CN111220552B - 考虑光照方向叶片辐射传输模型的叶绿素高光谱反演方法 - Google Patents

考虑光照方向叶片辐射传输模型的叶绿素高光谱反演方法 Download PDF

Info

Publication number
CN111220552B
CN111220552B CN202010043919.4A CN202010043919A CN111220552B CN 111220552 B CN111220552 B CN 111220552B CN 202010043919 A CN202010043919 A CN 202010043919A CN 111220552 B CN111220552 B CN 111220552B
Authority
CN
China
Prior art keywords
blade
leaf
formula
directional
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010043919.4A
Other languages
English (en)
Other versions
CN111220552A (zh
Inventor
王铖杰
张垚
王晨冬
张竞成
吴开华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN202010043919.4A priority Critical patent/CN111220552B/zh
Publication of CN111220552A publication Critical patent/CN111220552A/zh
Application granted granted Critical
Publication of CN111220552B publication Critical patent/CN111220552B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1793Remote sensing
    • G01N2021/1797Remote sensing in landscape, e.g. crops

Abstract

本发明公开了一种考虑光照方向叶片辐射传输模型的叶绿素高光谱反演方法。现有植物冠层光学辐射传输模型PROSAIL仅以天底方向的光源为入射角。本发明如下:1、叶片内部单元层的BRDF和BTDF特征构建。2、顶层叶片单元层BRDF和BTDF构建。3、N层单元层叶片的BRDF构建。4、模型参数的率定。5、对被测叶片进行多光源入射角的叶绿素浓度反演。发明构建了使用BRDF和BTDF描述的叶片辐射传输光学模型,并提供了一个入射光源角度的变量,使得本发明可以用不同方向入射的光线对叶片的叶绿素进行反演。

Description

考虑光照方向叶片辐射传输模型的叶绿素高光谱反演方法
技术领域
本发明属于农业生态大数据智能感知与探测技术领域,具体涉及一种考虑光照方向叶片辐射传输模型的叶绿素高光谱反演方法。
背景技术
绿色植物光合作用是地球上最为普遍、规模最大的生物地球化学过程,也是农业生产的基础。绿色植物的叶片在植物的光合作用中起着至关重要的作用,而光合作用过程中最关键的就是叶片内部的各种色素,尤其是叶绿素,它对植物的各种生理生态过程有着密切的联系。而且叶片叶绿素所吸收的波段为400-700nm,而太阳光到达地面的高能波段为200-1100nm,吸收波段占据了高能光谱的大部分区域。因此,我们运用高光谱遥感数据对植物叶片进行定量遥感,检测监测植物的生理生化状态,研究植物的各种生化组分具有一定的现实意义。
叶片光学辐射传输模型是通过定量描述影响叶片光学属性的影响因子,模拟光线在叶片中传输的过程和反演植物叶片的生化组分,如LEAFMOD(Leaf ExperimentalAbsorptivity Feasibility)模型、FluorMOD(Chlorophyll Fluorescence Model)模型、PROSPECT(A Model of Leaf Optical Properties Spectra)模型(Jacquemoud and Baret1990)、SLOP(Stochastic Model for Leaf Optical Properties)模型等,但是这些叶片的光学辐射传输模型都存在着几个问题。由于这些模型所用的光谱数据都是用积分球获取的,而积分球通常都只有一个入射角度,所以这些模型中的光源的入射角度都是一个固定值。而在实际的自然场景中,植被所受的以太阳光为光源的辐射是以多个角度射向叶片的,很少是以一个固定的角度入射。目前最常用的植物冠层光学辐射传输模型PROSAIL(PROSPECT+SAIL)仍是以天底方向的光源为入射角。另外,上述的模型在对叶片表面粗糙度的描述采用了“V”形结构,并用一个最大入射角来描述这个粗糙度,这个最大入射角在模型计算中并不能完全定量表面粗糙度。因此急需开发一种能够考虑入射光方向和定量粗糙度的多光源角度的植物叶片光学辐射传输模型(PROSPECT-MA模型)以提高辐射传输模型的适应范围。
发明内容
本发明的目的在于提供一种考虑光照方向叶片辐射传输模型的叶绿素高光谱反演方法。
本发明的具体步骤如下:
步骤1、叶片内部单元层的BRDF和BTDF特征构建
叶片内部单元层的方向半球反射Re如式(1)所示,方向半球透射Te特性如式(2)所示:
Figure BDA0002368698610000021
Figure BDA0002368698610000022
式(1)和(2)中,a→l表示光照方向从空气介质到叶片介质;l→a则是光照方向从叶片到空气;Ra→l、Ta→l分别表示在空气和叶片介质界面上光从空气到叶片的方向半球反射、方向半球透射;Rl→a和Tl→a分别表示在空气和叶片介质界面上光从叶片到空气的方向半球反射和方向半球透射属性;
Figure BDA0002368698610000023
和τ分别表示叶片折射率和光在叶片单元层的吸收特征;Ra→l=1-Ta→l、Rl→a=1-Tl→a
Figure BDA0002368698610000024
Ta→l根据平板模型由
Figure BDA0002368698610000025
和τ参数确定。τ的表达式如式(3)所示
Figure BDA0002368698610000026
式(3)中,k为中间色素吸收系数,表达式如式(4)所示:
Figure BDA0002368698610000027
式(4)中,C为叶片叶绿素浓度,N为叶片结构参数,KChls为叶绿素吸收系数。
叶片内部单元层的双向反射分布函数BRDFinterior如式(5)所示,双向透射分布函数BTDFinterior如式(6)所示:
BRDFinterior=Re/π (5)
BTDFinterior=Te/π (6)
步骤2、顶层叶片单元层BRDF和BTDF构建
光从叶片表面到叶片顶层入射方向(out→in)上,顶层叶片单元层的方向半球反射(Rtop,out→in)如式(7)所示,方向半球透射(Ttop,out→in)如式(8)所示:
Rtop,out→in=Ra→s+Rtop,diff (7)
Figure BDA0002368698610000031
式(7)中,Rtop,diff由如下式(9)求得:
Figure BDA0002368698610000032
顶层单元层叶片在光从叶片内部空气介质向顶层单元层到叶片表层方向上的方向半球反射Rtop,in→out如式(10)所示,方向半球透射Ttop,in→out如式(11)所示
Rtop,in→out=Re (10)
Ttop,in→out=Te (11)
在式(7)(8)(9)中,Ra→s表示叶片表皮层直接反射的半球方向上的积分,如式(12)所示:
Ra→s=DHRFspec (12)
式(12)中,DHRFspec为叶片镜面反射的半球方向的积分。DHRFspec的表达式如式(13)所示:
Figure BDA0002368698610000033
式(13)中,
Figure BDA0002368698610000034
为镜面方向的双向反射分布函数;θi表示入射光源天顶角;θv
Figure BDA0002368698610000035
分别表示反射光线的天顶角和方位角,σ为叶片表面粗糙度,
Figure BDA0002368698610000036
为叶片折射率。
顶层单元层叶片在光从叶片表面到叶片顶层入射方向的双向反射分布函数BRDFtop,out→in如式(14)所示,双向透射分布函数BTDFtop,out→in如式(15)所示;顶层单元层叶片在光从叶片内部到叶片顶层入射方向的双向反射分布函数BRDFtop,in→out如式(16)所示,双向透射分布函BTDFtop,in→out如式(17)所示:
Figure BDA0002368698610000037
Figure BDA0002368698610000038
Figure BDA0002368698610000039
Figure BDA0002368698610000041
步骤3、N层单元层叶片的BRDF构建
叶片的方向半球反射RN,out→top如式(18)所示,方向半球透射TN,out→top如式(19)所示:
RN,out→top=Rtop,out→in+RN-1,out→in,diff (18)
Figure BDA0002368698610000042
式(18)中,RN-1,out→in,diff表示叶片内部N-1层单元层散射对总反射率的贡献,表达式如式(20)所示;
Figure BDA0002368698610000043
式(19)和(20)中,RN-1和TN-1分别表示叶片内部N-1层单元层叶片的方向半球反射和方向半球透射;RN-1和TN-1由叶片结构参数N和叶片内部单元层的方向半球反射Re定量表达。
叶片内部N-1层的双向反射分布函数BRDFN-1,layer如式(21)所示,叶片内部N-1层的双向透射分布函数BTDFN-1,layer如式(22)所示,叶片内部N-1层的双向反射分布函数的散射分量BRDFN-1,layer,out→in,diff如式(23)所示:
Figure BDA0002368698610000044
Figure BDA0002368698610000045
BRDFN-1,layer,out→in,diff=RN-1,out→in,diff/π (23)
叶片双向反射分布函数模拟值BRDFmod如式(24)所示,方向半球反射系数模拟值DHRFmod如式(25)所示,方向半球透射系数模拟值DHTFmod如式(26)所示:
Figure BDA0002368698610000046
DHRFmod=DHRFspec+Rtop,diff+RN-1,out→in,diff (25)
DHTFmod=TN,out→top (26)
BRDFmod、DHRFmod、DHTFmod均由叶绿素浓度C、入射光源天顶角θi、叶片折射率
Figure BDA0002368698610000051
叶绿素吸收系数KChls、表面粗糙度σ和叶结构参数N来确定。
步骤4、模型参数的率定
4-1.测定样本叶片在400~1400nm范围内的方向半球反射系数测量值DHRFmea和方向半球透射系数测量值DHTFmea。测量时的光源角度θ作为步骤1至3所述模型中的入射光源天顶角θi。测量样本叶片的叶绿素浓度C'。
4-2.参数率定。本模型参数包括:叶片折射率
Figure BDA00023686986100000512
叶绿素吸收系数KChls、表面粗糙度σ和叶结构参数N;
在波长范围400~1000nm内的3个最值波段进行计算;3个最值波段分别记为λ1、λ2、λ3;λ1、λ2、λ3分别为最大反射率、最大透射率、最小吸收率对应的波长;将N、σ、
Figure BDA0002368698610000052
作为待求量,i=1,2,3;
Figure BDA0002368698610000053
为波长为λi时的中间色素吸收系数;
Figure BDA0002368698610000054
设为定值1.45;建立式(27);当式(27)的右式达到最小时,对应的N、σ、
Figure BDA0002368698610000055
即为求取结果;仅保留N、σ;
Figure BDA0002368698610000056
式(27)中,DHRFmeai)、DHTFmeai)分别为波长λi时的方向半球反射系数测量值、方向半球透射系数测量值;DHRFmodi)、DHTFmodi)分别为波长λi时的方向半球反射系数模拟值、方向半球透射系数模拟值。
与光谱波段有关模型参数获取:
使用步骤4-1中测到的样本叶片的叶绿素浓度C'和已获取的叶片结构参数N及叶片表面粗糙度σ作为模型的输入变量;
Figure BDA0002368698610000057
KChls,λ作为待求量,λ=300,301,…,800;
Figure BDA0002368698610000058
表示λ波长下的叶片折射率
Figure BDA0002368698610000059
KChls,λ表示λ波长下的叶绿素吸收系数KChls。建立式(28);当式(28)的右式达到最小时,对应的
Figure BDA00023686986100000510
KChls,λ即为求取结果;
Figure BDA00023686986100000511
步骤5、对被测叶片进行多光源入射角的叶绿素浓度反演
5-1.测定被测叶片在400~1400nm范围内的方向半球反射系数测量值DHRFmea和方向半球透射系数测量值DHTFmea。测量时的光源角度θ作为入射光源天顶角。
5-2.将步骤4中求出或确定的叶结构参数N,叶表面粗糙度σ,叶片折射率
Figure BDA0002368698610000061
叶绿素吸收系数KChls,λ、入射光源天顶角θi、步骤5-1测得的DHRFmea和DHTFmea作为输入量,建立式(29);当式(29)的右式达到最小时,对应的叶绿素浓度C即为求取结果;
Figure BDA0002368698610000062
作为优选,步骤4-1中,样本叶片的方向半球反射系数测量值DHRFmea和方向半球透射系数测量值DHTFmea通过UV-3600分光光度计+积分球进行测定。
作为优选,步骤4-1中,样本叶片的叶绿素浓度C'通过7500可见光分光光度计测量得到。
本发明具有的有益效果是:
1、本发明构建了使用BRDF和BTDF描述的叶片辐射传输光学模型,并提供了一个入射光源角度的变量,使得本发明可以用不同方向入射的光线对叶片的叶绿素进行反演。
2、本发明引入了叶表面粗糙度σ替代原先描述叶表面结构的最大入射角,以此精确描述特定叶片表面结构。
3、在PROSPECT模型中对叶片表面的“V”字型结构的描述是用了一个最大入射角,而本发明引入了表面粗糙度以描述叶片表面结构特征,与此同时也提供了一个光源角度变量,可以用不同方向入射的光线对叶片的色素进行反演。
附图说明
图1是本发明所述的模型构建及色素反演的技术路线图;
图2是本发明中叶片BRDF分层示意图;
图3是本发明与PROSPECT-5计算出叶结构参数N的比较图;
图4是本发明计算的叶表面粗糙度参数σ的示意图;
图5是本发明、PROSPECT-4,PROSPECT-5叶绿素吸收系数的比较图;
图6是本发明、PROSPECT-4,PROSPECT-5叶片折射率的比较图;
图7(a)是本发明所述的PROSPECT-4模型计算的低叶绿素浓度叶片光谱与实测光谱的比较图;
图7(b)是本发明所述的PROSPECT-4模型计算的中叶绿素浓度叶片光谱与实测光谱的比较图;
图7(c)是本发明所述的PROSPECT-4模型计算的高叶绿素浓度叶片光谱与实测光谱的比较图;
图7(d)是本发明计算的低叶绿素浓度叶片光谱与实测光谱的比较图;
图7(e)是本发明计算的中叶绿素浓度叶片光谱与实测光谱的比较图;
图7(f)是本发明计算的高叶绿素浓度叶片光谱与实测光谱的比较图;
图8(a)是本发明和PROSPECT-4模型在500-800nm每个波段反射率的RMSE的比较图;
图8(b)是本发明和PROSPECT-4模型在500-800nm每个波段透射率的RMSE的比较图;
图8(c)是本发明和PROSPECT-4模型在500-800nm每个波段反射率的BIAS的比较图;
图8(d)是本发明和PROSPECT-4模型在500-800nm每个波段透射率的BIAS的比较图;
图8(e)是本发明和PROSPECT-4模型在500-800nm每个波段反射率的SE的比较图;
图8(f)是本发明和PROSPECT-4模型在500-800nm每个波段透射率的SE的比较图;
图9(a)是本发明计算的天底方向反演色素浓度图;
图9(b)是本发明所述的PROSPECT-4模型的反演色素浓度图;
图10(a)是本发明光源天顶角为15°时的反演叶绿素浓度(μg/cm2)和实测值的比较图;
图10(b)是本发明光源天顶角为30°时的反演叶绿素浓度(μg/cm2)和实测值的比较图;
图10(c)是本发明光源天顶角为40°时的反演叶绿素浓度(μg/cm2)和实测值的比较图;
图10(d)是本发明光源天顶角为55°时的反演叶绿素浓度(μg/cm2)和实测值的比较图;
图10(e)是本发明四个方向上总体反演叶绿素浓度(μg/cm2)和实测值的比较图。
具体实施方式
以下结合附图对本发明作进一步说明。
一种考虑光照方向的植物叶片辐射传输模型构建与叶绿素高光谱反演方法,具体步骤如下:
步骤1、叶片内部单元层的BRDF和BTDF特征构建
根据平板模型,PROSPECT模型叶片内部单元层的方向半球反射Re如式(1)所示,方向半球透射Te特性如式(2)所示:
Figure BDA0002368698610000081
Figure BDA0002368698610000082
式(1)和(2)中,a→l表示光照方向从空气介质到叶片介质;l→a则是光照方向从叶片到空气;Ra→l、Ta→l分别表示在空气和叶片介质界面上光从空气到叶片的方向半球反射、方向半球透射;Rl→a和Tl→a表示在空气和叶片介质界面上光从叶片到空气的方向半球反射和方向半球透射属性;
Figure BDA0002368698610000083
和τ分别表示叶片折射率和光在叶片单元层的吸收特征,则有:Ra→l=1-Ta→l、Rl→a=1-Tl→a
Figure BDA0002368698610000084
Ta→l根据平板模型由
Figure BDA0002368698610000085
和τ参数确定;根据
Figure BDA0002368698610000086
和τ参数确定Ta→l属于现有技术,在此不做赘述。因此,Re和Te通过
Figure BDA0002368698610000087
和τ表示。其中τ其如式(3)所示
Figure BDA0002368698610000088
式(3)中,k为中间色素吸收系数,表达式如式(4)所示:
Figure BDA0002368698610000089
式(4)中C为叶片叶绿素浓度,N为叶片结构参数,KChls为叶绿素吸收系数。
由于叶片内部细胞组织以各种几何形态存在,入射光进入叶片内部后向各个方向散射,总体上,叶片内部的散射可以近似为是各向同性的。因此叶片内部单元层的双向反射分布函数(BRDFinterior)如式(5)所示,双向透射分布函数(BTDFinterior)如式(6)所示:
BRDFinterior=Re/π (5)
BTDFinterior=Te/π (6)
步骤2、顶层叶片单元层BRDF和BTDF构建
根据PROSPECT模型和leafBRDF模型,叶片顶层的反射光是由叶片表皮层表面的镜面反射组分Ra→s和来自叶片内部在顶层单元层叶片的散射组分Rtop,diff组成。因此,光从叶片表面(叶片外部)到叶片顶层入射方向(out→in)上,顶层叶片单元层的方向半球反射(Rtop,out→in)如式(7)所示,方向半球透射(Ttop,out→in)如式(8)所示:
Rtop,out→in=Ra→s+Rtop,diff (7)
Figure BDA0002368698610000091
式(7)中,Rtop,diff由如下式(9)求得:
Figure BDA0002368698610000092
由于叶片外部到内部光传输方向是以各向异性的方式辐射传输,叶片内部到外部光传输方向是以各向同性的方式辐射传输,为此,在PROSPECT模型辐射传输框架中,顶层单元层叶片在光从叶片内部空气介质向顶层单元层到叶片表层方向上的光学属性,与顶层单元层叶片在光从叶片表层界面向顶层单元层到叶片内部的空气介质的光学属性是不同的。根据PROSPECT模型,顶层单元层叶片在光从叶片内部空气介质向顶层单元层到叶片表层方向上的方向半球反射(Rtop,in→out)如式(10)所示,方向半球透射(Ttop,in→out)如式(11)所示
Rtop,in→out=Re (10)
Ttop,in→out=Te (11)
根据平板模型,在式(7)(8)(9)中,Ra→s表示叶片表皮层直接反射的半球方向上的积分,即叶片镜面反射的半球方向的积分DHRFspec如式(12)所示:
Ra→s=DHRFspec (12)
DHRFspec的计算与光源入射角有关,这是我们实现多光源角度的关键,具体算法如式(13)所示:
Figure BDA0002368698610000093
式(13)中,
Figure BDA0002368698610000094
为镜面方向的双向反射分布函数,具体函数式与L Bousquet等作者的论文《Leaf BRDF measurements and model for specular anddiffuse components differentiation》中记载的函数式相同,该论文出版自《RemoteSensing of Environment》;θi表示入射光源天顶角;θv
Figure BDA0002368698610000095
分别表示反射光线的天顶角和方位角,σ为叶片表面粗糙度,
Figure BDA0002368698610000096
为叶片折射率。
在PROSPECT模型光学辐射传输框架下,顶层单元层叶片中,除Ra→s外,其他因子Rtop,diff、Ttop,in→out、Rtop,out→in和Ttop,out→in的光学属性特征都是来自叶片内部的光的散射特征,为此,它们的入射光的方向都是各向同性的,进行这些因子与它们的双向光学属性分布函数之间恒定的函数关系,即这个常量为π。因此,顶层单元层叶片在光从叶片表面(叶片外部)到叶片顶层入射方向(out→in)的双向反射分布函数BRDFtop,out→in如式(14)所示,双向透射分布函数BTDFtop,out→in如式(15)所示;顶层单元层叶片在光从叶片内部到叶片顶层入射方向(in→out)的双向反射分布函数BRDFtop,in→out如式(16)所示,双向透射分布函BTDFtop,in→out如式(17)所示:
Figure BDA0002368698610000101
Figure BDA0002368698610000102
Figure BDA0002368698610000103
Figure BDA0002368698610000104
步骤3、N层单元层叶片的BRDF构建
在PROSPECT模型光学辐射传输框架中,叶片光学属性描述为顶层单元层叶片的光学属性与叶片内部N-1层单元层叶片光学传输迭代关系,叶片的方向半球反射(RN,out→top)如式(18)所示,方向半球透射(TN,out→top)如式(19)所示:
Rn,out→top=Rtop,out→in+Rn-1,out→in,diff (18)
Figure BDA0002368698610000105
式(18)中,RN-1,out→in,diff表示N-1层单元层叶片散射出叶片表层的光的贡献由式(20)表示
Figure BDA0002368698610000106
式(19)和(20)中,RN-1和TN-1分别表示叶片内部N-1层单元层叶片的方向半球反射和方向半球透射;RN-1和TN-1根据PROSPECT模型由叶片结构参数N和叶片内部单元层的方向半球反射Re定量表达,表达属于现有技术,在此不做赘述。
由于在叶片内部,光辐射传输特征为各向同性,叶片内部N-1层的双向反射分布函数BRDFN-1,layer如式(21)所示,叶片内部N-1层的双向透射分布函数BTDFN-1,layer如式(22)所示,叶片内部N-1层的双向反射分布函数的散射分量BRDFN-1,layer,out→in,diff如式(23)所示:
Figure BDA0002368698610000111
Figure BDA0002368698610000112
BRDFN-1,layer,out→in,diff=RN-1,out→in,diff/π (23)
在PROSPECT模型光学辐射传输框架下,由于叶片的反射来自叶片表面层的镜面反射光(BRDFspec)、顶层单元层叶片散射出叶片表层的光(Rtop,diff)和N-1层单元层叶片散射出叶片表层的光的贡献(RN-1,layer,out→in,diff),因此,叶片双向反射分布函数模拟值BRDFmod如式(24)所示,方向半球反射系数模拟值DHRFmod如式(25)所示,方向半球透射系数模拟值DHTFmod如式(26)所示:
Figure BDA0002368698610000113
DHRFmod=DHRFspec+Rtop,diff+RN-1,out→in,diff (25)
DHTFmod=TN,out→top (26)
对于任意角度射入的光线,叶片的总体反射透射情况如图2所示。至此,BRDFmod、DHRFmod、DHTFmod均由叶绿素浓度C、入射光源天顶角θi、叶片折射率
Figure BDA0002368698610000114
叶绿素吸收系数KChls、表面粗糙度σ和叶结构参数N来确定。叶片折射率
Figure BDA0002368698610000115
及叶绿素吸收系数KChls随着光谱波长λ的变化而变化;故不同光谱波长λ下,DHRFmod和DHTFmod的数值不同。
步骤4、模型参数的率定
4-1.使用UV-3600分光光度计+积分球测定样本叶片在400~1400nm范围内的方向半球反射系数测量值DHRFmea和方向半球透射系数测量值DHTFmea。测量时的光源角度θ作为步骤1至3所述模型中的入射光源天顶角θi
使用7500可见光分光光度计测量样本叶片的叶绿素浓度C';用于后续参数率定和模型精度的评价,具体测量方法参照Lichtenthaler等作者的论文《ChlorophyllFluorescence Signatures of Leaves during the Autumnal Chlorophyll Breakdown》,该论文出版自《Journal of Plant Physiology》。
4-2.参数率定。本模型参数包括:叶片折射率
Figure BDA0002368698610000121
叶绿素吸收系数KChls、表面粗糙度σ和叶结构参数N;此外还有一个确定光源入射方向的输入变量θi,其值已知。其中,σ和N是反映叶片表面粗糙程度的几何特征和叶片内部细胞空间排列特征的特定叶片固有属性,这两个特征不随光谱的波段变化而变化,对特定叶片来说是固定的;而
Figure BDA0002368698610000122
KChls与光谱的波段有关,与叶片样本无关。因此,模型参数获取分为两个步骤:一是叶片固定参数获取(σ和N);二是随光谱变动而变动的参数获取(
Figure BDA0002368698610000123
KChls)。
与叶片样本有关模型参数获取:叶结构参数N和叶表面粗糙度σ使用光谱最小拟合法在波长范围400~1000nm内的3个最值波段进行计算;3个最值波段分别记为λ1、λ2、λ3;λ1、λ2、λ3分别为最大反射率、最大透射率、最小吸收率对应的波长;将N、σ、
Figure BDA0002368698610000124
作为待求量,i=1,2,3;
Figure BDA0002368698610000125
设为定值1.45,通过最小二乘法求出N、σ、
Figure BDA0002368698610000126
并仅保留N、σ;具体算法如式(27)所示:
Figure BDA0002368698610000127
式(27)中,DHRFmeai)、DHTFmeai)分别为波长λi时的方向半球反射系数测量值、方向半球透射系数测量值;DHRFmodi)、DHTFmodi)分别为波长λi时的方向半球反射系数模拟值、方向半球透射系数模拟值;
Figure BDA0002368698610000128
为波长为λi时的中间色素吸收系数;χ(X)表示使等式中的右式取最小时X的取值,式(27)中X取叶结构参数N、叶片表面粗糙度σ和波长为λi时的中间色素吸收系数
Figure BDA0002368698610000129
与光谱波段有关模型参数获取:
使用步骤4-1中测到的样本叶片的叶绿素浓度C'和已获取的叶片结构参数N及叶片表面粗糙度σ作为模型的输入变量;
Figure BDA00023686986100001210
KChls,λ作为待求量,λ=300,301,…,800;
Figure BDA00023686986100001211
表示λ波长下的叶片折射率
Figure BDA00023686986100001212
KChls,λ表示λ波长下的叶绿素吸收系数KChls。通过最小二乘法求出
Figure BDA0002368698610000131
KChls,λ;具体算法如式(28)所示:
Figure BDA0002368698610000132
步骤5、对被测叶片进行多光源入射角的叶绿素浓度反演
5-1.使用UV-3600分光光度计+积分球在入射光源角度任意的情况下,测定被测叶片在400~1400nm范围内的方向半球反射系数测量值DHRFmea和方向半球透射系数测量值DHTFmea。测量时的光源角度θ作为入射光源天顶角θi
5-2.将步骤4中求出或确定的叶结构参数N,叶表面粗糙度σ,叶片折射率
Figure BDA0002368698610000133
叶绿素吸收系数KChls,λ、入射光源天顶角θi、步骤5-1测得的DHRFmea和DHTFmea作为输入量,用光谱最小拟合法反演被测叶片的叶绿素浓度C。具体算法如式(29)所示:
Figure BDA0002368698610000134
以下对本发明的效果进行论证:
S1.数据的选取
本实施例在光源为天底方向的验证上采用了LOPEX(1993)数据库(Hosgood etal.1995),该数据库使用了50个不同品种,超过70个叶片样品。该数据集中包含了叶绿素a,叶绿素b,类胡萝卜素的含量以及400-2500nm波段的反射率和透射率。在非光源天底方向上用NNDHRF数据集进行验证,该数据集的数据按照步骤4-1中的方法获取,共有15个叶片。
S2.光源天底方向模型的参数获取
该模型与叶片样本有关的参数有叶片结构参数N和叶片表面粗糙度σ。N和σ都是叶片固有的结构特征参数,它们对一个特定的样本来说都是一个恒定值,与波段无关。模型在获取叶片结构参数时,为减少采集光谱过程中带来的误差,使用近红外的三个最值波段的光谱特征(最大反射率、最大透射率和最小吸收率)减少叶片生化组分吸收特征对该参数估算的误差。使用光谱最小拟合法进行N和σ的计算。
模型的参数获取过程中设置了估计的初始值和上下限,如下表所示
表1表面粗糙度,结构参数,平均折射率,特定吸收系数的上下限和初始值设定
Figure BDA0002368698610000141
上述参数拟合过程中可以得到N、σ和
Figure BDA0002368698610000142
参数。其中
Figure BDA0002368698610000143
是一个过程参数,它随波段的变动而变动,在此不具有应用意义。
将本模型计算的N值和PROSPECT-5模型的N值进行比较,见图3。两种模型N值的标准误差都在0.01以下,并且大部分都在在0.002-0.004之间,平均误差为0.0032;因此,本发明计算出的结果依然具有较高的可信度。
图4是本模型计算的叶表面粗糙度σ。
根据图4的叶片粗糙度参数的分布我们知LOPEX(1993)数据库中叶片的叶表面粗糙度参数在0.025-0.5μm之间,且其中多数分布在0.2-0.4μm之间,这个结果和Bousquet etaL(2005)的计算结果相吻合,我们认为此叶粗糙度参数是可信的。
前面对叶结构参数N和叶表面结构参数σ进行了计算,后续用这两个计算所得的数据进一步计算叶片折射率
Figure BDA0002368698610000144
和特定色素吸收系数k(λ)。这两个参数的计算也是用到了如下的光谱最小拟合法。
我们将计算所得的色素吸收系数和叶片平均折射率与PROSPECT-4和PROSPECT-5中的结果进行了比较。色素吸收系数如图5所示,叶片平均折射率如图6所示。
从图5和图6中我们可以看到本模型和PROSPECT-4及PROSPECT-5模型中的特定色素吸收系数和叶片平均折射率有一定的偏差,但它们之间相差的并不多,并且他们的峰位等的特征基本上是吻合的,因此可以认为本模型计算的特定色素吸收系数和叶片平均折射率是可信的。
S3.模型在光源天底方向的光谱模拟
将S2.中计算的叶结构参数N,叶片表面粗糙度σ,特定色素吸收系数
Figure BDA0002368698610000145
和叶片平均折射率放入模型直接计算500-800nm区间的叶片半球反射光谱和半球透射光谱。将计算所得数据与PROSPECT-5中的数据进行比较如图7(a)~7(f)。
通过比较我们发现两种模型在低叶绿素色素浓度情况下对光谱的模拟都存在着一定的差异,中高浓度的光谱模拟与实测结果非常接近。
表2基于RMSE、BIAS、SE的本模型和PROSPECT-4模型500-800nm光谱模拟精度评价
Figure BDA0002368698610000151
上表是对两种模型光谱模拟的精度评价:本模型反射率的RMSE为0.0218,模型的透射率为0.0208,两者都小于0.05可信度较高,两个BIAS都是-0.0001,可以说达到了很高的精度,而SE为0.0218和0.0201也在可信区间内。我们将本模型与PROSPECT-4进行比较,这两个模型对在500-800nm光谱区间的叶片反射率和透射率的模拟值与实测值具有几乎完全相同效果。
如图8(a)~8(f),我们对该模型与PROSPECT-4模型在500-800nm每个波段上的光谱模拟表现进行了精度分析。本模型在RMSE上,在整个光谱范围内的反射率和透射率都基本小于0.03,BIAS的值在0.008以下,SE的值基本处在0.03以下,这些值都和PROSPECT-4模型的差异非常之小说明该模型与PROSPECT-4在光谱模拟上有相同的能力。
S4.模型在光源天底方向上的色素反演与验证
使用已构建的模型进行色素的反演,图9(a)和9(b)中我们对两个模型的实测值和模拟值进行比较。
我们分别用两种模型计算了28个叶片的色素含量,并分别与实测值作成一个二维散点图,并将其与1:1线进行对比。从图中我们可以看出模拟色素浓度和实测色素浓度构成的二维散点大致分布在1:1线的两侧。从分布上看本模型的散点较PROSPECT-4模型的分布与1:1线更紧密,可以说明相比于PROSPECT-4模型,本模型在色素反演的精度上更具优势。
表3本模型和PROSPECT-4模型对叶绿素浓度反演精度验证比较
Figure BDA0002368698610000152
上表使用精度评价函数对两个模型的性能进行了分析。从上表可以看出该模型在上述的4项精度评价函数上都优于PROSPECT-4模型,因此用该辐射传输模型来反演叶绿素的含量是可信的,且可信度高于PROSPECT-4模型。
S5.模型在光源非天底方向上的色素反演与验证
使用已构建的模型在4个不同的光源天顶角上进行色素的反演,其中总体是用4个方向反演叶绿素浓度的平均值计算,将反演所得的叶绿素色素含量与测量值进行比较,如图10(a)~10(e)所示。
图10中在4个不同的光源天顶角下以及一个总体特征的所得的模拟叶绿素浓度和实测的叶绿素浓度组成的二维散点图都大致在1:1线的附近。这说明该模型在不同光源天顶方向的叶绿素浓度反演是有效的。
表4中使用RMSE,SE,VC和BIAS等精度评价函数对其进行了评价,并与PROSPECT-4模型进行了比较。
表4本模型非光源天底方向和PROSPECT-4模型天底方向对叶绿素浓度反演精度验
Figure BDA0002368698610000161
通过比较,非光源天底角方向模型的反演精度整体高于PROSPECT-4光源天底方向的反演精度,说明该模型在非天底方向上的叶绿素反演是可行的,反演结果也有较高的可信度。
本说明书实施例所述的内容仅仅是对发明构思的实现形式的列举,本发明的保护范围的不应当被视为仅限于实施例所陈述的具体形式,本发明的保护范围也及于本领域技术人员根据本发明构思所能够想到的等同技术手段。

Claims (3)

1.考虑光照方向的植物叶片辐射传输模型构建与叶绿素高光谱反演方法,其特征在于:
步骤1、叶片内部单元层的BRDF和BTDF特征构建
叶片内部单元层的方向半球反射Re如式(1)所示,方向半球透射Te特性如式(2)所示:
Figure FDA0002368698600000011
Figure FDA0002368698600000012
式(1)和(2)中,a→l表示光照方向从空气介质到叶片介质;l→a则是光照方向从叶片到空气;Ra→l、Ta→l分别表示在空气和叶片介质界面上光从空气到叶片的方向半球反射、方向半球透射;Rl→a和Tl→a分别表示在空气和叶片介质界面上光从叶片到空气的方向半球反射和方向半球透射属性;
Figure FDA0002368698600000013
和τ分别表示叶片折射率和光在叶片单元层的吸收特征;Ra→l=1-Ta→l、Rl→a=1-Tl→a
Figure FDA0002368698600000014
Ta→l根据平板模型由
Figure FDA0002368698600000015
和τ参数确定;τ的表达式如式(3)所示
Figure FDA0002368698600000016
式(3)中,k为中间色素吸收系数,表达式如式(4)所示:
Figure FDA0002368698600000017
式(4)中,C为叶片叶绿素浓度,N为叶片结构参数,KChls为叶绿素吸收系数;
叶片内部单元层的双向反射分布函数BRDFinterior如式(5)所示,双向透射分布函数BTDFinterior如式(6)所示:
BRDFinterior=Re/π (5)
BTDFinterior=Te/π (6)
步骤2、顶层叶片单元层BRDF和BTDF构建
光从叶片表面到叶片顶层入射方向(out→in)上,顶层叶片单元层的方向半球反射(Rtop,out→in)如式(7)所示,方向半球透射(Ttop,out→in)如式(8)所示:
Rtop,out→in=Ra→s+Rtop,diff (7)
Figure FDA0002368698600000021
式(7)中,Rtop,diff由如下式(9)求得:
Figure FDA0002368698600000022
顶层单元层叶片在光从叶片内部空气介质向顶层单元层到叶片表层方向上的方向半球反射Rtop,in→out如式(10)所示,方向半球透射Ttop,in→out如式(11)所示
Rtop,in→out=Re (10)
Ttop,in→out=Te (11)
在式(7)(8)(9)中,Ra→s表示叶片表皮层直接反射的半球方向上的积分,如式(12)所示:
Ra→s=DHRFspec (12)
式(12)中,DHRFspec为叶片镜面反射的半球方向的积分;DHRFspec的表达式如式(13)所示:
Figure FDA0002368698600000023
式(13)中,
Figure FDA0002368698600000024
为镜面方向的双向反射分布函数;θi表示入射光源天顶角;θv
Figure FDA0002368698600000025
分别表示反射光线的天顶角和方位角,σ为叶片表面粗糙度,
Figure FDA0002368698600000026
为叶片折射率;
顶层单元层叶片在光从叶片表面到叶片顶层入射方向的双向反射分布函数BRDFtop,out→in如式(14)所示,双向透射分布函数BTDFtop,out→in如式(15)所示;顶层单元层叶片在光从叶片内部到叶片顶层入射方向的双向反射分布函数BRDFtop,in→out如式(16)所示,双向透射分布函BTDFtop,in→out如式(17)所示:
Figure FDA0002368698600000031
Figure FDA0002368698600000032
Figure FDA0002368698600000033
Figure FDA0002368698600000034
步骤3、N层单元层叶片的BRDF构建
叶片的方向半球反射RN,out→top如式(18)所示,方向半球透射TN,out→top如式(19)所示:
RN,out→top=Rtop,out→in+RN-1,out→in,diff (18)
Figure FDA0002368698600000035
式(18)中,RN-1,out→in,diff表示叶片内部N-1层单元层散射对总反射率的贡献,表达式如式(20)所示;
Figure FDA0002368698600000036
式(19)和(20)中,RN-1和TN-1分别表示叶片内部N-1层单元层叶片的方向半球反射和方向半球透射;RN-1和TN-1由叶片结构参数N和叶片内部单元层的方向半球反射Re定量表达;
叶片内部N-1层的双向反射分布函数BRDFN-1,layer如式(21)所示,叶片内部N-1层的双向透射分布函数BTDFN-1,layer如式(22)所示,叶片内部N-1层的双向反射分布函数的散射分量BRDFN-1,layer,out→in,diff如式(23)所示:
Figure FDA0002368698600000041
Figure FDA0002368698600000042
BRDFN-1,layer,out→in,diff=RN-1,out→in,diff/π (23)
叶片双向反射分布函数模拟值BRDFmod如式(24)所示,方向半球反射系数模拟值DHRFmod如式(25)所示,方向半球透射系数模拟值DHTFmod如式(26)所示:
Figure FDA0002368698600000043
DHRFmod=DHRFspec+Rtop,diff+RN-1,out→in,diff (25)
DHTFmod=TN,out→top (26)
BRDFmod、DHRFmod、DHTFmod均由叶绿素浓度C、入射光源天顶角θi、叶片折射率
Figure FDA0002368698600000044
叶绿素吸收系数KChls、表面粗糙度σ和叶结构参数N来确定;
步骤4、模型参数的率定
4-1.测定样本叶片在400~1400nm范围内的方向半球反射系数测量值DHRFmea和方向半球透射系数测量值DHTFmea;测量时的光源角度θ作为步骤1至3所述模型中的入射光源天顶角θi;测量样本叶片的叶绿素浓度C′;
4-2.参数率定;本模型参数包括:叶片折射率
Figure FDA0002368698600000045
叶绿素吸收系数KChls、表面粗糙度σ和叶结构参数N;
在波长范围400~1000nm内的3个最值波段进行计算;3个最值波段分别记为λ1、λ2、λ3;λ1、λ2、λ3分别为最大反射率、最大透射率、最小吸收率对应的波长;将N、σ、
Figure FDA0002368698600000046
作为待求量,i=1,2,3;
Figure FDA0002368698600000047
为波长为λi时的中间色素吸收系数;
Figure FDA0002368698600000048
设为定值1.45;建立式(27);当式(27)的右式达到最小时,对应的N、σ、
Figure FDA0002368698600000049
即为求取结果;仅保留N、σ;
Figure FDA00023686986000000410
式(27)中,DHRFmeai)、DHTFmeai)分别为波长λi时的方向半球反射系数测量值、方向半球透射系数测量值;DHRFmodi)、DHTFmodi)分别为波长λi时的方向半球反射系数模拟值、方向半球透射系数模拟值;
与光谱波段有关模型参数获取:
使用步骤4-1中测到的样本叶片的叶绿素浓度C′和已获取的叶片结构参数N及叶片表面粗糙度σ作为模型的输入变量;
Figure FDA0002368698600000051
KChls,λ作为待求量,λ=300,301,...,800;
Figure FDA0002368698600000052
表示λ波长下的叶片折射率
Figure FDA0002368698600000053
KChls,λ表示λ波长下的叶绿素吸收系数KChls;建立式(28);
当式(28)的右式达到最小时,对应的
Figure FDA0002368698600000054
KChls,λ即为求取结果;
Figure FDA0002368698600000055
步骤5、对被测叶片进行多光源入射角的叶绿素浓度反演
5-1.测定被测叶片在400~1400nm范围内的方向半球反射系数测量值DHRFmea和方向半球透射系数测量值DHTFmea;测量时的光源角度θ作为入射光源天顶角;
5-2.将步骤4中求出或确定的叶结构参数N,叶表面粗糙度σ,叶片折射率
Figure FDA0002368698600000056
叶绿素吸收系数KChls,λ、入射光源天顶角θi、步骤5-1测得的DHRFmea和DHTFmea作为输入量,建立式(29);当式(29)的右式达到最小时,对应的叶绿素浓度C即为求取结果;
Figure FDA0002368698600000057
2.根据权利要求1所述的考虑光照方向的植物叶片辐射传输模型构建与叶绿素高光谱反演方法,其特征在于:步骤4-1中,样本叶片的方向半球反射系数测量值DHRFmea和方向半球透射系数测量值DHTFmea通过UV-3600分光光度计+积分球进行测定。
3.根据权利要求1所述的考虑光照方向的植物叶片辐射传输模型构建与叶绿素高光谱反演方法,其特征在于:步骤4-1中,样本叶片的叶绿素浓度C′通过7500可见光分光光度计测量得到。
CN202010043919.4A 2020-01-15 2020-01-15 考虑光照方向叶片辐射传输模型的叶绿素高光谱反演方法 Active CN111220552B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010043919.4A CN111220552B (zh) 2020-01-15 2020-01-15 考虑光照方向叶片辐射传输模型的叶绿素高光谱反演方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010043919.4A CN111220552B (zh) 2020-01-15 2020-01-15 考虑光照方向叶片辐射传输模型的叶绿素高光谱反演方法

Publications (2)

Publication Number Publication Date
CN111220552A CN111220552A (zh) 2020-06-02
CN111220552B true CN111220552B (zh) 2022-10-04

Family

ID=70832378

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010043919.4A Active CN111220552B (zh) 2020-01-15 2020-01-15 考虑光照方向叶片辐射传输模型的叶绿素高光谱反演方法

Country Status (1)

Country Link
CN (1) CN111220552B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111965608B (zh) * 2020-07-16 2024-01-12 自然资源部第二海洋研究所 一种基于水体叶绿素浓度的星载海洋激光雷达探测能力评估方法
CN113218916B (zh) * 2021-05-13 2022-03-01 东北师范大学 一种利用各向异性系数估算叶绿素含量的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003006960A1 (fr) * 2001-07-13 2003-01-23 Universite Paris 7 - Denis Diderot Dispositif et procede de radiometrie pour determiner in situ le contenu biochimique de feuilles, et appareil portatif integrant ce dispositif
CN105486673A (zh) * 2016-01-27 2016-04-13 北京师范大学 一种叶绿素荧光自动化监测系统
CN107561022A (zh) * 2017-07-10 2018-01-09 南京大学 一种改进的植物叶片干物质含量高光谱遥感反演方法
CN108693154A (zh) * 2018-04-25 2018-10-23 南京大学 一种多角度观测精确反演植被阴阳叶日光诱导叶绿素荧光的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003006960A1 (fr) * 2001-07-13 2003-01-23 Universite Paris 7 - Denis Diderot Dispositif et procede de radiometrie pour determiner in situ le contenu biochimique de feuilles, et appareil portatif integrant ce dispositif
CN105486673A (zh) * 2016-01-27 2016-04-13 北京师范大学 一种叶绿素荧光自动化监测系统
CN107561022A (zh) * 2017-07-10 2018-01-09 南京大学 一种改进的植物叶片干物质含量高光谱遥感反演方法
CN108693154A (zh) * 2018-04-25 2018-10-23 南京大学 一种多角度观测精确反演植被阴阳叶日光诱导叶绿素荧光的方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
An extended PROSPECT: Advance in the leaf optical properties model separating total chlorophylls into chlorophyll a and b;Yao Zhang et al.;《SCIENTIFIC REPORTS》;20170725;第7卷;第6429-1至6429-10页 *
Retrieving Leaf Chlorophyll Content by Incorporating Variable Leaf Surface Reflectance in the PROSPECT Model;Feng Qiu et al.;《Remote Sensing》;20190702;第11卷;第1572-1至1572-24页 *
叶片非朗伯特性影响冠层辐射分布的辐射度模型模拟与分析;谢东辉等;《遥感学报》;20071130;第11卷(第06期);第868-874页 *
基于PROSPECT+SAIL模型的森林冠层叶绿素含量反演;杨曦光等;《光谱学与光谱分析》;20101130;第30卷(第11期);第3022-3026页 *
基于农学参数的玉米叶片表观建模与可视化方法;苗腾等;《农业工程学报》;20171031;第33卷(第19期);第187-195页 *
基于辐射传输模型的叶绿素含量定量反演;施润和等;《生态学杂志》;20060531;第25卷(第05期);第591-595页 *
植被水分遥感监测模型的研究;张佳华等;《应用基础与工程科学学报》;20070331;第15卷(第01期);第45-53页 *

Also Published As

Publication number Publication date
CN111220552A (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
Xu et al. Retrieving leaf chlorophyll content using a matrix-based vegetation index combination approach
Gerber et al. Modeling directional–hemispherical reflectance and transmittance of fresh and dry leaves from 0.4 μm to 5.7 μm with the PROSPECT-VISIR model
CN107796764B (zh) 一种基于三波段植被指数的小麦叶面积指数估算模型的构建方法
CN107271382A (zh) 一种不同生育期油菜叶片spad值遥感估算方法
CN111220552B (zh) 考虑光照方向叶片辐射传输模型的叶绿素高光谱反演方法
CN106874621B (zh) 一种针叶植被冠层反射率计算方法
CN107561022B (zh) 一种改进的植物叶片干物质含量高光谱遥感反演方法
CN111595801B (zh) 一种整层大气气溶胶棕色碳成分的遥感识别和估计方法
CN109060676A (zh) 基于高光谱的夏玉米冠层spad值估算模型的确定方法
CN106990056A (zh) 一种土壤全氮光谱估算模型校正样本集构建方法
CN105136686B (zh) 紫叶李叶片花青素含量的测定方法
Cheng et al. Remote estimation of chlorophyll-a concentration in turbid water using a spectral index: a case study in Taihu Lake, China
Li et al. An approach to improve leaf pigment content retrieval by removing specular reflectance through polarization measurements
Koirala et al. A machine learning framework for estimating leaf biochemical parameters from its spectral reflectance and transmission measurements
Baret et al. A simple model for leaf optical properties in visible and near-infrared: application to the analysis of spectral shifts determinism
Wang et al. General model of multi-quality detection for apple from different origins by Vis/NIR transmittance spectroscopy
CN106202971A (zh) 基于folium模型叶片色素遥感反演方法
CN110070004A (zh) 一种应用于深度学习的近地高光谱数据扩展方法
CN112924401B (zh) 一种植被冠层叶绿素含量半经验反演方法
CN116223452A (zh) 基于卷曲植物叶片辐射传输模型的叶绿素高光谱反演方法
CN112362812A (zh) 基于Lars算法的水稻叶片叶绿素类胡萝卜素含量比值遥感反演模型和方法
CN116380806A (zh) 一种利用偏振度光谱信息估算叶绿素含量的方法及系统
Jarocińska Radiative Transfer Model parametrization for simulating the reflectance of meadow vegetation
CN106290189A (zh) Folium模型与多色素叶片光谱模拟方法
Kong et al. An integrated field and hyperspectral remote sensing method for the estimation of pigments content of Stipa Purpurea in Shenzha, Tibet

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant