CN111224387B - 一种基于磁光测量元件的相差保护方法及系统 - Google Patents

一种基于磁光测量元件的相差保护方法及系统 Download PDF

Info

Publication number
CN111224387B
CN111224387B CN202010065338.0A CN202010065338A CN111224387B CN 111224387 B CN111224387 B CN 111224387B CN 202010065338 A CN202010065338 A CN 202010065338A CN 111224387 B CN111224387 B CN 111224387B
Authority
CN
China
Prior art keywords
magneto
optical
phase difference
light intensity
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010065338.0A
Other languages
English (en)
Other versions
CN111224387A (zh
Inventor
刘世明
赵永森
王波
南天琦
韩波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN202010065338.0A priority Critical patent/CN111224387B/zh
Priority to PCT/CN2020/080436 priority patent/WO2021147163A1/zh
Publication of CN111224387A publication Critical patent/CN111224387A/zh
Application granted granted Critical
Publication of CN111224387B publication Critical patent/CN111224387B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/261Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured involving signal transmission between at least two stations
    • H02H7/263Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured involving signal transmission between at least two stations involving transmissions of measured values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • G01R15/245Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using magneto-optical modulators, e.g. based on the Faraday or Cotton-Mouton effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/28Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at two spaced portions of a single system, e.g. at opposite ends of one line, at input and output of apparatus
    • H02H3/30Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at two spaced portions of a single system, e.g. at opposite ends of one line, at input and output of apparatus using pilot wires or other signalling channel
    • H02H3/302Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at two spaced portions of a single system, e.g. at opposite ends of one line, at input and output of apparatus using pilot wires or other signalling channel involving phase comparison

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

本发明公开了一种基于磁光测量元件的相差保护方法及系统,包括:将具有磁光效应的元件放置在靠近交流线路或电缆的附近;通过光纤给磁光元件输入恒定光强的偏振光;线路电流产生的磁场使偏振光的偏振面发生旋转,于是输出的偏振光经过检偏器后光强发生变化,周期性的交流电流产生周期性变化的光强;通过比较两端光强的波形相位实现相差保护。本发明采用相差原理,只需要测量光强相位,对于幅值的测量精度要求不高,因此振动、温度变化等对磁光元件幅值测量精度的影响不会造成保护性能下降。

Description

一种基于磁光测量元件的相差保护方法及系统
技术领域
本发明属于电力系统继电保护技术领域,尤其涉及一种基于磁光测量元件的相差保护方法及系统。
背景技术
本部分的陈述仅仅是提供了与本公开相关的背景技术信息,不必然构成在先技术。
随着电力系统的发展,电网的短路容量不断提高。发生短路故障时,传统的电磁式电流互感器容易饱和,二次侧电流发生严重畸变,导致继电保护装置难以正确动作。因此,近年来非传统电流互感器得到了大量关注。其中,基于法拉第磁光效应的光学电流互感器,由于无磁饱和问题、抗电磁干扰能力强等独特的优点而受到重视。但是光学电流互感器的测量精度易受温度变化、外界振动等环境因素以及内部光学器件和光学回路的工艺水平影响,导致光学电流互感器实现方案复杂、造价昂贵。
电流相位差动保护简称相差保护,是利用线路两端电流的相位比较进行故障判断的一种纵联保护,其原理简单,具有良好的性能。
发明人在研究中发现,早期相差高频保护采用模拟量方式实现相位比较;现代微机保护可以采用相位计算比较技术或者数字相位比较技术。随着光纤通道的普及,电流差动保护逐步得到推广应用。但是相差保护原理简单,对电流互感器性能、通信通道等的要求不高,在一些应用场合具有优势。
例如在有源配电网中的应用,随着分布式电源大量接入,配电网变为一个复杂多变的有源网络,传统的三段式电流保护难以满足要求。而方向电流保护、距离保护需要电压量,纵联保护需要通信通道,受配电网条件限制,这些保护的使用都受到极大限制。
发明内容
为克服上述现有技术的不足,本发明提供了一种基于磁光测量元件的相差保护方法,本发明只需要测量光强相位,对于幅值的测量精度要求不高,因而避免了磁光元件受外界振动、温度变化等影响而造成保护性能下降。
为实现上述目的,本发明的一个或多个实施例提供了如下技术方案:
一种基于磁光测量元件的相差保护方法,包括:
将具有磁光效应的元件放置在靠近交流线路或电缆的附近;
通过光纤给磁光元件输入恒定光强的偏振光;
线路电流产生的磁场使偏振光的偏振面发生旋转,于是输出的偏振光经过检偏器后光强发生变化,周期性的交流电流产生周期性变化的光强;
通过比较两端光强的波形相位实现相差保护。
进一步的技术方案,所述具有磁光效应的元件是基于法拉第磁光效应的光学元件。
进一步的技术方案,所述输出的偏振光的光强波形是在一个恒定值的基础上,减去一个正弦量而形成的具有周期性的波形;
其中,该恒定值由输入光强决定,正弦量的基波频率和相位与线路电流的基波频率和相位相同。
进一步的技术方案,输出光强经探测器转变成电压信号后滤波,输出电压的基波分量,其频率与相位与线路电流的基波频率与相位相同;
应用相差保护判据,比较被保护线路两侧出射光强的基波相位,实现基于磁光测量元件的相差保护。
进一步的技术方案,交流线路或电缆两端具有磁光效应的元件测量的光强信号,就地转换成数字量,通过通信通道传递给对端,实现相位比较;
相差保护接受本端测量的磁光测量元件的相位信息,以及通信通道传来的对端的相位信息,当两端相位差在[-180°+φset,180°-φset]范围内时,保护动作,其中φset是相差保护整定值。
进一步的技术方案,将具有磁光效应的元件输出的光信号,直接通过光纤传输到对端,在对端将光强转换成数字量进行相位比较,省略了对通信通道和两端采样同步的需求;
具有磁光效应的元件的输出光强经光电二极管电路转变成电压信号,对该电压进行数字采样,并滤除直流,保留周期分量部分;
然后对周期分量的采样脉冲进行比相,对两端波形每一次采样值进行极性比较,当它们的极性相同时,比较结果置1,反之则置0。累计半个周波内的比较结果,则保护动作的条件为:
Figure BDA0002375801400000031
其中,N是每个基波周期的采样点数;Ps(k)是第k个采样点的比较结果;φset是整定值。
本公开的一个或多个实施例还提供了一种基于磁光测量元件的相差保护系统,包括:光学回路单元及电气回路单元;
光学回路单元中具有磁光效应的元件放置在靠近交流线路或电缆的附近;通过光纤给磁光效应的元件输入恒定光强的偏振光;线路电流产生的磁场使偏振光的偏振面发生旋转;
电气回路单元,将光强转换成电压,对电压信号进行采样,得到基波相位,通过比较两端光强的波形相位实现相差保护。
进一步的技术方案,具有磁光效应的元件为全光纤光学电流互感器。
进一步的技术方案,具有磁光效应的元件采用基于磁光隔离器的磁场测量元件。
以上一个或多个技术方案存在以下有益效果:
本发明采用磁光学原理测量电流相位,避免了电磁式电流互感器的饱和与绝缘等问题;
本发明采用相差原理,只需要测量光强相位,对于幅值的测量精度要求不高,因此振动、温度变化等对磁光元件幅值测量精度的影响不会造成保护性能下降;
本发明提出了采用光纤直接传输光信号到线路对端的方案,省略了对通信通道和两端采样同步的需求,大大降低了实现难度。
本发明提出的相差保护方案成本低、性能好、易于装设,有利于推广应用到有源配电网、厂矿油田、电铁、地铁、海底电缆等场合。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1是本申请实施例子的交流电流与出射光强的相位关系;
图2是本申请第一种保护案例示意图;
图3是本申请相差保护相位比较示意图;
图4是本申请第二种保护案例示意图;
图5是本申请相差保护脉冲采样比较方案示意图。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
本发明实施例子应用磁光效应原理,用磁光测量元件测量交流电流产生的磁场。磁光测量元件的输出光强是一个周期信号,其基波频率和相位与交流电流的频率与相位相同。本发明将输出光强信号经过滤波处理后的基波信号用于构造相差保护。本发明采用磁光测量元件测量电流,避免了电磁式电流互感器饱和与绝缘问题;只需要测量出射光强的相位,外界振动、温度变化及内部光学回路等对磁光测量元件的干扰不影响相位的测量和比较,因而易于工程实现,性能稳定可靠。
实施例一
本实施例公开了一种基于磁光测量元件的相差保护方法,将具有磁光效应的元件放置在靠近交流线路或电缆的附近,通过光纤给磁光元件输入恒定光强的偏振光;线路电流产生的磁场使偏振光的偏振面发生旋转,于是输出的偏振光经过检偏器后光强发生变化,周期性的交流电流产生周期性变化的光强。在交流线路或电缆两端放置磁光元件,通过比较两端光强的波形相位实现相差保护。
上述实施例子中,检偏器是一个光学器件,其实就是一个偏振角为特定设置的偏振片,使得偏振光经过检偏器之后光强发生变化,以此检测偏振光的偏振角。
附图2中的探测器是一个光电转换器件,将光信号转换成电信号,输出的电信号大小随输入光强的大小成比例变化。
基于法拉第磁光效应的磁光测量元件的输出光强可以反映电网电流基波相位,而相位不会受外界振动、温度变化等的影响,因此提出通过测量光强相位实现电流相位差动保护。
下面就理论推导给出具体的说明:
设交流输电线路/电缆流过电流为:
i=Imsin(ωt+Φ) (1)
其中Im是电流幅值,ω是角频率,Φ是初相角。
由安培定律可知,通电导线周围存在着磁场,其大小为:
Figure BDA0002375801400000061
其中r是磁光测量点到导线圆心的距离,μ0=4π*10-7N/A2,i是通过导线的电流,B是磁场感应强度。
因此,在距导线圆心r的位置放置磁光元件,给磁光元件输入偏振光,根据法拉第磁光效应,从磁光元件输出的偏振光的偏振面将发生偏转,偏转角为:
θ-VBL (3)
其中,B是磁场感应强度,L是磁光材料长度,V是费尔德常数,θ是偏振光的偏振面旋转的角度。
将磁光元件的输出光经过一个检偏器,检偏器的透光轴与入射偏振光的偏振面之间的夹角为β。根据马吕斯定律,则经过检偏器的出射光强为:
IL=IL0e-αLcos2(β+θ) (4)
其中,IL是输出光强,IL0是输入光强,α是磁光介质的光吸收系数,L是磁光材料长度,β是检偏器的透光轴与入射偏振光的偏振面之间的夹角,θ是偏振光的偏振面旋转的角度。
由式(1)、(2)、(3)、(4)联立可得到,出射光强与入射光强及导线电流的关系式为:
Figure BDA0002375801400000062
如果将检偏器的透光轴与入射偏振光的偏振面之间的夹角为β设为45°,代入公式(5)则可以得到:
Figure BDA0002375801400000071
分析公式(6)可以知道,输出光强是一个直流分量减去一个交流分量。其中直流分量由输入光强决定;而交流分量是一个正弦函数,函数的角度是一个与正弦电流成比例的参数。经过理论分析和推导,该正弦函数基波频率和相位,与正弦电流的频率和相位相同。因此,将输出光强滤除直流分量之后,其交流分量完全能够反映导线中电流的频率和相位,如图1所示。
在交流线路/电缆两端放置磁光测量元件,通过比较两端输出光强的波形相位,就能够实现相差保护。
其中,在一实施例子中,本实施案例示意图如图2所示;
采用全光纤光学电流互感器作为磁光测量元件,光学电流互感器的输出光强经探测器转变成电压信号。
电压信号经过数字采样变成数字信号,数字信号经过傅立叶滤波,得到基波相位。该相位信息一则用于本端相差保护,一则通过通信通道传递给对端相差保护。
两侧数字采样需要采取措施进行同步,例如应用基于GPS或北斗信号的同步方法。
相差保护接受本端测量的磁光测量元件的相位信息,以及通信通道传来的对端的相位信息,如图3所示,当两端相位差在[-180°+φset,180°-φset]范围内时,保护动作;
其中φset是相差保护整定值,在本实施案例中,φset=60°。
在另一实施例子中,公开了基于光纤直接传输光强的信号交互方法,免除了对通信通道和两端采样同步的需求。
本实施案例示意图如图4所示;
采用基于磁光隔离器的磁场测量元件;
线路两端的测量元件的输出光,分别经过光纤,传输到同一端的相差保护中,从而省略了对通信通道和采样同步的需求;
磁场测量元件的输出光强经PIN光电二极管电路转变成电压信号,对该电压进行数字采样,并滤除直流,保留周期分量部分;
然后对周期分量的采样脉冲进行比相,如图5所示。对两端波形每一次采样值进行极性比较,当它们的极性相同时,比较结果置1,反之则置0。累计半个周波内的比较结果,则保护动作的条件为:
Figure BDA0002375801400000081
其中,N是每个基波周期的采样点数;Ps(k)是第k个采样点的比较结果;φset是整定值。在本实施案例中,N=32,φset=60°。
在具体实施例子中,磁光测量元件的选择广泛,例如可以是基于磁光玻璃的光学电流互感器(专利号:ZL200820028254.4),基于光纤的光学电流互感器(专利号:ZL201510543050.9),以及基于磁光隔离器的磁场测量元件(专利号:ZL201610856075.9)等等。具体根据需要进行选择,此处不再进行列举。
本申请的上述实施例子的方法无需测量线路/电缆的电压量,数据传输量小;而且如果采用光纤直接传输光信号到线路对端的方案,还可以省略对通信通道和两端采样同步的需求,大大降低了实现难度。此外本发明只需要测量光强相位,基于法拉第磁光效应的磁光测量元件的输出光强可以反映电网电流基波相位,对于幅值的测量精度要求不高,因而避免了磁光元件受外界振动、温度变化等影响而造成保护性能下降。
本发明所述的一种基于磁光测量元件的相差保护方法,还可以应用于其它应用场合,如厂矿油田、电铁、地铁、海底电缆等等,应用时,通过测量线路或者电缆两端的磁场实现相差保护。
实施例子二
该实施例子公开了一种基于磁光测量元件的相差保护系统,包括:光学回路单元及电气回路单元;
光学回路单元中具有磁光效应的元件放置在靠近交流线路或电缆的附近;通过光纤给磁光效应的元件输入恒定光强的偏振光;线路电流产生的磁场使偏振光的偏振面发生旋转;
电气回路单元,将光强转换成电压,对电压信号进行采样,得到基波相位,通过比较两端光强的波形相位实现相差保护。
具体实施例中,光学回路单元的基本元件主要包括:激光发射器,光纤(传输激光),起偏器(将激光变成偏振光),磁光元件,检偏器(检测偏振角);不同的测量系统内容不同。例如图2所示的全光纤光学电流互感器,还包括反光镜、1/4波长波片、保偏光纤等等。
电气回路单元的基本元件主要包括:光电检测器(PIN光电二极管),运算放大器,A/D采样电路,数字信号处理器件(如单片机)等等。
具体技术的实现可参见上述实施例子一的详细描述,此处不再进行说明。
本领域技术人员应该明白,上述本发明的各模块或各步骤可以用通用的计算机装置来实现,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。本发明不限制于任何特定的硬件和软件的结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (7)

1.一种基于磁光测量元件的相差保护方法,其特征是,包括:
将磁光测量元件放置在靠近交流线路或电缆的附近;
通过光纤给磁光测量元件输入恒定光强的偏振光;
线路电流产生的磁场使偏振光的偏振面发生旋转,于是输出的偏振光经过检偏器后光强发生变化,周期性的交流电流产生周期性变化的光强;
通过比较两端光强的波形相位实现相差保护;
将磁光测量元件输出的光信号,直接通过光纤传输到对端,在对端将光强转换成数字量进行相位比较,省略了对通信通道和两端采样同步的需求;
磁光测量元件的输出光强经光电二极管电路转变成电压信号,对该电压进行数字采样,并滤除直流,保留周期分量部分;
然后对周期分量的采样脉冲进行比相,对两端波形每一次采样值进行极性比较,当它们的极性相同时,比较结果置1,反之则置0,累计半个周波内的比较结果,则保护动作的条件为:
Figure FDA0002902363780000011
其中,N是每个基波周期的采样点数;Ps(k)是第k个采样点的比较结果;φset是整定值。
2.如权利要求1所述的一种基于磁光测量元件的相差保护方法,其特征是,所述磁光测量元件是基于法拉第磁光效应的光学元件。
3.如权利要求1所述的一种基于磁光测量元件的相差保护方法,其特征是,所述输出的偏振光的光强波形是在一个恒定值的基础上,减去一个正弦量而形成的具有周期性的波形;
其中,该恒定值由输入光强决定,正弦量的基波频率和相位与线路电流的基波频率和相位相同。
4.如权利要求3所述的一种基于磁光测量元件的相差保护方法,其特征是,应用相差保护判据,比较被保护线路两侧出射光强的基波相位,实现基于磁光测量元件的相差保护。
5.如权利要求1所述的一种基于磁光测量元件的相差保护方法,其特征是,交流线路或电缆两端磁光测量元件测量的光强信号,就地转换成数字量,通过通信通道传递给对端,实现相位比较。
6.如权利要求5所述的一种基于磁光测量元件的相差保护方法,其特征是,相差保护接受本端测量的磁光测量元件的相位信息,以及通信通道传来的对端的相位信息,当两端相位差在[-180°+φset,180°-φset]范围内时,保护动作,其中φset是相差保护整定值。
7.一种基于磁光测量元件的相差保护系统,其特征是,包括:光学回路单元及电气回路单元;
光学回路单元中磁光测量元件放置在靠近交流线路或电缆的附近;通过光纤给磁光测量元件输入恒定光强的偏振光;线路电流产生的磁场使偏振光的偏振面发生旋转;
电气回路单元,将光强转换成电压,对电压信号进行采样,得到基波相位,通过比较两端光强的波形相位实现相差保护;
将磁光测量元件输出的光信号,直接通过光纤传输到对端,在对端将光强转换成数字量进行相位比较,省略了对通信通道和两端采样同步的需求;
磁光测量元件的输出光强经光电二极管电路转变成电压信号,对该电压进行数字采样,并滤除直流,保留周期分量部分;
然后对周期分量的采样脉冲进行比相,对两端波形每一次采样值进行极性比较,当它们的极性相同时,比较结果置1,反之则置0,累计半个周波内的比较结果,则保护动作的条件为:
Figure FDA0002902363780000031
其中,N是每个基波周期的采样点数;Ps(k)是第k个采样点的比较结果;φset是整定值。
CN202010065338.0A 2020-01-20 2020-01-20 一种基于磁光测量元件的相差保护方法及系统 Active CN111224387B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010065338.0A CN111224387B (zh) 2020-01-20 2020-01-20 一种基于磁光测量元件的相差保护方法及系统
PCT/CN2020/080436 WO2021147163A1 (zh) 2020-01-20 2020-03-20 一种基于磁光测量元件的相差保护方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010065338.0A CN111224387B (zh) 2020-01-20 2020-01-20 一种基于磁光测量元件的相差保护方法及系统

Publications (2)

Publication Number Publication Date
CN111224387A CN111224387A (zh) 2020-06-02
CN111224387B true CN111224387B (zh) 2021-03-16

Family

ID=70806830

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010065338.0A Active CN111224387B (zh) 2020-01-20 2020-01-20 一种基于磁光测量元件的相差保护方法及系统

Country Status (2)

Country Link
CN (1) CN111224387B (zh)
WO (1) WO2021147163A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1862903A (zh) * 2006-06-16 2006-11-15 天津大学 特高压输电线分相电流相位差动保护方法
CN107884611A (zh) * 2016-09-30 2018-04-06 南京南瑞继保电气有限公司 一种多环全光纤电流互感器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3439390B2 (ja) * 1999-08-09 2003-08-25 株式会社高岳製作所 光電流センサを用いる電流測定方法およびその装置
CN100399660C (zh) * 2002-02-18 2008-07-02 株式会社高岳制作所 使用光电流传感器的保护继电装置
CN103715650B (zh) * 2014-01-20 2016-06-29 哈尔滨工业大学 基于法拉第磁光效应的差动保护装置
CN103730884B (zh) * 2014-01-22 2016-02-10 国家电网公司 一种光子差动保护装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1862903A (zh) * 2006-06-16 2006-11-15 天津大学 特高压输电线分相电流相位差动保护方法
CN107884611A (zh) * 2016-09-30 2018-04-06 南京南瑞继保电气有限公司 一种多环全光纤电流互感器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
几种波形对称法变压器差动保护原理的比较研究;林湘宁等;《电工技术学报》;20010831;第16卷(第4期);第44-49、70页 *
输电线路光差动保护初探;樊占峰等;《电力系统自动化》;20161210;第40卷(第23期);第131-135、162页 *

Also Published As

Publication number Publication date
WO2021147163A1 (zh) 2021-07-29
CN111224387A (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
KR101790363B1 (ko) 전력 배전 시스템에서의 전류를 측정하기 위한 광 센서 조립체 및 방법
CN107643438A (zh) 基于法拉第磁光效应的光学电流传感器及其电流测量方法
Kurosawa Development of fiber-optic current sensing technique and its applications in electric power systems
JPH0224349B2 (zh)
CN113945744B (zh) 一种全光纤直流电流互感器温度补偿系统及方法
CN112904070B (zh) 全光纤电流互感器及其检测模块、光路状态诊断方法
Li et al. Signal detection for optical AC and DC voltage sensors based on Pockels effect
US8773119B2 (en) System for fiber DC magneto-optic detection and method thereof
Bull et al. A new hybrid current sensor for high-voltage applications
RU2321000C2 (ru) Волоконно-оптический трансформатор тока
CN111224387B (zh) 一种基于磁光测量元件的相差保护方法及系统
CN103969501A (zh) 一种光学电流传感器
CN104049230A (zh) 一种光纤电流互感器频响特性测试系统及方法
CN105467345A (zh) 一种光纤电流传感器频带宽度测试方法和系统
CN107422166B (zh) 一种光纤电流互感器用抑制光功率波动调制解调方法
Ye et al. Application research on fiber-optic current sensor in large pulse current measurement
Shao et al. Development and applications of wideband high current transducers
Gu et al. Design and applicability analysis of independent double acquisition circuit of all-fiber optical current transformer
CN110726862A (zh) 一种测量宽频高幅值电流的集成式光学传感器探头
KR100228416B1 (ko) 광(光)을 이용한 일체형 전류/전압 측정장치
JPH0249472B2 (zh)
Zhang et al. Principles and Test Technology of Electronic Transformers
KR20040020345A (ko) 광파이버를 이용한 전류 및 전압 동시측정장치 및 방법
CN204631101U (zh) 一种光纤电压传感系统
CN211955634U (zh) 一种电磁传感器和电磁传感系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant