal polymeric nitrogen Cm-NaN 5 stably existing under high pressure. The present invention utilizes high pressure conditions to make NaN 3 undergo structural phase transition, wherein azide N 3 - dissociates and polymerizes to form N 5 -ring , thereby obtaining confined high-density anhydrous alkali metal polymeric nitrogen that can exist stably under high pressure Cm- NaN5 .
本发明提供了一种限域高密度无水碱金属聚合氮Pmn21-NaN5的高温高压制备方法,包括以下步骤:在金刚石对顶砧高压腔中封装限域在氮化硼纳米管中的叠氮化钠,加压至50GPa以上,然后进行2000~2300K激光加热处理,得到高压下稳定存在的限域高密度无水碱金属聚合氮Pmn21-NaN5。本发明利用高温促使NaN3越过更高势垒向NaN5结构完全转变,并使得钠氮五结构结晶性更好。The invention provides a high-temperature and high-pressure preparation method of confined high-density anhydrous alkali metal polymeric nitrogen Pmn2 1 -NaN 5 . Sodium azide, pressurized to more than 50GPa, and then subjected to 2000-2300K laser heating treatment to obtain confined high-density anhydrous alkali metal polymer nitrogen Pmn2 1 -NaN 5 stably existing under high pressure. The present invention utilizes high temperature to promote the complete transformation of NaN 3 to NaN 5 structure across a higher potential barrier, and makes the crystallinity of the sodium nitrogen pentastructure better.
本发明还提供了一种限域高密度无水碱金属聚合氮P2/c-NaN5的常压截获方法,包括以下步骤:在金刚石对顶砧高压腔中封装限域在氮化硼纳米管中的叠氮化钠,加压至50GPa以上,然后进行2000~2300K激光加热处理,然后卸压,得到在常温常压下稳定存在的限域高密度无水碱金属聚合氮P2/c-NaN5。本发明利用高温促使NaN3向NaN5结构的完全转变,并使得钠氮五结构结晶性更好,同时在氮化硼管的限域作用下,实现NaN5的常压截获。The invention also provides a method for trapping at atmospheric pressure of confined high-density anhydrous alkali metal polymeric nitrogen P2/ c -NaN5, comprising the following steps: encapsulating the confined boron nitride nanotubes in a high-pressure cavity of a diamond counter-anvil Pressurize the sodium azide above 50GPa, then carry out 2000-2300K laser heating treatment, and then release the pressure to obtain a confined high-density anhydrous alkali metal polymer nitrogen P2/c-NaN that exists stably at room temperature and pressure 5 . The invention utilizes high temperature to promote the complete transformation of NaN 3 to NaN 5 structure, and makes the crystallinity of the sodium nitrogen pentastructure better, and at the same time, under the confinement of the boron nitride tube, the normal pressure interception of NaN 5 is realized.
此外,本发明提供的高温高压制备方法和常压截获方法无需苛刻的实验条件,方法简单,易于操作。In addition, the high temperature and high pressure preparation method and the atmospheric pressure interception method provided by the present invention do not require harsh experimental conditions, and the method is simple and easy to operate.
附图说明Description of drawings
图1为实施例1制备的Cm-NaN5@BNNTs在35GPa压力下的高压原位Raman谱图;Fig. 1 is the high-pressure in-situ Raman spectrum of Cm-NaN 5 @BNNTs prepared in Example 1 at a pressure of 35 GPa;
图2为为实施例1制备的Cm-NaN5@BNNTs在35GPa下的高压原位同步辐射角散XRD谱图;Fig. 2 is the high-pressure in-situ synchrotron radiation angle-dispersion XRD spectrum of Cm-NaN 5 @BNNTs prepared in Example 1 at 35 GPa;
图3为Cm-NaN5、Pmn21-NaN5和P2/c-NaN5的3D晶体结构图,其中(a)为Cm-NaN5的3D晶体结构图,(b)为Pmn21-NaN5的3D晶体结构图,(c)为P2/c-NaN5的3D晶体结构图;Figure 3 shows the 3D crystal structures of Cm-NaN 5 , Pmn2 1 -NaN 5 and P2/c-NaN 5 , wherein (a) is the 3D crystal structure of Cm-NaN 5 and (b) is Pmn2 1 -NaN 5 The 3D crystal structure of , (c) is the 3D crystal structure of P2/c-NaN 5 ;
图4为实施例2制备的Cm-NaN5@BNNTs在43GPa压力下的高压原位Raman谱图;4 is a high-pressure in-situ Raman spectrum of Cm-NaN 5 @BNNTs prepared in Example 2 under a pressure of 43 GPa;
图5为实施例2制备的Cm-NaN5@BNNTs在43GPa下的高压原位同步辐射角散XRD谱图;Fig. 5 is the high-pressure in-situ synchrotron radiation angle-dispersion XRD spectrum of Cm-NaN 5 @BNNTs prepared in Example 2 at 43 GPa;
图6为实施例3制备的Cm-NaN5@BNNTs在115GPa压力下的高压原位Raman谱图;6 is a high-pressure in-situ Raman spectrum of Cm-NaN 5 @BNNTs prepared in Example 3 at a pressure of 115 GPa;
图7为实施例3制备的Cm-NaN5@BNNTs在115GPa下的高压原位同步辐射角散XRD谱图;Fig. 7 is the high-pressure in-situ synchrotron radiation angle-dispersion XRD spectrum of Cm-NaN 5 @BNNTs prepared in Example 3 at 115 GPa;
图8为实施例4制备的Pmn21-NaN5@BNNTs在50GPa压力下的高压原位Raman谱图;Fig. 8 is the high-pressure in-situ Raman spectrum of Pmn2 1 -NaN 5 @BNNTs prepared in Example 4 at a pressure of 50 GPa;
图9为实施例4制备的Pmn21-NaN5@BNNTs在50GPa下的高压原位同步辐射角散XRD谱图;Fig. 9 is the high-pressure in-situ synchrotron radiation angle-dispersion XRD spectrum of Pmn2 1 -NaN 5 @BNNTs prepared in Example 4 at 50 GPa;
图10为实施例5制备的P2/c-NaN5@BNNTs常温常压条件下的Raman谱图;Figure 10 is the Raman spectrum of P2/c-NaN 5 @BNNTs prepared in Example 5 under normal temperature and normal pressure conditions;
图11为实施例5制备的P2/c-NaN5@BNNTs常温常压条件下的同步辐射XRD谱图。FIG. 11 is a synchrotron radiation XRD pattern of P2/c-NaN 5 @BNNTs prepared in Example 5 under normal temperature and normal pressure conditions.
具体实施方式Detailed ways
本发明提供了一种限域高密度无水碱金属聚合氮Cm-NaN5的高压制备方法,包括以下步骤:The invention provides a high-pressure preparation method of confined high-density anhydrous alkali metal polymeric nitrogen Cm-NaN 5 , comprising the following steps:
在金刚石对顶砧高压腔中封装限域在氮化硼纳米管中的叠氮化钠,然后加压至35GPa以上,得到高压下稳定存在的限域高密度无水碱金属聚合氮Cm-NaN5。The sodium azide confined in boron nitride nanotubes was encapsulated in a high-pressure cavity of a diamond anvil, and then pressurized to above 35 GPa to obtain a confined high-density anhydrous alkali metal polymer nitrogen Cm-NaN stably existing under high pressure 5 .
在本发明中,所述金刚石对顶砧高压腔的制备方法优选为:使用铼箔作为封垫材料,利用金刚石对顶砧对铼箔进行预压,利用激光打孔机在压痕中心成型一个孔洞,作为高压腔。在本发明中,所述预压后铼箔的厚度优选为40~60μm;所述孔洞的直径优选为金刚石对顶砧砧面直径的1/3,在本发明的具体实施例中,当金刚石对顶砧砧面直径为200μm时,所述孔洞的直径优选为60~70μm;所述加压的传压介质优选为液氩或液氖,更优选为液氩,在本发明的具体实施例中,优选使用10μm以下的红宝石微球作为压标物质,用以标定高压腔中的压力。In the present invention, the method for preparing the high-pressure cavity of the diamond-to-anvil is preferably as follows: using rhenium foil as a gasket material, using diamond to pre-press the rhenium foil on the anvil, and using a laser drilling machine to form a rhenium foil in the center of the indentation Holes, as high pressure chambers. In the present invention, the thickness of the pre-pressed rhenium foil is preferably 40-60 μm; the diameter of the hole is preferably 1/3 of the diameter of the anvil surface of the diamond anvil. When the diameter of the anvil surface is 200 μm, the diameter of the hole is preferably 60-70 μm; the pressurized pressure transmission medium is preferably liquid argon or liquid neon, more preferably liquid argon, in the specific embodiment of the present invention Among them, it is preferable to use ruby microspheres below 10 μm as the pressure standard material to calibrate the pressure in the high pressure chamber.
在本发明中,所述限域在氮化硼纳米管中的叠氮化钠具体为一种NaN3@BNNTs限域纳米复合材料,通过将叠氮化钠限域在氮化硼纳米管中得到;本发明对所述限域在氮化硼纳米管中的叠氮化钠没有特殊要求,使用本领域技术人员熟知的方法进行制备或购买使用均可。In the present invention, the sodium azide confined in boron nitride nanotubes is specifically a NaN 3 @BNNTs confinement nanocomposite material. By confining sodium azide in boron nitride nanotubes Obtained; the present invention has no special requirements for the sodium azide confined in boron nitride nanotubes, and can be prepared or purchased using methods well known to those skilled in the art.
本发明将在金刚石对顶砧高压腔中封装限域在氮化硼纳米管中的叠氮化钠,然后加压至35GPa以上,具体可以为35GPa、43GPa或115GPa,在压力作用下,NaN3发生结构相变,其中的叠氮根N3 -解离并聚合形成N5 -环,从而得到NaN5,本发明在高压下制备得到的具体是一种高压下稳定存在的、被限域在氮化硼纳米管中的高密度无水碱金属聚合氮NaN5,其空间群为Cm,记为Cm-NaN5@BNNTs(其中BNNTs表示氮化硼纳米管)。The present invention encapsulates sodium azide confined in boron nitride nanotubes in a high-pressure cavity of a diamond counter-anvil, and then pressurizes it to more than 35GPa, specifically 35GPa, 43GPa or 115GPa. Under the action of pressure, NaN 3 A structural phase transition occurs, wherein the azide N 3 - dissociates and polymerizes to form an N 5 -ring , thereby obtaining NaN 5 . The high-density anhydrous alkali metal polymeric nitrogen NaN 5 in boron nitride nanotubes has a space group of Cm and is denoted as Cm-NaN 5 @BNNTs (where BNNTs represent boron nitride nanotubes).
本发明还提供了一种限域高密度无水碱金属聚合氮Pmn21-NaN5的高温高压制备方法,包括以下步骤:The invention also provides a high-temperature and high-pressure preparation method of confined high-density anhydrous alkali metal polymeric nitrogen Pmn2 1 -NaN 5 , comprising the following steps:
在金刚石对顶砧高压腔中封装限域在氮化硼纳米管中的叠氮化钠,加压至50GPa以上,然后进行2000~2300K激光加热处理,得到在高压下稳定存在的限域高密度无水碱金属聚合氮Pmn21-NaN5。The sodium azide confined in boron nitride nanotubes was encapsulated in a high-pressure cavity of diamond anvil, pressurized to more than 50GPa, and then subjected to 2000-2300K laser heating treatment to obtain confinement high-density stably existing under high pressure Anhydrous alkali metal polymeric nitrogen Pmn2 1 -NaN 5 .
在本发明中,所述金刚石对顶砧高压腔的制备方法以及加压的介质和上述方案中一致,在此不再赘述;所述限域在氮化硼纳米管中的叠氮化钠和上述方案一致,在此不再赘述。In the present invention, the preparation method and pressurized medium of the diamond-to-anvil high-pressure cavity are the same as those in the above scheme, and will not be repeated here; the sodium azide and The above solutions are the same, and are not repeated here.
封装完成后,本发明加压至50GPa以上,具体可以为50GPa或60GPa,然后进行2000~2300K激光加热处理,优选进行2100~2200K激光加热处理。本发明优选使用波长为1064nm的光纤激光器进行激光加热处理,本发明对所述激光加热处理的具体条件没有特殊要求,能够达到要求温度即可。本发明利用激光进行加温处理,高温可以促使NaN3越过更高势垒向NaN5结构的完全转变,并使得钠氮五结构结晶性更好;本发明在通过加压和激光加热处理得到的具体是一种在高压下稳定存在的、被限域在氮化硼纳米管中的高密度无水碱金属聚合氮NaN5,其空间群为Pmn21,记为Pmn21-NaN5@BNNTs(其中BNNTs表示氮化硼纳米管)。After the packaging is completed, the present invention is pressurized to more than 50GPa, specifically 50GPa or 60GPa, and then subjected to 2000-2300K laser heating treatment, preferably 2100-2200K laser heating treatment. In the present invention, a fiber laser with a wavelength of 1064 nm is preferably used for laser heating treatment. The present invention does not have special requirements on the specific conditions of the laser heating treatment, as long as the required temperature can be reached. The present invention utilizes laser to carry out heating treatment, and high temperature can promote the complete transformation of NaN 3 to NaN 5 structure across a higher potential barrier, and make the crystallinity of the sodium-nitrogen pentastructure better; Specifically, it is a high-density anhydrous alkali metal polymeric nitrogen NaN 5 , which is stably existing under high pressure and confined in boron nitride nanotubes, and its space group is Pmn2 1 , denoted as Pmn2 1 -NaN 5 @BNNTs ( where BNNTs represent boron nitride nanotubes).
本发明还提供了一种限域高密度无水碱金属聚合氮P2/c-NaN5的常压截获方法,包括以下步骤:The present invention also provides a method for trapping at atmospheric pressure of confined high-density anhydrous alkali metal polymeric nitrogen P2/ c -NaN5, comprising the following steps:
在金刚石对顶砧高压腔中封装限域在氮化硼纳米管中的叠氮化钠,加压至50GPa以上,然后进行2000~2300K激光加热处理,然后卸压至常压,得到在常压下稳定存在的限域高密度无水碱金属聚合氮P2/c-NaN5。The sodium azide confined in boron nitride nanotubes was encapsulated in a high-pressure cavity of diamond anvil, pressurized to more than 50GPa, then subjected to 2000-2300K laser heating treatment, and then decompressed to normal pressure to obtain Confinement high-density anhydrous alkali metal polymeric nitrogen P2/c-NaN 5 that exists stably under the condition.
在本发明中,所述金刚石对顶砧高压腔的制备方法以及加压的介质和上述方案中一致,在此不再赘述;所述限域在氮化硼纳米管中的叠氮化钠和上述方案一致,在此不再赘述。In the present invention, the preparation method and pressurized medium of the diamond-to-anvil high-pressure cavity are the same as those in the above scheme, and will not be repeated here; the sodium azide and The above solutions are the same, and are not repeated here.
封装完成后,本发明加压至50GPa以上,具体可以为50GPa、53GPa或58GPa,然后进行2000~2300K激光加热处理,优选进行2100~2200K激光加热处理,然后进行卸压。本发明优选使用波长为1064nm的光纤激光器进行激光加热处理,本发明对所述激光加热处理的具体条件没有特殊要求,能够达到要求温度即可。本发明利用激光进行加温处理,高温可以促使NaN3越过更高势垒向NaN5结构的完全转变,并使得钠氮五结构结晶性更好,同时在氮化硼管的限域作用下,实现NaN5的常压截获;本发明在常压下得到的具体是一种在常温常压下稳定存在的、被限域在氮化硼纳米管中的高密度无水碱金属聚合氮NaN5,其空间群为P2/c,记为P2/c-NaN5@BNNTs(其中BNNTs表示氮化硼纳米管)。After the packaging is completed, the present invention is pressurized to more than 50GPa, specifically 50GPa, 53GPa or 58GPa, and then subjected to 2000-2300K laser heating treatment, preferably 2100-2200K laser heating treatment, and then decompressed. In the present invention, a fiber laser with a wavelength of 1064 nm is preferably used for laser heating treatment. The present invention does not have special requirements on the specific conditions of the laser heating treatment, as long as the required temperature can be reached. In the present invention, the laser is used for heating treatment, and the high temperature can promote the complete transformation of NaN 3 over a higher potential barrier to the NaN 5 structure, and make the crystallinity of the sodium-nitrogen pentastructure better. The normal pressure interception of NaN 5 is realized; what the present invention obtains under normal pressure is a high-density anhydrous alkali metal polymerized nitrogen NaN 5 that is stably existing at normal temperature and normal pressure and confined in boron nitride nanotubes , whose space group is P2/c, denoted as P2/c-NaN 5 @BNNTs (where BNNTs represent boron nitride nanotubes).
本发明还提供了上述方案所述方法得到的限域高密度无水碱金属聚合氮Cm-NaN5、Pmn21-NaN5和P2/c-NaN5。本发明首次得到了在高压下稳定存在限域高密度无水碱金属聚合氮Cm-NaN5及Pmn21-NaN5;本发明利用常压截获方法首次得到了在常温常压下稳定存在的限域高密度无水碱金属聚合氮P2/c-NaN5;本发明提供的Cm-NaN5、Pmn21-NaN5和P2/c-NaN5为仅由金属钠离子配位的钠基五唑结构化合物,钠基五唑骨架结构中不含水分子,具有较高的能量密度,在本发明中,基于相应压力下NaN5结构分解成NaN3和N2进行的计算,35GPa下Cm-NaN5的理论能量密度为103.2kJ/mol,50GPa下Pmn21-NaN5的理论能量密度为114.7kJ/mol,0GPa下P2/c-NaN5的理论能量密度为81.5kJ/mol。The present invention also provides the confined high-density anhydrous alkali metal polymeric nitrogen Cm-NaN 5 , Pmn2 1 -NaN 5 and P2/c-NaN 5 obtained by the method described in the above scheme. For the first time, the present invention obtains the confined high-density anhydrous alkali metal polymeric nitrogen Cm-NaN 5 and Pmn2 1 -NaN 5 stably existing under high pressure for the first time; Domain high density anhydrous alkali metal polymeric nitrogen P2/c-NaN 5 ; Cm-NaN 5 , Pmn2 1 -NaN 5 and P2/c-NaN 5 provided by the present invention are sodium pentazoles only coordinated by metal sodium ions Structural compound, there is no water molecule in the skeleton structure of sodium-based pentazole, and has high energy density. In the present invention, based on the calculation of the decomposition of NaN 5 structure into NaN 3 and N 2 under the corresponding pressure, Cm-NaN 5 under 35GPa The theoretical energy density of Pmn21-NaN5 is 103.2kJ/mol at 50GPa , the theoretical energy density of Pmn21 - NaN5 is 114.7kJ/mol at 0GPa, and the theoretical energy density of P2/c-NaN5 is 81.5kJ /mol at 0GPa.
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。The technical solutions of the present invention will be clearly and completely described below with reference to the embodiments of the present invention.
实施例1Example 1
选取砧面为200微米的金刚石对顶砧产生高压,纯度为99.97%的金属铼箔作为封垫材料,利用金刚石对顶砧在封垫材料上进行预压,形成一个压痕,利用激光打孔机在压痕中心成型一个直径为70微米的圆形孔洞,作为封装NaN3@BNNTs限域纳米复合材料的样品腔;封入液氩作为传压介质,然后装入10μm以下的红宝石微球作为压标物质,用来标定样品腔中的压力。旋转金刚石对顶砧加压螺母,在常温条件下进行压力加载。当压力提升到35GPa时,可以得到限域高密度无水碱金属聚合氮Cm-NaN5,记为Cm-NaN5@BNNTs。The diamond with an anvil surface of 200 microns is selected to generate high pressure on the top anvil, and the metal rhenium foil with a purity of 99.97% is used as the gasket material, and the top anvil is pre-pressed with diamond to form an indentation, and the hole is drilled by laser. The machine forms a circular hole with a diameter of 70 μm in the center of the indentation as a sample cavity for encapsulating the NaN 3 @BNNTs confined nanocomposite; liquid argon is sealed as the pressure transmission medium, and then ruby microspheres below 10 μm are loaded as the indenter. Standard substance used to calibrate the pressure in the sample chamber. Rotate the diamond anvil pressure nut, and carry out pressure loading under normal temperature conditions. When the pressure was increased to 35GPa, confined high-density anhydrous alkali metal polynitrogen Cm-NaN 5 could be obtained, denoted as Cm-NaN 5 @BNNTs.
图1和图2分别是Cm-NaN5@BNNTs在35GPa压力下的高压原位Raman谱图(图中黑色箭头标注代表N5-环的特征振动)和高压原位同步辐射角散XRD谱图(图中*标注为Cm-NaN5相衍射峰),图3中(a)为Cm-NaN5的3D晶体结构图。在高压原位Raman谱图中,位于200-400cm-1的三个特征峰是NaN3高压相γ-NaN3(空间群为I4/mcm)的晶格振动模式,位于650cm-1特征峰是γ-NaN3中N3 -的弯曲振动模式,位于1490cm-1的特征峰是γ-NaN3中N3 -的对称伸缩振动模式。图中黑色箭头标注为三个新的宽峰,这与理论预测中Cm-NaN5结构的理论计算拉曼峰位吻合的很好,其中位于~280cm-1的拉曼振动峰为N5 -环的晶格振动,位于800cm-1的拉曼振动峰为N5 -环弯曲振动,位于~1100cm-1的拉曼振动峰归属为N5 -环非对称呼吸和角变形振动。在高压原位同步辐射角散XRD谱图中,35GPa出现的新的衍射峰与Cm-NaN5结构理论预测图谱吻合的很好。此外,在I4/mcm-NaN3结构向Cm-NaN5结构相变的过程中,伴随着Cmmm-NaN2结构的生成。Figures 1 and 2 are the high-pressure in situ Raman spectra of Cm-NaN 5 @BNNTs at 35GPa pressure (black arrows in the figure represent the characteristic vibration of the N 5 -ring) and high-pressure in situ synchrotron radiation angle-dispersion XRD spectra, respectively. (The * in the figure is marked as the diffraction peak of Cm-NaN 5 phase), and (a) in Figure 3 is the 3D crystal structure of Cm-NaN 5 . In the high-pressure in-situ Raman spectrum, the three characteristic peaks located at 200-400cm -1 are the lattice vibration modes of NaN 3 high-pressure phase γ-NaN 3 (space group is I4/mcm), and the characteristic peak located at 650cm -1 is The bending vibration mode of N 3 - in γ-NaN 3 , the characteristic peak located at 1490cm -1 is the symmetrical stretching vibration mode of N 3 - in γ-NaN 3 . The black arrows in the figure are marked as three new broad peaks, which are in good agreement with the theoretically calculated Raman peak positions of the Cm-NaN 5 structure in the theoretical prediction, in which the Raman vibration peak located at ~280cm -1 is N 5 - The lattice vibration of the ring, the Raman vibration peak at 800 cm -1 is N 5 -ring bending vibration, and the Raman vibration peak at ~1100 cm -1 is assigned to N 5 -ring asymmetric breathing and angular deformation vibration. In the high-pressure in situ synchrotron radiation angle-dispersion XRD pattern, the new diffraction peak at 35GPa is in good agreement with the theoretically predicted pattern of the Cm-NaN 5 structure. In addition, the phase transition from the I4/mcm-NaN 3 structure to the Cm-NaN 5 structure was accompanied by the formation of the Cmmm-NaN 2 structure.
实施例2Example 2
压机、样品腔和传压介质同实施例1。将适量限域纳米复合材料NaN3@BNNTs填装到样品腔中,再添加红宝石微球作为压标(检测压腔内的压力),封入液氩作为传压介质,进行加压。当压力提升到43GPa时,可以得到限域高密度无水碱金属聚合氮Cm-NaN5@BNNTs。图4和图5分别是样品在43GPa压力下的高压原位Raman谱图(图中黑色箭头标注代表N5 -环的特征振动。)和高压原位同步辐射角散XRD谱图(图中*标注为Cm-NaN5相衍射峰),根据图4和图5可知本实施例在高压下成功得到了NaN5。The press, sample chamber and pressure transfer medium were the same as those in Example 1. An appropriate amount of confined nanocomposite NaN 3 @BNNTs was filled into the sample cavity, and then ruby microspheres were added as a pressure marker (to detect the pressure in the pressure cavity), and liquid argon was sealed as a pressure transmission medium for pressurization. When the pressure was increased to 43 GPa, confined high-density anhydrous alkali metal polymeric nitrogen Cm-NaN 5 @BNNTs could be obtained. Figures 4 and 5 are the high-pressure in-situ Raman spectrum of the sample at 43GPa pressure (the black arrows in the figure represent the characteristic vibration of the N 5 -ring .) and the high-pressure in-situ synchrotron radiation angle-dispersion XRD spectrum (* in the figure), respectively. It is marked as Cm-NaN 5 phase diffraction peak), according to FIG. 4 and FIG. 5 , it can be seen that NaN 5 is successfully obtained under high pressure in this example.
实施例3Example 3
压机、样品腔和传压介质同实施例1。将适量限域纳米复合材料NaN3@BNNTs填装到样品腔中,再添加红宝石微球作为压标(检测压腔内的压力),封入液氩作为传压介质,进行加压。当压力提升到115GPa时,可以得到限域高密度无水碱金属聚合氮NaN5,记为Cm-NaN5@BNNTs。The press, sample chamber and pressure transfer medium were the same as those in Example 1. An appropriate amount of confined nanocomposite NaN 3 @BNNTs was filled into the sample cavity, and then ruby microspheres were added as a pressure marker (to detect the pressure in the pressure cavity), and liquid argon was sealed as a pressure transmission medium for pressurization. When the pressure is increased to 115GPa, the confined high-density anhydrous alkali metal polynitrogen NaN 5 can be obtained, denoted as Cm-NaN 5 @BNNTs.
对样品腔中的样品分别进行高压原位Raman光谱表征和高压原位同步辐射角散XRD表征,结果参见图6和图7。在115GPa条件下,拉曼光谱显示了NaN5的拉曼特征振动:其中位于300-500cm-1的拉曼振动峰归属于N5 -环的晶格振动,位于830cm-1的拉曼振动峰归属于N5 -环的弯曲振动,位于1160cm-1的拉曼振动峰归属于N5 -环的非对称呼吸和角变形振动。位于400-750cm-1范围内N3 -弯曲振动特征峰,以及位于1560cm-1的N3 -对称伸缩振动特征峰完全消失,标志着γ-NaN3向NaN5的完全转变。高压原位同步辐射XRD谱图与Cm-NaN5结果一致。The samples in the sample cavity were characterized by high-pressure in-situ Raman spectroscopy and high-pressure in-situ synchrotron radiation angle-dispersion XRD. The results are shown in Figures 6 and 7. Under the condition of 115GPa, the Raman spectrum shows the Raman characteristic vibration of NaN 5 : the Raman vibration peak at 300-500cm -1 is assigned to the lattice vibration of N5 - ring, and the Raman vibration peak at 830cm -1 The Raman vibration peaks at 1160 cm -1 are assigned to the bending vibrations of the N5 - ring, and the asymmetric breathing and angular deformation vibrations of the N5 - ring are assigned. The characteristic peak of N 3 -bending vibration located in the range of 400-750 cm -1 and the characteristic peak of N 3 -symmetric stretching vibration located at 1560 cm -1 disappeared completely, marking the complete transformation of γ-NaN 3 to NaN 5 . The high-pressure in situ synchrotron radiation XRD patterns are consistent with the Cm-NaN 5 results.
实施例4Example 4
压机、样品腔和传压介质同实施例1。将适量限域纳米复合材料NaN3@BNNTs填装到样品腔中,再添加红宝石微球作为压标(检测压腔内的压力),封入液氩作为传压介质,进行加压。当压力提升到50GPa时,对样品腔中的样品进行高压原位激光加温至2000K,得到高压下稳定存在的限域高密度无水碱金属聚合氮Pmn21-NaN5@BNNTs。The press, sample chamber and pressure transfer medium were the same as those in Example 1. An appropriate amount of confined nanocomposite NaN 3 @BNNTs was filled into the sample cavity, and then ruby microspheres were added as a pressure marker (to detect the pressure in the pressure cavity), and liquid argon was sealed as a pressure transmission medium for pressurization. When the pressure was raised to 50GPa, the sample in the sample cavity was heated to 2000K by high-pressure in-situ laser, and the confined high-density anhydrous alkali metal polynitrogen Pmn2 1 -NaN 5 @BNNTs stably existed under high pressure was obtained.
图8和图9分别是样品在50GPa条件下的Raman谱图和同步辐射角散XRD谱图,图3中(b)是Pmn21-NaN5的3D晶体结构图。激光加热后的Raman谱图中出现N5 -特征振动:其中位于150-540cm-1的两个拉曼宽带归属于N5 -环的晶格振动,位于800cm-1的拉曼振动峰归属于N5 -环的弯曲振动,位于1036、1170cm-1的拉曼振动峰归属于N5 -环的非对称呼吸和角变形振动。这与理论预测中Pmn21-NaN5结构的理论计算拉曼峰位吻合的很好。高压原位同步辐射角散XRD谱图与Pmn21-NaN5结构理论计算图谱结果一致。Figures 8 and 9 are the Raman spectrum and synchrotron radiation angle dispersion XRD spectrum of the sample under the condition of 50GPa, respectively, and Figure 3(b) is the 3D crystal structure of Pmn2 1 -NaN 5 . The N 5 -characteristic vibrations appear in the Raman spectrum after laser heating : the two Raman bands at 150-540 cm -1 are assigned to the lattice vibration of the N 5 -ring , and the Raman vibration peak at 800 cm -1 is assigned to The bending vibrations of the N 5 -ring , the Raman vibration peaks at 1036, 1170 cm -1 are assigned to the asymmetric breathing and angular deformation vibrations of the N 5 -ring . This is in good agreement with the theoretically calculated Raman peak positions of the Pmn2 1 -NaN 5 structure in the theoretical prediction. The high-pressure in situ synchrotron radiation angle-dispersed XRD pattern is consistent with the theoretical calculation pattern of the Pmn2 1 -NaN 5 structure.
实施例5Example 5
压机、样品腔和传压介质同实施例1。将适量限域纳米复合材料NaN3@BNNTs填装到样品腔中,再添加红宝石微球作为压标(检测压腔内的压力),封入液氩作为传压介质,进行加压。当压力提升到50GPa时,对样品腔中的样品进行高压原位激光加温至2000K,然后对样品卸压至常压,得到常压下存在的限域高密度无水碱金属聚合氮P2/c-NaN5@BNNTs。The press, sample chamber and pressure transfer medium were the same as those in Example 1. An appropriate amount of confined nanocomposite NaN 3 @BNNTs was filled into the sample cavity, and then ruby microspheres were added as a pressure marker (to detect the pressure in the pressure cavity), and liquid argon was sealed as a pressure transmission medium for pressurization. When the pressure was raised to 50GPa, the sample in the sample cavity was heated to 2000K by high-pressure in-situ laser, and then the sample was depressurized to normal pressure to obtain the confined high-density anhydrous alkali metal polymer nitrogen P2/ c- NaN5 @BNNTs.
图10和图11分别是样品常温常压条件下的Raman谱图和同步辐射角散XRD谱图,图3中(c)是P2/c-NaN5的3D晶体结构图。常温常压Raman谱图中出现N5 -特征振动峰,位于119cm-1,831cm-1,998cm-1,1115cm-1和1180cm-1,这与理论预测中P2/c-NaN5结构的理论计算拉曼峰位吻合的很好。常温常压同步辐射角散XRD谱图与P2/c-NaN5结构理论计算图谱结果一致。Figure 10 and Figure 11 are the Raman spectrum and synchrotron radiation angle dispersion XRD spectrum of the sample under normal temperature and normal pressure conditions, respectively, and Figure 3(c) is the 3D crystal structure of P2/c-NaN 5 . The N 5 -characteristic vibrational peaks appear in the Raman spectrum at room temperature and pressure at 119cm -1 , 831cm -1 , 998cm -1 , 1115cm -1 and 1180cm -1 , which is consistent with the theoretical prediction of the P2/c-NaN 5 structure. The calculated Raman peak positions are in good agreement. The XRD pattern of synchrotron radiation at room temperature and pressure is consistent with the theoretical calculation pattern of P2/c-NaN 5 structure.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above are only the preferred embodiments of the present invention. It should be pointed out that for those skilled in the art, without departing from the principles of the present invention, several improvements and modifications can be made. It should be regarded as the protection scope of the present invention.
Claims (9)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110831146.0A CN113387901B (en) | 2020-01-17 | 2020-01-17 | Limited high-density anhydrous alkali metal polymeric nitrogen Cm-NaN 5 High pressure process of (2) |
CN202110834107.6A CN113387902B (en) | 2020-01-17 | 2020-01-17 | High-temperature high-pressure preparation method of limited-area high-density anhydrous alkali metal polymeric nitrogen Pmn21-NaN5 |
CN202010053376.4A CN111233778B (en) | 2020-01-17 | 2020-01-17 | High-temperature high-pressure preparation and normal-pressure capture method of limited-area high-density anhydrous alkali metal polymeric nitrogen NaN5 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010053376.4A CN111233778B (en) | 2020-01-17 | 2020-01-17 | High-temperature high-pressure preparation and normal-pressure capture method of limited-area high-density anhydrous alkali metal polymeric nitrogen NaN5 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110831146.0A Division CN113387901B (en) | 2020-01-17 | 2020-01-17 | Limited high-density anhydrous alkali metal polymeric nitrogen Cm-NaN 5 High pressure process of (2) |
CN202110834107.6A Division CN113387902B (en) | 2020-01-17 | 2020-01-17 | High-temperature high-pressure preparation method of limited-area high-density anhydrous alkali metal polymeric nitrogen Pmn21-NaN5 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111233778A true CN111233778A (en) | 2020-06-05 |
CN111233778B CN111233778B (en) | 2021-09-14 |
Family
ID=70877852
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110834107.6A Active CN113387902B (en) | 2020-01-17 | 2020-01-17 | High-temperature high-pressure preparation method of limited-area high-density anhydrous alkali metal polymeric nitrogen Pmn21-NaN5 |
CN202010053376.4A Active CN111233778B (en) | 2020-01-17 | 2020-01-17 | High-temperature high-pressure preparation and normal-pressure capture method of limited-area high-density anhydrous alkali metal polymeric nitrogen NaN5 |
CN202110831146.0A Active CN113387901B (en) | 2020-01-17 | 2020-01-17 | Limited high-density anhydrous alkali metal polymeric nitrogen Cm-NaN 5 High pressure process of (2) |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110834107.6A Active CN113387902B (en) | 2020-01-17 | 2020-01-17 | High-temperature high-pressure preparation method of limited-area high-density anhydrous alkali metal polymeric nitrogen Pmn21-NaN5 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110831146.0A Active CN113387901B (en) | 2020-01-17 | 2020-01-17 | Limited high-density anhydrous alkali metal polymeric nitrogen Cm-NaN 5 High pressure process of (2) |
Country Status (1)
Country | Link |
---|---|
CN (3) | CN113387902B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111847401A (en) * | 2020-07-27 | 2020-10-30 | 北华大学 | A kind of preparation method of noble metal nitride nanomaterial |
CN111960391A (en) * | 2020-09-01 | 2020-11-20 | 吉林大学 | High-pressure preparation method of sodium pentazole |
CN113717119A (en) * | 2021-03-19 | 2021-11-30 | 吉林大学 | Pentazole compound material and preparation method thereof |
CN114408878A (en) * | 2022-01-11 | 2022-04-29 | 吉林大学 | A kind of high temperature and high pressure preparation and low temperature and atmospheric pressure interception method of sodium pentazole |
CN116002634A (en) * | 2022-12-29 | 2023-04-25 | 浙江大学杭州国际科创中心 | Cubic deflection structure polymeric nitrogen and preparation method and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105540558A (en) * | 2016-01-26 | 2016-05-04 | 吉林大学 | Nitrogen polymer and preparation method thereof |
CN109573966A (en) * | 2019-01-22 | 2019-04-05 | 吉林大学 | A kind of NaN3@BNNTs confinement nanocomposite and preparation method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3483274A (en) * | 1966-11-17 | 1969-12-09 | Chevron Res | Stereoregular coordination catalyst system having nitrogen-containing polymers |
WO2008127828A1 (en) * | 2007-04-12 | 2008-10-23 | 3M Innovative Properties Company | High performance, high durability non-precious metal fuel cell catalysts |
CN104447684A (en) * | 2013-09-17 | 2015-03-25 | 上海创诺制药有限公司 | Pomalidomide crystal form and preparation method thereof |
CN106748602B (en) * | 2017-01-24 | 2018-09-07 | 南京理工大学 | Green gases propellant is hydrated pentazole metal salt and preparation method thereof |
CN110467581A (en) * | 2018-05-11 | 2019-11-19 | 南京理工大学 | A kind of anhydrous nonmetallic pentazole ion salt and preparation method thereof |
-
2020
- 2020-01-17 CN CN202110834107.6A patent/CN113387902B/en active Active
- 2020-01-17 CN CN202010053376.4A patent/CN111233778B/en active Active
- 2020-01-17 CN CN202110831146.0A patent/CN113387901B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105540558A (en) * | 2016-01-26 | 2016-05-04 | 吉林大学 | Nitrogen polymer and preparation method thereof |
CN109573966A (en) * | 2019-01-22 | 2019-04-05 | 吉林大学 | A kind of NaN3@BNNTs confinement nanocomposite and preparation method thereof |
Non-Patent Citations (3)
Title |
---|
BRAD A. STEELE,等: "Sodium pentazolate: A nitrogen rich high energy density material", 《CHEMICAL PHYSICS LETTERS》 * |
刘世杰: "高压下新型聚合氮结构的设计及合成", 《中国博士学位论文全文数据库(电子期刊) 工程科技I辑》 * |
周淼: "叠氮化钠高压结构相变及聚合研究", 《中国优秀硕士学位论文全文数据库基础科学辑》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111847401A (en) * | 2020-07-27 | 2020-10-30 | 北华大学 | A kind of preparation method of noble metal nitride nanomaterial |
CN111847401B (en) * | 2020-07-27 | 2022-12-27 | 北华大学 | Preparation method of noble metal nitride nano material |
CN111960391A (en) * | 2020-09-01 | 2020-11-20 | 吉林大学 | High-pressure preparation method of sodium pentazole |
CN113717119A (en) * | 2021-03-19 | 2021-11-30 | 吉林大学 | Pentazole compound material and preparation method thereof |
CN114408878A (en) * | 2022-01-11 | 2022-04-29 | 吉林大学 | A kind of high temperature and high pressure preparation and low temperature and atmospheric pressure interception method of sodium pentazole |
CN114408878B (en) * | 2022-01-11 | 2023-03-21 | 吉林大学 | A kind of high temperature and high pressure preparation and low temperature and normal pressure interception method of sodium pentazole |
CN116002634A (en) * | 2022-12-29 | 2023-04-25 | 浙江大学杭州国际科创中心 | Cubic deflection structure polymeric nitrogen and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN113387901A (en) | 2021-09-14 |
CN113387902A (en) | 2021-09-14 |
CN113387902B (en) | 2023-02-24 |
CN113387901B (en) | 2023-05-05 |
CN111233778B (en) | 2021-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111233778A (en) | A high-temperature and high-pressure preparation and atmospheric-pressure interception method of confined high-density anhydrous alkali metal polymeric nitrogen NaN5 | |
Wang et al. | A synergy between the push–pull electronic effect and twisted conformation for high-contrast mechanochromic AIEgens | |
Fang et al. | Manipulating emission enhancement and piezochromism in two-dimensional organic-inorganic halide perovskite [(HO)(CH2) 2NH3)] 2PbI4 by high pressure | |
Liu | Optical properties of carbon dots: a review | |
Sui et al. | Laser effects on phase transition for cubic Sb 2 O 3 microcrystals under high pressure | |
CN103151686A (en) | Raman fiber laser based on graphene oxide passive mode-locking | |
Peng et al. | Sequential growth of sandwiched NaYF4: Yb/Er@ NaYF4: Yb@ NaNdF4: Yb core–shell–shell nanoparticles for photodynamic therapy | |
Xiao et al. | Compressed few-layer black phosphorus nanosheets from semiconducting to metallic transition with the highest symmetry | |
Chandrabhas et al. | Pressure-induced orientational ordering in C60 crystals as revealed by Raman spectroscopy | |
Zhang et al. | Retainable Bandgap Narrowing and Enhanced Photoluminescence in Mn‐Doped and Undoped Cs2NaBiCl6 Double Perovskites by Pressure Engineering | |
JP3448638B2 (en) | Method for producing boron nitride nanotube having SP3 bond | |
CN105540558B (en) | One kind polymerization nitrogen and preparation method thereof | |
Dave et al. | Enhancement of self-trapped excitons and near-infrared emission in Bi 3+/Er 3+ co-doped Cs 2 Ag 0.4 Na 0.6 InCl 6 double perovskite | |
Cheng et al. | Thermal enhancement of upconversion in lanthanide-doped Gd 2 Ti 2 O 7 crystals via fast evaporation in a sol–gel procedure | |
Sui et al. | Cyclic phase transition from hexagonal to orthorhombic then back to hexagonal of EuF3 while loading uniaxial pressure and under high temperature | |
CN111977620A (en) | High-temperature high-pressure preparation method of lithium pentazole | |
JP2021031383A (en) | Method for preparing zeolite nanosheet via simple calcination process and zeolite nanosheet particle prepared thereby | |
CN114408878B (en) | A kind of high temperature and high pressure preparation and low temperature and normal pressure interception method of sodium pentazole | |
CN106966432A (en) | There is the Mx ' phases VO of metallic character under normal pressure2The preparation method of nano material | |
Candela et al. | Photoluminescence and Raman study of the high-pressure behavior of monoclinic (Eu1-xYbx) 2O3 solid solution | |
CN116002634B (en) | Cubic deflection structure polymeric nitrogen and preparation method and application thereof | |
Lu et al. | Carbon nanodots derived from organo-templated zeolites for femtosecond mode-locked fiber laser | |
Jiang et al. | High pressure studies of Ni 3 [(C 2 H 5 N 5) 6 (H 2 O) 6](NO 3) 6· 1.5 H 2 O by Raman scattering, IR absorption, and synchrotron X-ray diffraction | |
CN102191543A (en) | Iron arsenide high-temperature superconducting crystal, and preparation method thereof | |
US9156695B2 (en) | Method for fabricating carbon allotropes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |