CN111222224A - Coating and sleeving design method for freely filling explosive columns in solid rocket engine - Google Patents

Coating and sleeving design method for freely filling explosive columns in solid rocket engine Download PDF

Info

Publication number
CN111222224A
CN111222224A CN201911303903.6A CN201911303903A CN111222224A CN 111222224 A CN111222224 A CN 111222224A CN 201911303903 A CN201911303903 A CN 201911303903A CN 111222224 A CN111222224 A CN 111222224A
Authority
CN
China
Prior art keywords
coating sleeve
coating
engine
sleeve
determining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911303903.6A
Other languages
Chinese (zh)
Other versions
CN111222224B (en
Inventor
王一奇
孙福合
阳洁
乐浩
何鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Xinli Power Equipment Research Institute
Original Assignee
Shanghai Xinli Power Equipment Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Xinli Power Equipment Research Institute filed Critical Shanghai Xinli Power Equipment Research Institute
Priority to CN201911303903.6A priority Critical patent/CN111222224B/en
Publication of CN111222224A publication Critical patent/CN111222224A/en
Application granted granted Critical
Publication of CN111222224B publication Critical patent/CN111222224B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/08Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using solid propellants
    • F02K9/10Shape or structure of solid propellant charges

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

The invention relates to a coating and sleeving design method for a freely-loaded grain of a solid rocket engine, which comprises the following steps: (1) prefabricating and molding a hollow cylindrical coating sleeve to form a freely-filled explosive column; (2) fixedly loading the explosive columns into a combustion chamber; (3) determining the outer diameter of the coating sleeve, wherein the unilateral gap between the explosive column and the inner wall of the combustion chamber is r, and the thickness of the coating sleeve is preset to h; (4) determining the thermal decomposition temperature of the propellant grain, and determining the initial decomposition temperature T1 of the propellant; (5) modeling the engine, and determining the instantaneous highest temperature T2 of the outer wall surface of the cladding sleeve under the stable working state of the engine; (6) and if T2 is less than T1-50 ℃, thinning the thickness h of the coating sleeve, otherwise thickening the coating sleeve, and iteratively determining the optimal thickness of the coating sleeve to ensure that T2 is T1-50 ℃. The invention ensures that the engine works for a long time, can ensure effective heat insulation and flame retardance, simultaneously reduces the thickness of the coating sleeve as much as possible and lightens the negative weight of the engine.

Description

Coating and sleeving design method for freely filling explosive columns in solid rocket engine
Technical Field
The invention belongs to the field of coating sleeve design in a solid rocket engine, and relates to a coating sleeve design method for a freely-loaded explosive column of a solid rocket engine.
Background
The freely-filled grain coating sleeve is one of important parts in an engine structure, plays a role in heat insulation and flame retardance when the engine works, protects the surface of the freely-filled grain, enables the grain to burn according to a designed rule and is not ignited in advance. When the working time of the engine is longer and exceeds 130s, the existing heat insulation structure for freely filling the explosive columns cannot meet the requirement of long-time heat insulation, so that a heat insulation and flame retardation design method is needed, and the designed coating sleeve can meet the use requirement of long-time heat insulation and flame retardation.
The design method of the existing freely-filled grain coating sleeve is to calculate the design thickness of the coating sleeve by calculating the line ablation rate and the working time of the coating layer.
The problems of the existing design method are as follows: during long-term operation, the effect of insulation on the sheathing is much greater than ablation, and therefore the insulation should be calculated preferentially at the time of design. The thickness of the coating sleeve obtained by simple calculation of the line ablation rate generally cannot meet the heat insulation requirement of the engine in long-time work, so that the freely-filled explosive columns are combusted in advance in work, the engine works abnormally, and the engine burns out and explodes under severe conditions.
Disclosure of Invention
The technical problem solved by the invention is as follows: the method for designing the freely-filled grain coating sleeve of the solid rocket engine overcomes the defects of the prior art, designs the freely-filled grain coating sleeve by taking the heat insulation performance of the coating sleeve as a calculation center, ensures effective heat insulation and flame retardance of the engine in long-time work, reduces the thickness of the coating sleeve as much as possible and lightens the negative weight of the engine.
The technical scheme of the invention is as follows:
a coating and sleeving design method for a freely-filled grain of a solid rocket engine comprises the following steps:
(1) prefabricating a hollow cylindrical coating sleeve, coating glue on the inner surface of the coating sleeve, pouring propellant slurry into the coating sleeve for cooling, and integrating the propellant slurry and the coating sleeve after solidification to form a freely-filled explosive column;
(2) fixedly loading the explosive columns into a combustion chamber, wherein the initial combustion surface of the explosive columns is a part with an uncoated tail part, and the rest coated positions do not combust in the working time of the engine;
(3) determining the outer diameter size of the coating sleeve, wherein the unilateral gap between the explosive column and the inner wall of the combustion chamber is r, the thickness of the coating sleeve is preset to h, and then carrying out iterative adjustment through calculation;
(4) determining the thermal decomposition temperature of the propellant grain, and determining the initial decomposition temperature T1 of the propellant according to the decomposition temperature and the thermal weight loss curve of the propellant;
(5) modeling an engine, and determining the instantaneous highest temperature T2 of the outer wall surface of the cladding sleeve by thermodynamic calculation under the stable working state of the engine;
(6) and if T2 is less than T1-50 ℃, thinning the thickness h of the coating sleeve, otherwise thickening the coating sleeve, and iteratively determining the optimal thickness of the coating sleeve to ensure that T2 is T1-50 ℃.
Further, for the engine with the working time exceeding 130s, the thermodynamic calculation time is 10s of the engine working stable state.
Further, r in the step (3) is 0.5 mm-2 mm.
Further, h in the step (3) is 1-3 mm.
Compared with the prior art, the invention has the beneficial effects that:
(1) the invention is a design method of a coating sleeve coated at the outer end of a freely-filled grain, the coating sleeve adopting the design method can be prefabricated in advance, and grain slurry is poured into the coating sleeve for curing and molding, and the grain cast and molded by the method has good tensile strength, elongation and other mechanical properties, and can ensure the structural integrity of the grain within the general temperature range of a missile (minus 40 ℃ to plus 60 ℃);
(2) the coating sleeve designed by the invention is formed by pressing nitrile rubber material, and the material has the advantages of strong plasticity, good thermal protection performance, ablation resistance and scouring resistance, and is suitable for the use conditions of the drug column coating sleeve;
(3) the forming thickness of the coating sleeve designed by the invention is generally not more than 3mm, so that the coating sleeve can play an effective heat insulation and flame retardant role on the explosive column under the condition that the working time of an engine is more than 130s, and the explosive column can be combusted according to a pre-designed combustion surface;
(4) the invention provides a design method for freely filling a grain coating sleeve in an engine working for a long time, wherein the working time of the engine is more than 130s, so that the thickness of the coating sleeve is reduced as much as possible while effective heat insulation and flame retardance are ensured in the long-time working of the engine, and the negative weight of the engine is reduced.
Drawings
FIG. 1 is a flow chart of the method of the present invention;
FIG. 2 is a graph of the temperature profile of the outer surface of the sheath of the present invention;
FIG. 3 is a view showing the structure of the coated pellet of the present invention.
Detailed Description
The invention is further illustrated by the following examples.
A design method for a coating sleeve of a freely-filled grain of a solid rocket engine is shown in figure 1, and comprises the following steps:
(1) prefabricating a hollow cylindrical coating sleeve, as shown in fig. 3, after coating glue on the inner surface of the coating sleeve, pouring propellant slurry into the coating sleeve for cooling, and after solidification, integrating the propellant slurry with the coating sleeve to form a freely-filled explosive column;
(2) fixedly loading the explosive columns into a combustion chamber, wherein the initial combustion surface of the explosive columns is a part with an uncoated tail part, and the rest coated positions do not combust in the working time of the engine;
(3) determining the outer diameter size of the coating sleeve, wherein the unilateral clearance between the explosive column and the inner wall of the combustion chamber is r, r is 0.5-2 mm, the thickness of the coating sleeve is preset to h, and h is 1-3 mm, and then carrying out iterative adjustment through calculation;
(4) determining the thermal decomposition temperature of the propellant grain, and determining the initial decomposition temperature T1 of the propellant according to GJB772-1997 explosive test method 502.1 Differential Thermal Analysis (DTA) and through the decomposition temperature and the thermal weight loss curve of the propellant;
(5) modeling an engine, taking the engine working stable state for 10s at the moment of thermodynamic calculation under the engine working stable state, calculating and adopting a kappa-epsilon turbulence model to carry out unsteady and axisymmetric flow and heat transfer coupling solving, and determining the instantaneous highest temperature T2 of the outer wall surface of the cladding sleeve through thermodynamic calculation;
(6) and if T2 is less than T1-50 ℃, thinning the thickness h of the coating sleeve, otherwise thickening the coating sleeve, and iteratively determining the optimal thickness of the coating sleeve to ensure that T2 is T1-50 ℃.
Referring to fig. 2, the calculated surface temperature distribution result of the charge is compared with the initial decomposition temperature T1 of the propellant, and the axial temperature is lower than the initial decomposition temperature, that is, the thickness of the coating sleeve is considered to meet the design requirements of heat insulation and flame retardance. And obtaining the minimum thickness of the coating sleeve meeting the requirement through repeated iteration.
Examples
In combination with the design requirements of an engine: the outer diameter of the engine is required to be 230mm, and the wall thickness of the engine shell is 224mm after the engine shell is designed to be 3 mm. In order to ensure that the formed freely-filled explosive column can be smoothly loaded into an engine, an assembly gap with a single side of 1mm is reserved, and the outer diameter design value of the coating sleeve is phi 222 mm. And presetting the thickness of the coating sleeve of 2mm, and then carrying out iterative adjustment through calculation.
The decomposition temperature and the thermal weight loss curve of the propellant are measured, and the initial decomposition temperature T1 of the propellant is obtained, namely 480 ℃.
And performing overall internal thermodynamic calculation when the engine works after modeling the engine. The model of the engine working for 10s is taken at the calculation moment, and the calculation result shows that the maximum temperature T2 of the outer surface of the coating sleeve is 500 ℃ and is higher than the required value of T1-50 which is 430 ℃, so that the thickness h of the coating sleeve needs to be thickened and then recalculated, as shown in FIG. 2;
after the thickness of the coating sleeve is increased to 2.6mm, the instantaneous temperature T2 of the outer wall surface of the coating sleeve is T1-50-430 ℃ when the engine works, so that the optimal thickness of the coating sleeve is 2.6 mm.
The invention is a design method of a coating sleeve coated at the outer end of a freely-filled grain, the coating sleeve adopting the design method can be prefabricated in advance, and grain slurry is poured into the coating sleeve for curing and molding, and the grain cast and molded by the method has good tensile strength, elongation and other mechanical properties, and can ensure the structural integrity of the grain within the general temperature range of a missile (minus 40 ℃ to plus 60 ℃);
the coating sleeve designed by the invention is formed by pressing nitrile rubber material, and the material has the advantages of strong plasticity, good thermal protection performance, ablation resistance and scouring resistance, and is suitable for the use conditions of the drug column coating sleeve;
the forming thickness of the coating sleeve designed by the invention is generally not more than 3mm, so that the coating sleeve can play an effective heat insulation and flame retardant role on the explosive column under the condition that the working time of an engine is more than 130s, and the explosive column can be combusted according to a pre-designed combustion surface;
the invention provides a design method for freely filling a grain coating sleeve in an engine working for a long time, wherein the working time of the engine is more than 130s, so that the thickness of the coating sleeve is reduced as much as possible while effective heat insulation and flame retardance are ensured in the long-time working of the engine, and the negative weight of the engine is reduced.
Although the present invention has been described with reference to the preferred embodiments, it is not intended to limit the present invention, and those skilled in the art can make variations and modifications of the present invention without departing from the spirit and scope of the present invention by using the methods and technical contents disclosed above.

Claims (4)

1. A coating and sleeving design method for a freely-filled grain of a solid rocket engine is characterized by comprising the following steps:
(1) prefabricating a hollow cylindrical coating sleeve, coating glue on the inner surface of the coating sleeve, pouring propellant slurry into the coating sleeve for cooling, and integrating the propellant slurry and the coating sleeve after solidification to form a freely-filled explosive column;
(2) fixedly loading the explosive columns into a combustion chamber, wherein the initial combustion surface of the explosive columns is a part with an uncoated tail part, and the rest coated positions do not combust in the working time of the engine;
(3) determining the outer diameter size of the coating sleeve, wherein the unilateral gap between the explosive column and the inner wall of the combustion chamber is r, the thickness of the coating sleeve is preset to h, and then carrying out iterative adjustment through calculation;
(4) determining the thermal decomposition temperature of the propellant grain, and determining the initial decomposition temperature T1 of the propellant according to the decomposition temperature and the thermal weight loss curve of the propellant;
(5) modeling an engine, and determining the instantaneous highest temperature T2 of the outer wall surface of the cladding sleeve by thermodynamic calculation under the stable working state of the engine;
(6) and if T2 is less than T1-50 ℃, thinning the thickness h of the coating sleeve, otherwise thickening the coating sleeve, and iteratively determining the optimal thickness of the coating sleeve to ensure that T2 is T1-50 ℃.
2. The method for designing a coating sleeve of a freely-loaded grain of a solid rocket engine according to claim 1, which is characterized in that: and for the engine with the working time exceeding 130s, the thermodynamic calculation time is 10s of the stable working state of the engine.
3. The method for designing a coating sleeve of a freely-loaded grain of a solid rocket engine according to claim 1, which is characterized in that: in the step (3), r is 0.5 mm-2 mm.
4. The method for designing a coating sleeve of a freely-loaded grain of a solid rocket engine according to claim 1, which is characterized in that: h in the step (3) is 1-3 mm.
CN201911303903.6A 2019-12-17 2019-12-17 Coating and sleeving design method for freely filling explosive columns in solid rocket engine Active CN111222224B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911303903.6A CN111222224B (en) 2019-12-17 2019-12-17 Coating and sleeving design method for freely filling explosive columns in solid rocket engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911303903.6A CN111222224B (en) 2019-12-17 2019-12-17 Coating and sleeving design method for freely filling explosive columns in solid rocket engine

Publications (2)

Publication Number Publication Date
CN111222224A true CN111222224A (en) 2020-06-02
CN111222224B CN111222224B (en) 2023-04-14

Family

ID=70829818

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911303903.6A Active CN111222224B (en) 2019-12-17 2019-12-17 Coating and sleeving design method for freely filling explosive columns in solid rocket engine

Country Status (1)

Country Link
CN (1) CN111222224B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112253330A (en) * 2020-08-28 2021-01-22 上海航天化工应用研究所 Forming device for freely filling silver-embedded wire into explosive column and using method thereof
CN114539008A (en) * 2021-11-16 2022-05-27 上海新力动力设备研究所 Prestressed silver wire fixing support and forming method
CN115971525A (en) * 2022-08-17 2023-04-18 中国科学院沈阳自动化研究所 Solid rocket engine coated grain shaping method and system based on temperature control

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105003355A (en) * 2015-07-27 2015-10-28 湖北三江航天江河化工科技有限公司 Solid rocket engine with high thrust ratio and manufacturing method thereof
CN105448177A (en) * 2015-03-11 2016-03-30 西北工业大学 Double-nozzle simulator used for researching ablation phenomenon of inner thermal insulation layer of rocket engine
CN105527370A (en) * 2015-11-03 2016-04-27 西北工业大学 Apparatus for simulating insulation ablation under condition of particle deposition in cavity in back wall of submerged nozzle
CN106194476A (en) * 2014-11-14 2016-12-07 现代自动车株式会社 Cylinder head for electromotor
CN107965399A (en) * 2017-12-07 2018-04-27 上海新力动力设备研究所 A kind of powder column of resistance to ablation support plate for being applicable in free loading propellant solid propellant rocket
CN108644031A (en) * 2018-05-08 2018-10-12 江西航天经纬化工有限公司 A kind of solid propellant rocket insulation erosion rate test method
CN110481062A (en) * 2019-08-02 2019-11-22 湖北三江航天江北机械工程有限公司 A kind of outer heat shield winding, molding method of Solid Rocket Motor combustion chamber shell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106194476A (en) * 2014-11-14 2016-12-07 现代自动车株式会社 Cylinder head for electromotor
CN105448177A (en) * 2015-03-11 2016-03-30 西北工业大学 Double-nozzle simulator used for researching ablation phenomenon of inner thermal insulation layer of rocket engine
CN105003355A (en) * 2015-07-27 2015-10-28 湖北三江航天江河化工科技有限公司 Solid rocket engine with high thrust ratio and manufacturing method thereof
CN105527370A (en) * 2015-11-03 2016-04-27 西北工业大学 Apparatus for simulating insulation ablation under condition of particle deposition in cavity in back wall of submerged nozzle
CN107965399A (en) * 2017-12-07 2018-04-27 上海新力动力设备研究所 A kind of powder column of resistance to ablation support plate for being applicable in free loading propellant solid propellant rocket
CN108644031A (en) * 2018-05-08 2018-10-12 江西航天经纬化工有限公司 A kind of solid propellant rocket insulation erosion rate test method
CN110481062A (en) * 2019-08-02 2019-11-22 湖北三江航天江北机械工程有限公司 A kind of outer heat shield winding, molding method of Solid Rocket Motor combustion chamber shell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
肖志斌,王家鑫,王继 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112253330A (en) * 2020-08-28 2021-01-22 上海航天化工应用研究所 Forming device for freely filling silver-embedded wire into explosive column and using method thereof
CN114539008A (en) * 2021-11-16 2022-05-27 上海新力动力设备研究所 Prestressed silver wire fixing support and forming method
CN115971525A (en) * 2022-08-17 2023-04-18 中国科学院沈阳自动化研究所 Solid rocket engine coated grain shaping method and system based on temperature control

Also Published As

Publication number Publication date
CN111222224B (en) 2023-04-14

Similar Documents

Publication Publication Date Title
CN111222224B (en) Coating and sleeving design method for freely filling explosive columns in solid rocket engine
CN109723573B (en) Double-pulse engine with integrated chemical winding structure and manufacturing method
CN105003355B (en) Solid rocket engine with high thrust ratio and manufacturing method thereof
US9441528B2 (en) Prechamber device for internal combustion engine
CN208106595U (en) A kind of Novel end face propulsion charge
CN110749536B (en) Solid rocket engine thermal protection material ablation experimental device
EP2997310B1 (en) Cartridge with a neckless case
CN202832854U (en) Combined type heat protective structure in the rear portion of a solid rocket engine combustion chamber
CN109653900B (en) Forming method of double-pulse solid engine charge combustion chamber
CN202360243U (en) Thermal protection structure of back joint of solid-propellant rocket engine
US20140369842A1 (en) Method of manufacturing a ceramic core for mobile blade, ceramic core and mobile blade
CN109404164B (en) Charge structure for improving combustion performance of solid rocket engine
RU2464679C1 (en) Antenna dome
US20090205313A1 (en) Fast Response Solid Fuel Rocket Motor
US11041701B1 (en) Combustible munition case with cell cavities
JP2019049228A (en) Rocket motor
CN117167163A (en) Shaped charge structure of single-chamber double-thrust solid rocket engine and forming method
CN105910507A (en) Caseless cartridge
CN218598267U (en) Charging structure of rocket engine, rocket engine and rocket
CN116163856A (en) Method for changing ventilation area of throat part of engine, spray pipe of method and engine
CN110596180A (en) Ablation simulation fixing device for engine interstage protective material
CN112520060A (en) Unmanned aerial vehicle rocket booster
Püskülcü et al. 3-D grain burnback analysis of solid propellant rocket motors: Part 1–ballistic motor tests
CN220378383U (en) Free-filling solid rocket engine
CN208669457U (en) A kind of solid propellant rocket

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant