CN111222084B - 可降低积尘影响的光伏板结构和设计光伏板结构的方法 - Google Patents

可降低积尘影响的光伏板结构和设计光伏板结构的方法 Download PDF

Info

Publication number
CN111222084B
CN111222084B CN202010023178.3A CN202010023178A CN111222084B CN 111222084 B CN111222084 B CN 111222084B CN 202010023178 A CN202010023178 A CN 202010023178A CN 111222084 B CN111222084 B CN 111222084B
Authority
CN
China
Prior art keywords
photovoltaic panel
panel structure
photovoltaic
distance
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010023178.3A
Other languages
English (en)
Other versions
CN111222084A (zh
Inventor
屈高强
冯朴
蒋文静
姚琪
王少杰
苏川
叶青
薛玉凤
王璐
李兴财
靳盘龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningxia University
State Grid Ningxia Electric Power Co Ltd
Economic and Technological Research Institute of State Grid Ningxia Electric Power Co Ltd
Original Assignee
Ningxia University
State Grid Ningxia Electric Power Co Ltd
Economic and Technological Research Institute of State Grid Ningxia Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningxia University, State Grid Ningxia Electric Power Co Ltd, Economic and Technological Research Institute of State Grid Ningxia Electric Power Co Ltd filed Critical Ningxia University
Priority to CN202010023178.3A priority Critical patent/CN111222084B/zh
Publication of CN111222084A publication Critical patent/CN111222084A/zh
Priority to AU2020104166A priority patent/AU2020104166A4/en
Priority to ZA2020/07964A priority patent/ZA202007964B/en
Priority to NL2027172A priority patent/NL2027172B1/en
Application granted granted Critical
Publication of CN111222084B publication Critical patent/CN111222084B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/10Cleaning arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mathematical Analysis (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computational Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Optimization (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Pure & Applied Mathematics (AREA)
  • Operations Research (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明涉及可降低积尘影响的光伏板结构和设计光伏板结构的方法。方法包括:获得积尘样本,测量其粒径分布函数f(R)、相对介电常数;基于Mie散射理论计算颗粒在电磁波作用下的近场,公式如下:通过仿真计算获得不同粒径R的颗粒在波长为λ的太阳辐射照射下的散射场数据,找到其场强大于定值b时对应的距离r,建立相应的拟合函数,从而计算出一个平均距离;选定
Figure DDA0002851911940000011
作为光伏玻璃的厚度,据此进行光伏板结构的组装。本发明通过预先获得当地积尘的物理性质、太阳辐射功率谱,进而来设计光伏玻璃结构,从而实现光伏电池的高效发电。

Description

可降低积尘影响的光伏板结构和设计光伏板结构的方法
技术领域
本发明涉及可降低积尘影响的光伏板结构和设计光伏板结构的方法。
背景技术
清洁、廉价、可靠的能源一直都是社会繁荣和经济增长的基石,新能源的发展是当今世界无法逆转的趋势。太阳能光伏发电作为目前技术最为成熟的清洁能源技术,对于解决任何一个国家的电力急缺问题都起着至关重要的作用。有效预测光伏板发电效率,对于新能源的并网消纳有着极其重要的作用,而气象环境影响下光伏板的温度、有效太阳辐射强度的准确预测,直接影响着相关结果的准确性。荒漠化地区是发展大型光伏电站的优势区域,但多风沙、强辐射、大温差的大气环境,给光伏系统的正常运行带来了一系列新问题。因此荒漠环境对太阳能发电装置影响的研究受到人们的广泛关注。
气溶胶颗粒会沉积在光伏太阳能板表面,改变光伏电池保护层的透光率,从而影响光伏电池的有效入射太阳辐射强度。实验研究表明:对于倾角为45°的玻璃板,在少雨季节暴露放置30天后其透光率下降30%,且随清洁周期的增加(沙尘沉积更多)而减小。可见沙尘沉积已成为影响荒漠化地区光伏电站经济高效运行的主要因素。探索科学的除尘方法、设计更优的光伏板结构,有效减弱积尘的影响,是当前这一领域的研究热点。
发明内容
本发明公开了一种可以有效降低积尘对光伏板的负面影响,并可利用积尘特殊的光学现象来实现高效发电的新型光伏板结构。本发明主要是通过预先获得当地积尘的物理性质、太阳辐射功率谱,进而来设计光伏玻璃结构,从而实现光伏电池的高效发电。
本发明提供了一种设计光伏板结构的方法,包括:
1)获得积尘样本,测量其粒径分布函数f(R)、相对介电常数,其中R为颗粒半径,相对介电常数利用开式腔法获得,记为εr
2)基于Mie散射理论计算颗粒在电磁波作用下的近场,在球坐标系
Figure GDA0002851911930000027
中公式如下:
Figure GDA0002851911930000021
Figure GDA0002851911930000022
πn,τn可由下式迭代求解:
Figure GDA0002851911930000023
π0=0;π1=1;π2=3cosθ;τ0=0;τ1=cosθ;τ2=3cos(2θ)
x=kR,k为电磁波的波数,k=2π/λ,λ为电磁波波长,
Figure GDA0002851911930000024
r为考察点到颗粒中心的距离;E
Figure GDA0002851911930000028
分别是入射波在球坐标系下的分量。
Figure GDA0002851911930000025
Figure GDA0002851911930000029
上式中jn(x),
Figure GDA0002851911930000026
分别为第一类、第三类球贝塞尔函数,[xjn(x)]′表示对括号中的函数求关于x的导数。
3)利用(1)式通过仿真计算获得不同粒径R的颗粒在波长为λ的太阳辐射照射下的散射场数据,找到其场强大于定值b时对应的距离r,建立相应的拟合函数r=g(R),从而计算出一个平均距离,计算公式如下:
Figure GDA0002851911930000031
这里的b为任取大于1的常数,表示(2)式所得的距离
Figure GDA0002851911930000032
可保证颗粒在直射条件下散射场的增强倍数,也就是光伏电池感知的场强与入射太阳辐射的倍数;
(4)选定
Figure GDA0002851911930000033
作为光伏玻璃的厚度,据此进行光伏板结构的组装。
在上述方法中,还包括:
(5)通过测量安装地的地理经纬度,确定需要人工干预除尘的时间,具体步骤为:假定安装地的地理纬度φ,太阳赤纬δ,太阳时角t,则太阳高度角H由下式计算:
sinH=sinφsinδ+cosφcosδcost
假定安装地的颗粒物半径的中位数为RM,其中,RM在步骤1中通过激光粒度仪输出,单颗粒阴影的影响距离为L,则L1=2RMctg(H9),L2=2RMctg(H15),取二者均值作为指标,即L0=(L1+L2)/2;
其中,H9和H15表示并网时间点。
本发明还提供了通过上述方法得到的光伏板结构。
本发明通过预先获得当地积尘的物理性质、太阳辐射功率谱,进而来设计光伏玻璃结构,从而实现光伏电池的高效发电。
附图说明
图1示出了对于常见的均值为20微米的积尘颗粒,当光伏板厚度为3毫米与1.5毫米时,入射辐射强度的比较。
具体实施方式
下面的实施例可以使本领域技术人员更全面地理解本发明,但不以任何方式限制本发明。
本发明主要是通过预先获得当地积尘的物理性质、太阳辐射功率谱,进而来设计光伏玻璃结构,从而实现光伏电池的高效发电。主要方法为:
4)获得积尘样本,测量其粒径分布函数、相对介电常数(或折射指数)。对于粒径分布函数可以借助激光粒度仪对收集的积尘样本进行测量而获得,该函数记为f(R),其中R为颗粒半径。其相对介电常数可以利用相关仪器测量,如AS2855高频介电常数介质损耗测试系统。记为εr
5)基于Mie散射理论计算颗粒在电磁波作用下的近场,公式如下:
Figure GDA0002851911930000041
Figure GDA0002851911930000042
这里
Figure GDA0002851911930000043
Figure GDA0002851911930000044
πnn可由下式迭代求解:
Figure GDA0002851911930000045
π0=0;π1=1;π2=3cosθ;τ0=0τ1=cosθ;τ2=3cos(2θ)
x=kR,k为电磁波的波数,k=2π/λ,λ为电磁波波长,
Figure GDA0002851911930000046
r为考察点到颗粒中心的距离。
Figure GDA0002851911930000047
Figure GDA0002851911930000048
上式中jn(x),
Figure GDA0002851911930000049
分别为第一类、第三类球贝塞尔函数,[xjn(x)]'表示对括号中的函数求关于x的导数。此处也可以利用其他理论进行颗粒近场的计算,如离散偶极子法(DDA)、T矩阵法、有限差分法等,其根本目的相同:计算颗粒在电磁波照射下的近场分布。
6)利用(1)式通过大量仿真计算获得不同粒径R颗粒在波长为λ的太阳辐射照射下的散射场数据,找到其场强大于定值b(b>1)时对应的距离r,建立相应的拟合函数r=g(R),从而计算出一个平均距离,计算公式如下:
Figure GDA0002851911930000051
这里的b为任取大于1的常数,表示(2)式所得的距离
Figure GDA0002851911930000052
可保证颗粒在直射条件下散射场的增强倍数,也就是光伏电池感知的场强与入射太阳辐射的倍数。
(4)选定
Figure GDA0002851911930000053
作为光伏玻璃的厚度,据此进行光伏板的组装;
(5)通过测量安装地的地理经纬度,确定需要人工干预除尘的时间。具体方法为:假定安装地的地理纬度φ,太阳赤纬δ,太阳时角t,则太阳高度角H可由下式计算:
sinH=sinφsinδ+cosφcosδcost
假定每日需要并网时间段为上午9点至下午17时,则据此获得太阳高度角为H9,H15。假定安装地的颗粒物半径的中位数为RM(步骤1中激光粒度仪自动输出),单颗粒阴影的影响距离为L,则L1=2RMctg(H9),L2=2RMctg(H15),取二者均值作为指标,即L0=(L1+L2)/2。假定光伏板面积为A,则其上积尘数目不得超过0.25A/L2,对应的颗粒间平均间距应为n=2L/R倍颗粒半径,可通过拍照后计算机图像处理方法进行自动判断。
通过我们的实验,对于常见的均值为20微米的积尘颗粒,当光伏板厚度由3毫米缩减为1.5毫米时,入射辐射强度最少约增加10倍,结果如图1所示,纵轴为放大因数。
基于上述思路,也可以人为设计透明微小球体安装在光伏板上,从而实现同样的目的。微球半径为前文所述的R。
本领域技术人员应理解,以上实施例仅是示例性实施例,在不背离本申请的精神和范围的情况下,可以进行多种变化、替换以及改变。

Claims (3)

1.一种设计光伏板结构的方法,包括:
1)获得积尘样本,测量其粒径分布函数f(R)、相对介电常数,其中R为颗粒半径,相对介电常数利用开式腔法获得,记为εr
2)基于Mie散射理论计算颗粒在电磁波作用下的散射场,公式如下:
Figure FDA0002851911920000011
Figure FDA0002851911920000012
Figure FDA0002851911920000013
πnn可由下式迭代求解:
Figure FDA0002851911920000014
π0=0;π1=1;π2=3cosθ;τ0=0;τ1=cosθ;τ2=3cos(2θ)
x=kR,k为电磁波的波数,k=2π/λ,λ为电磁波波长,
Figure FDA0002851911920000015
r为考察点到颗粒中心的距离;E
Figure FDA0002851911920000016
分别是入射波在球坐标系下的分量;
Figure FDA0002851911920000017
Figure FDA0002851911920000018
3)利用(1)式通过仿真计算获得不同粒径R的颗粒在波长为λ的太阳辐射照射下的散射场数据,找到其场强大于定值b时对应的距离r,建立相应的拟合函数r=g(R),从而计算出一个平均距离,计算公式如下:
Figure FDA0002851911920000019
这里的b为任取大于1的常数,表示(2)式所得的距离
Figure FDA00028519119200000110
可保证颗粒在直射条件下散射场的增强倍数,也就是光伏电池感知的场强与入射太阳辐射的倍数;
4)选定
Figure FDA0002851911920000021
作为光伏玻璃的厚度,据此进行光伏板结构的组装。
2.根据权利要求1所述的方法,还包括:
5)通过测量安装地的地理经纬度,确定需要人工干预除尘的时间,具体步骤为:假定安装地的地理纬度φ,太阳赤纬δ,太阳时角t,则太阳高度角H由下式计算:
sinH=sinφsinδ+cosφcosδcost
假定安装地的颗粒物半径的中位数为RM,其中,RM在步骤1)中通过激光粒度仪输出,单颗粒阴影的影响距离为L,则L1=2RMctg(H9),L2=2RMctg(H15),取二者均值作为指标,即L0=(L1+L2)/2;
其中,H9和H15表示并网时间点。
3.根据权利要求1或2所述的方法得到的光伏板结构。
CN202010023178.3A 2020-01-09 2020-01-09 可降低积尘影响的光伏板结构和设计光伏板结构的方法 Active CN111222084B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202010023178.3A CN111222084B (zh) 2020-01-09 2020-01-09 可降低积尘影响的光伏板结构和设计光伏板结构的方法
AU2020104166A AU2020104166A4 (en) 2020-01-09 2020-12-18 Photovoltaic panel structure capable of reducing influence of dust accumulation and method for designing photovoltaic panel structure
ZA2020/07964A ZA202007964B (en) 2020-01-09 2020-12-18 Photovoltaic panel structure capable of reducing influence of dust accumulation and method for designing photovoltaic panel structure
NL2027172A NL2027172B1 (en) 2020-01-09 2020-12-18 Photovoltaic panel structure capable of reducing influence of dust accumulation and method for designing photovoltaic panel structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010023178.3A CN111222084B (zh) 2020-01-09 2020-01-09 可降低积尘影响的光伏板结构和设计光伏板结构的方法

Publications (2)

Publication Number Publication Date
CN111222084A CN111222084A (zh) 2020-06-02
CN111222084B true CN111222084B (zh) 2021-02-26

Family

ID=70828225

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010023178.3A Active CN111222084B (zh) 2020-01-09 2020-01-09 可降低积尘影响的光伏板结构和设计光伏板结构的方法

Country Status (4)

Country Link
CN (1) CN111222084B (zh)
AU (1) AU2020104166A4 (zh)
NL (1) NL2027172B1 (zh)
ZA (1) ZA202007964B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113393046B (zh) * 2021-06-23 2024-06-18 合肥零碳技术有限公司 一种光伏功率预测方法及其应用装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106557867A (zh) * 2016-10-19 2017-04-05 华南理工大学 适用中长时间尺度电网分析的光伏发电概率模型建模方法
CN108538949A (zh) * 2017-03-03 2018-09-14 无锡马丁格林光伏科技有限公司 一种热光伏电池的背部结构

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040060757A1 (en) * 2002-09-26 2004-04-01 James Plante Apparatus and methods for illuminating space and illumination sources for automotive collision avoidance system
US8797550B2 (en) * 2009-04-21 2014-08-05 Michigan Aerospace Corporation Atmospheric measurement system
BR112012029813A2 (pt) * 2010-05-26 2017-03-07 Univ Toledo estrutura de célula fotovoltaica, método para fazer uma camada de interface de dispersão de luz para uma célula fotovoltaica e estrutura de célula fotovoltaica (pv) tendo uma camada de interface de dispersão
US8674281B2 (en) * 2010-08-09 2014-03-18 Palo Alto Research Center Incorporated Solar energy harvesting system using luminescent solar concentrator with distributed outcoupling structures and microoptical elements
CN102715046B (zh) * 2012-06-08 2013-11-20 江苏大学 一种日光温室太阳能光伏发电利用装置及方法
WO2014144045A1 (en) * 2013-03-15 2014-09-18 Buhler Charles R Dust mitigation device and method of mitigating dust
US20170194906A1 (en) * 2015-12-31 2017-07-06 UKC Electronics (H.K.) Co., Ltd. Method and system for determining time point to clean solar cell module and solar cell module system by using the same
EP3417487A1 (en) * 2016-02-17 2018-12-26 Qatar Foundation for Education, Science and Community Development Flexible dust shield
JP6848477B2 (ja) * 2017-01-25 2021-03-24 Jsr株式会社 光学フィルターおよびその用途
CN107179122B (zh) * 2017-07-07 2018-08-10 宁夏大学 光伏电池表面沙尘沉积和有效太阳辐射的测量方法及装置
CN108399493B (zh) * 2018-02-02 2022-07-12 上海电气分布式能源科技有限公司 积灰致光伏发电量损失预测方法及光伏组件清洗判断方法
CN109002593A (zh) * 2018-06-27 2018-12-14 华北电力大学 适于沙尘暴异常天气情况下的光伏系统出力仿真计算方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106557867A (zh) * 2016-10-19 2017-04-05 华南理工大学 适用中长时间尺度电网分析的光伏发电概率模型建模方法
CN108538949A (zh) * 2017-03-03 2018-09-14 无锡马丁格林光伏科技有限公司 一种热光伏电池的背部结构

Also Published As

Publication number Publication date
NL2027172B1 (en) 2022-03-18
AU2020104166A4 (en) 2021-03-04
CN111222084A (zh) 2020-06-02
NL2027172A (en) 2021-08-30
ZA202007964B (en) 2021-05-26

Similar Documents

Publication Publication Date Title
Yunus Khan et al. Optimum location and influence of tilt angle on performance of solar PV panels
Liu et al. Flexible solar cells based on foldable silicon wafers with blunted edges
Jiang et al. A novel model to estimate the cleaning frequency for dirty solar photovoltaic (PV) modules in desert environment
Baig et al. Numerical modelling and experimental validation of a low concentrating photovoltaic system
Christo Numerical modelling of wind and dust patterns around a full-scale paraboloidal solar dish
Al Garni The impact of soiling on PV module performance in Saudi Arabia
Tamang et al. On the interplay of cell thickness and optimum period of silicon thin‐film solar cells: light trapping and plasmonic losses
Yao et al. Analysis of the influencing factors of the dust on the surface of photovoltaic panels and its weakening law to solar radiation—A case study of Tianjin
CN111222084B (zh) 可降低积尘影响的光伏板结构和设计光伏板结构的方法
Tamang et al. On the potential of light trapping in multiscale textured thin film solar cells
Zhang et al. Forecasting the energy and economic benefits of photovoltaic technology in China’s rural areas
KR101146235B1 (ko) 태양전지 모듈의 발전량 예측 방법
Guo et al. Optimization of broadband omnidirectional antireflection coatings for solar cells
Hüpkes et al. Coupling and trapping of light in thin-film solar cells using modulated interface textures
CN109037361A (zh) 一种高效率碲化镉薄膜太阳能电池
Saini et al. Effects of dust on the performance of solar panels–a review update from 2015–2020
Barugkin et al. Diffuse reflectors for improving light management in solar cells: a review and outlook
Xia et al. Self-protecting concave microstructures on glass surface for daytime radiative cooling in bifacial solar cells
Chala et al. Solar photovoltaic energy as a promising enhanced share of clean energy sources in the future—a comprehensive review
Kazem Dust impact on the performance of solar photovoltaic module: a new prospect
Lai et al. Enhanced omnidirectional and weatherability of Cu2ZnSnSe4 solar cells with ZnO functional nanorod arrays
Hilali et al. Enhanced photocurrent in thin-film amorphous silicon solar cells via shape controlled three-dimensional nanostructures
Aïssa et al. A comprehensive review of a decade of field PV soiling assessment in QEERI’s outdoor test facility in Qatar: Learned lessons and recommendations
Zhang et al. Surface construction and optical performance analysis of compound parabolic concentrator with concentrating surface separated from absorber
Wang et al. Method for short-term photovoltaic generation power prediction base on weather patterns

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant