CN111218427B - Recombinant PRRS virus HV-NSP2(500-596) and application thereof - Google Patents

Recombinant PRRS virus HV-NSP2(500-596) and application thereof Download PDF

Info

Publication number
CN111218427B
CN111218427B CN201811416015.0A CN201811416015A CN111218427B CN 111218427 B CN111218427 B CN 111218427B CN 201811416015 A CN201811416015 A CN 201811416015A CN 111218427 B CN111218427 B CN 111218427B
Authority
CN
China
Prior art keywords
recombinant
virus
prrs virus
prrs
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811416015.0A
Other languages
Chinese (zh)
Other versions
CN111218427A (en
Inventor
封文海
杜丽
唐军
王红蕾
刘芳
魏泽宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Agricultural University
Original Assignee
China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Agricultural University filed Critical China Agricultural University
Priority to CN201811416015.0A priority Critical patent/CN111218427B/en
Publication of CN111218427A publication Critical patent/CN111218427A/en
Application granted granted Critical
Publication of CN111218427B publication Critical patent/CN111218427B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5254Virus avirulent or attenuated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • A61K2039/552Veterinary vaccine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/10011Arteriviridae
    • C12N2770/10021Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/10011Arteriviridae
    • C12N2770/10022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/10011Arteriviridae
    • C12N2770/10034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Abstract

The invention discloses a recombinant PRRS virus HV-NSP2(500-596) and application thereof. The cDNA sequence corresponding to the genome of the recombinant PRRS virus is obtained by deleting the cDNA sequence corresponding to the genome of the wild type PRRS virus from the DNA molecule shown in the 2833-3036 th site of the 5' end. The invention discloses a molecular mechanism of high fever caused by highly pathogenic PRRSV, and simultaneously, compared with the highly pathogenic PRRSV, the recombinant PRRS virus has reduced virulence and greatly slowed replication capacity, thereby providing a foundation for developing novel attenuated vaccines.

Description

Recombinant PRRS virus HV-NSP2(500-596) and application thereof
Technical Field
The invention belongs to the technical field of biology, and particularly relates to recombinant PRRS virus HV-NSP2(500-596) and application thereof.
Background
Porcine Reproductive and Respiratory Syndrome (PRRS), commonly known as porcine reproductive and respiratory syndrome, is one of the important viral diseases which harm the swine industry all over the world at present. The cause of porcine reproductive and respiratory syndrome is Porcine Reproductive and Respiratory Syndrome Virus (PRRSV). Porcine reproductive and respiratory syndrome virus is a single-stranded plus-sense RNA virus belonging to the order Nidovirales, the family of arteriviruses, the genus arterivirus. The virus comprises two subtypes, namely European type (type I) and American type (type II), wherein the European type is mainly distributed in Europe at present, and the American type is distributed in North America, south America and Asia. In 1995, outbreaks of porcine reproductive and respiratory syndrome were first reported in northern China and subsequently spread across the country. Typically, classical PRRSV strains cause clinically significant reproductive disorders in pregnant sows (e.g. miscarriage, stillbirth, mummy and boredom) and respiratory disorders in piglets. Due to the rapid mutation speed of the virus, many strains with different virulence are derived besides the European and American prototypes. In 2006, highly pathogenic porcine reproductive and respiratory syndrome (also called innominate hyperpyrexia) caused by PRRS virus variant strains (highly pathogenic PRRSV viruses) was developed in China. Compared with the classical porcine reproductive and respiratory syndrome, the sick pigs infected with the highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) are mainly characterized by persistent high fever, the body temperature reaches 40-42 ℃, the sick pigs have high mortality rate and acute death rate in all ages, and the morbidity of the infected piglets can reach 100%. The mortality rate is up to 50-100%, the abortion rate of sows can be up to 100%, and the mortality rate of sows and fattening pigs is up to 30% or more.
Studies have shown that hyperpyrexia caused by porcine reproductive and respiratory syndrome virus is directly proportional to mortality, i.e., the higher the temperature, the faster the death rate. The severity of porcine reproductive and respiratory syndrome disease is related to the virulence of PRRSV. The hyperpyrexia phenomenon of sick pigs infected with the highly pathogenic porcine reproductive and respiratory syndrome virus occurs the next day after infection and persists. The body temperature of sick pigs infected with the traditional porcine reproductive and respiratory syndrome virus is not obviously changed and does not reach the phenomenon of high fever. Therefore, from the mechanism of causing high fever, the search for a method of weakening highly pathogenic porcine reproductive and respiratory syndrome virus may be a starting point.
Disclosure of Invention
The invention aims to solve the technical problem of how to weaken the highly pathogenic porcine reproductive and respiratory syndrome virus.
In order to solve the technical problems, the invention firstly provides a recombinant PRRS virus.
The cDNA sequence corresponding to the genome of the recombinant PRRS virus is obtained by deleting the cDNA sequence corresponding to the genome of the wild type PRRS virus from the DNA molecule shown in the 2833-3036 th site at the 5' end.
In the recombinant PRRS virus, a cDNA sequence corresponding to the genome of the wild type PRRS virus is shown as a sequence 1 in a sequence table.
In order to solve the technical problems, the invention also provides a new application of the recombinant PRRS virus.
The invention provides an application of the recombinant PRRS virus in preparation of PRRS vaccines.
The invention also provides application of the recombinant PRRS virus in preparation of PRRS attenuated vaccines.
The invention also provides application of the recombinant PRRS virus in preparation of a medicament for preventing porcine reproductive and respiratory syndrome.
In order to solve the technical problems, the invention also provides a DNA fragment.
The DNA fragment provided by the invention is obtained by deleting the DNA molecule shown in the 2833-3036 th site from the 5' end of the sequence 1 in the sequence table.
The application of the DNA fragment in the preparation of the recombinant PRRS virus and/or the preparation of PRRS vaccine and/or the preparation of PRRS attenuated vaccine also belongs to the protection scope of the invention.
In order to solve the technical problems, the invention also provides a recombinant plasmid, a recombinant bacterium or a recombinant cell containing the DNA segment.
The recombinant plasmid is a sequence obtained by deleting DNA molecules which correspond to the 2833-3036 th site at the 5' tail end in the sequence 1 in the plasmid pcDNA3.1-HV.
Furthermore, the pcDNA3.1-HV vector is obtained by replacing a small fragment between the Smi I and Not I enzyme cutting sites of the pcDNA3.1 vector with a genome full-length cDNA sequence of an HV strain shown in a sequence 1 in a sequence table. The recombinant cell is an HEK-293T cell containing the recombinant plasmid.
The application of the recombinant plasmid, the recombinant bacterium or the recombinant cell in the preparation of the recombinant PRRS virus and/or the preparation of PRRS vaccine and/or the preparation of PRRS attenuated vaccine also belongs to the protection scope of the invention.
In order to weaken the highly pathogenic porcine reproductive and respiratory syndrome virus, the invention uses the amino acid regions shown in the 500-596 th site and/or the 658-777 th site in the non-structural protein 2(NSP2) of the highly pathogenic porcine reproductive and respiratory syndrome virus HV as target segments to reconstruct and obtain the recombinant PRRS virus. Compared with highly pathogenic PRRSV, the recombinant PRRS virus disclosed by the invention has the advantages that the toxicity is reduced, the replication capacity is greatly reduced, and a foundation is provided for the research and development of a novel attenuated vaccine.
Drawings
FIG. 1 shows the successful rescue of viruses by indirect immunofluorescence detection.
FIG. 2 shows that supernatants were collected at the indicated times after infection and virus titers were measured by the method of TCID 50.
FIG. 3 is virus-induced cytopathic effect 96 hours post-infection.
FIG. 4 is the rectal temperature change after infection.
FIG. 5 is a comparison of survival rates after infection.
FIG. 6 is the change in body weight after infection.
FIG. 7 shows the change in viral titer in serum after infection.
FIG. 8 shows the viral RNA content in the infected tissue.
FIG. 9 shows the results of H & E staining of tissues after infection.
Detailed Description
The following examples are given to facilitate a better understanding of the invention, but do not limit the invention. The experimental procedures in the following examples are all conventional ones unless otherwise specified. The test materials used in the following examples were purchased from a conventional biochemical reagent store unless otherwise specified. The quantitative tests in the following examples, all set up three replicates and the results averaged.
The wild type PRRSV highly pathogenic strain HV used in the following examples: genbank number JX317648.1, publicly available from the chinese university of agriculture.
Data analysis methods for the following examples: all data are averages from three independent replicates and the significance of the difference was analyzed by two-tailed T-test (pairwise), with P.ltoreq.0.05 considered significant, 0.01< P.ltoreq.0.05 (x), 0.005< P.ltoreq.0.01 (x), and P.ltoreq.0.005 (x).
Example 1 obtaining of recombinant PRRS viruses HV-NSP2(500-
First, selection of target section
Through the research on the molecular mechanism of PRRS virus causing high fever, the two sections of amino acid regions, namely the 500 th 596 th site and the 658 th 777 th site in NSP2 of a typical PRRSV strain VR2332, in the non-structural protein 2(NSP2) of the highly pathogenic PRRSV (HP-PRRSV, HV for short) are found to be the functional regions of the highly pathogenic PRRSV for inducing high fever. In order to weaken the highly pathogenic porcine reproductive and respiratory syndrome virus, the amino acid regions shown at the 500-596 th site and the 658-777 th site in the non-structural protein 2(NSP2) of the highly pathogenic porcine reproductive and respiratory syndrome virus HV are used as target segments for modification to construct the recombinant PRRS virus.
Second, construction of infectious cDNA clone
1. Construction of pcDNA3.1-HV
(1) Selection of cleavage sites
Analyzing the genome full-length cDNA sequence (shown as a sequence 1 in a sequence table) of the HV strain, and selecting the following 6 enzyme cutting sites for segmenting and splicing the genome full-length sequence: smi I, Xho I, Afl II, Cla I, EcoR V and Not I. Wherein the restriction sites Xho I, Afl II, Cla I and EcoR V are original in the genome and are contained in the amplified sequence; the cleavage sites Smi I and Not I are designed and added to both ends of the viral genome. The 6 enzyme sites divided the entire HV genome into five fragments.
(2) Construction of pcDNA3.1-HV
The full-length cDNA of the HV virus strain was used as a template, and PCR was performed using the following primers to obtain five fragments of the full-length HV genome. Primer pair HP1F/HP1R was used to amplify fragment 1, primer pair HP2F/HP2R was used to amplify fragment 2, primer pair HP3F/HP3R was used to amplify fragment 3, primer pair HP4F/HP4R was used to amplify fragment 4, and primer pair HP5F/HP5R was used to amplify fragment 5. The primer sequences are as follows:
HP1F:TAAATTTAA ATGACGTATAGGTGTTGGCTCT;
HP1R:GCGTGCGAGGTAACATCA;
HP2F:TTCTCCCAAAGATGATTCTCG;
HP2R:GGCAGCGGTACTTAAACAAG;
HP3F:GCCCTTAACAGAAACAGATGG;
HP3R:TACGACGGTAGATGCTCCTC;
HP4F:GGGAAGAAGAAGACTAGGACAAT;
HP4R:TCAGGGTGAACGGTAGAGC;
HP5F:GCCCTGTCATTGAACCAACT;
HP5R:TTATTAGCGGCCGCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTAATTACGGCCGCATGGTT。
the five amplified fragments were cloned into the backbone of eukaryotic expression vector pcDNA3.1 (purchased from Invitrogen) to obtain pcDNA3.1-HV vector. The pcDNA3.1-HV vector is obtained by replacing a small fragment between the Smi I and Not I enzyme cutting sites of the pcDNA3.1 vector with a genome full-length cDNA sequence of an HV strain shown in a sequence 1 in a sequence table.
2. Obtaining recombinant fragments
(1) Construction of DNA fragment 1-pEASY
And (2) taking a pcDNA3.1-HV vector as a template, and respectively amplifying by using F1F/F1R, F2F/F2R and F3F/F3R primer pairs (for convenience of subsequent experiments, the designed primers all contain homologous arm sequences) to respectively obtain a DNA fragment 1 shown in a sequence 2 of a sequence table, a DNA fragment 2 shown in the sequence 3 of the sequence table and a DNA fragment 3 shown in the sequence 4 of the sequence table. The primer sequences are as follows:
F1F:GCCGGAAAGAGAGCAAGGAAAACACGC;
F1R:CCGCGGCGACATCCGGGGATCTTTGGCAGGTTG;
F2F:CGATCTTTCCGATTGCACGAATGA;
F2R:GCGTGTTTTCCTTGCTCTCTTTCCGGC;
F3F:CCAAAGATCCCCGGATGTCGCCGCGGGAGTC;
F3R:GGGGCAGGAAGGCATAGGTGCTTAA。
the resulting DNA fragment 1 was ligated into pEASY-Blunt Zero Cloning Vector in the following reaction system: PCR product (DNA fragment 1): 4 microliter; pEASY-Blunt Zero Cloning Vector Mix: 1 microliter, ligation conditions were as follows: the reaction was carried out at room temperature for 5 minutes, and after completion of ligation, the ligation product was transformed into DH-5. alpha. to obtain DNA fragment 1-pEASY.
(2) Construction of vector clones for DNA fragment 1 deletion (500-
The DNA fragment 1-pEASY was subjected to deletion mutation using Q5Hot Start High-Fidelity 2X Master Mix of NEB. The method comprises the following specific steps: the DNA fragment 1-pEASY is taken as a template, and primers of delete500-596F/delete500-596R and delete658-777F/delete658-777R are respectively adopted for amplification, so as to respectively obtain the DNA fragment 1 deletion (500-. The primer sequences are as follows:
delete500-596F:GCGGGGGGGCAAGAAGTTGAGGAAGTCCTGAGTGAAAT;
delete500-596R:CATAGGTGTCATCGGCTCGGATGGT;
delete658-777F:AAGGGAGAACCGGTCTGCGACCAACCT;
delete658-777R:TTTTTCCTTTTGGAGATGCCCACTGC。
the PCR reaction system is as follows: and (3) primer F: 1.25 microliters; and (3) primer R: 1.25 microliters; template (DNA fragment 1-pEASY less than 20 ng): 1 microliter; water: 9 microliter; q5Hot Start High-Fidelity 2X Master Mix: 12.5 microliters;
the PCR reaction conditions were as follows: 98 degrees 30s, 98 degrees 10s, 60 degrees 20s, 72 degrees 4min, 25 cycles, 72 degrees 2 min, 4 degrees of storage.
Taking out the PCR product and then connecting, wherein a connecting system is as follows: PCR products: 1 microliter, 2X KLD buffer: 5 microliter, 10 XKLD Mix: 1 microliter, water: 3 microliter; after 5 minutes reaction at room temperature, the DNA fragment was transformed into DH-5. alpha. to finally obtain vector clones with DNA fragment 1 deletion (500-.
(3) Construction of vector clone with deletion of DNA fragment 1(56)
The vector clone with the DNA fragment 1 deletion (500-596) was subjected to the deletion of 658-777 as described in (2) to obtain the vector clone with the DNA fragment 1 deletion (56).
(4) DNA fragment 1 deletion (500-
The vector clone with the DNA fragment 1 deletion (500-. The primer sequences are as follows:
F1F:GCCGGAAAGAGAGCAAGGAAAACACGC;
F1R:CCGCGGCGACATCCGGGGATCTTTGGCAGGTTG。
3. construction of pcDNA3.1-HV-NSP2(500-
(1) Linearization of vectors
The full-length genome sequence (shown as sequence 1 in the sequence table) of the HV strain is analyzed, and 2 single enzyme cutting sites are selected and are respectively Spe I and Afl II. And (3) linearizing the pcDNA3.1-HV by using a double enzyme digestion mode to obtain the linearized pcDNA3.1-HV.
(2) Construction of pcDNA3.1-HV-NSP2(500-596)
The DNA fragment 1 was deleted (500-596), the DNA fragment 2 and the DNA fragment 3 were subjected to homologous recombination with the linearized pcDNA3.1-HV using the NEB HiFi DNA Assembly Master Mix to obtain the recombinant vector pcDNA3.1-HV-NSP2 (500-596). The recombinant vector pcDNA3.1-HV-NSP2(500-596) is obtained by deleting the DNA molecule shown in 2833-3036 site in the full-length cDNA sequence of the genome of the HV strain shown in the sequence 1 in the vector pcDNA3.1-HV.
The DNA fragment 1 was deleted (658; 777), the DNA fragment 2 and the DNA fragment 3 were subjected to homologous recombination with linearized pcDNA3.1-HV using the NEB HiFi DNA Assembly Master Mix to obtain the recombinant vector pcDNA3.1-HV-NSP2 (658; 777). The recombinant vector pcDNA3.1-HV-NSP2(658- ­ 777) is obtained by deleting the DNA molecule shown in the 3220- ­ 3579 position in the full-length cDNA sequence of the genome of the HV strain shown in the sequence 1 in the vector pcDNA3.1-HV.
The DNA fragment 1 was deleted (56), the DNA fragment 2 and the DNA fragment 3 were subjected to homologous recombination with linearized pcDNA3.1-HV using NEB HiFi DNA Assembly Master Mix to obtain a recombinant vector pcDNA3.1-HV-NSP2 (56). The recombinant vector pcDNA3.1-HV-NSP2(56) is obtained by deleting the DNA molecule shown in 2833-3036 th site in the full-length genome sequence of the HV strain shown in the sequence 1 in the vector pcDNA3.1-HV and deleting the DNA molecule shown in 3220-3579 th site.
Third, virus rescue
The recombinant plasmids pcDNA3.1-HV-NSP2 (500-. Cell lysates were added to Marc-145 cells for visualization, and indirect immunofluorescence detection of recombinant PRRS virus was performed after the cells developed lesions using a murine anti-PRRSV N protein specific antibody SDOW-17 (available from Rural Technologies).
The results are shown in FIG. 1. The results show that: the recombinant plasmids pcDNA3.1-HV-NSP2 (500-. The PRRSV successfully rescued by the recombinant plasmids pcDNA3.1-HV-NSP2 (500-.
Fourth, determination of growth curve of recombinant virus
Inoculating the cell lysate obtained in the third step into PAMs for continuous virus propagation for 4-5 times to obtain culture supernatant. Culture supernatants containing wild-type PRRSV highly pathogenic strain HV (hereinafter abbreviated as HV-wt), recombinant PRRS virus HV-NSP2 (500-.
The method for determining the virus titer is as follows: inoculating PAM cells in 96-well cell culture plate (containing RPMI1640 culture solution), culturing at 37 deg.C with 5% CO2Culturing for 24h in an incubator; the virus solution was serially diluted 10-fold in RPMI1640 medium in 1.5mL EP tubes from 10-1To 10-9(ii) a Inoculating the diluted virus solution into a cell culture plate, wherein each dilution is inoculated into 8 holes, and each hole is inoculated with 100 mu L; setting 8 control wells of normal cells without virus inoculation; taking a small amount of cell culture supernatant at 12h, 24h, 36h, 48h, 72h and 96h after virus inoculation, carrying out indirect immunofluorescence detection on the PRRS virus by using a mouse anti-PRRSV N protein specific antibody SDOW-17 (purchased from Rural Technologies), counting the number of virus positive holes, and calculating the infection amount of virus half Tissue (TCID) in each milliliter of virus liquid50/mL)。
The method for propagating the virus comprises the following steps: inoculating PAM into a cell culture bottle (containing RPMI1640 culture solution) for adherent culture for 24h, sucking supernatant, and inoculating virus solution; adsorbing at 37 ℃ for 120 minutes, and slightly shaking the culture bottle every 30 minutes to ensure that the virus liquid is fully contacted with the PAM cells; then supplementing RPMI1640 culture solution, culturing at 37 ℃ for at least 48h, and freezing and thawing the cells for three times between-80 ℃ and room temperature to lyse the cells; transferring the cell lysate to a 50mL centrifuge tube, centrifuging at 4 ℃ and 5000g for 10 minutes to obtain supernatant, namely virus solution, subpackaging the supernatant into 1.5mL EP tubes, and storing at-80 ℃ for later use.
The results of the virus titer test are shown in fig. 2 and table 1, while the cytopathic effect was observed under white light and photographed as shown in fig. 3. The results show that: the wild PRRSV highly pathogenic strain HV grows rapidly on PAM, and the virus titer reaches the peak value of 10 within 48 hours after infection8.5TCID50mL, the replication speed of the recombinant PRRS virus is obviously lower than that of a wild type PRRSV highly pathogenic strain HV, and the virus titers of the recombinant PRRS virus HV-NSP2 (500-. Cell lesions are observed at different times after PAM infection, and PAM cleavage can be quickly induced after wild type PRRSV highly pathogenic strain HV infection, but the cell lesion effect is not better than that of the wild type PRRSV highly pathogenic strain HV infection until 96 hours after infection of the same amount of recombinant PRRS virus HV-NSP2 (500-. The above results show that: compared with the wild type PRRSV highly pathogenic strain HV, the recombinant PRRS viruses HV-NSP2 (500-.
Table 1, results of viral titers (mean values) at different times after infection of PAM with each recombinant PRRS virus (log)10(TCID50/mL))
PRRSV 12h 24h 36h 48h 72h 96h
HV-wt 3.0697 6.673 7.0117 8.5
HV-nsp2(500-596) 2.222 3.553* 4.1933* 4.3323* 4.6667 5.182
HV-nsp2(658-777) 2.445 4.22* 4.262* 4.445* 4.555 5.1667
HV-nsp2(56) 2 3.663* 4.2767* 4.999* 4.743667 5
Example 2 detection of virulence of recombinant PRRS virus in pigs
30 healthy 4-week-old plain white pigs were purchased from an SPF pig farm and all pigs were confirmed to be PRRSV negative by PCR. All pigs were randomly divided into 5 groups (6 pigs per group) and inoculated nasally with a virus dose of 105TCID502mL of virus solution per nostril, 1 mL. The virus liquid inoculated in each group is divided into the following groups according to the difference:
blank control (MOCK): inoculating RPMI1640 culture solution;
wild-type virus control group: inoculating a wild type PRRSV highly pathogenic strain HV;
recombinant virus panel (500-596): inoculating recombinant PRRS virus HV-NSP2 (500-596);
recombinant virus experimental group (658-777): inoculating recombinant PRRS virus HV-NSP2(658 and 777);
recombinant virus experimental group (56): inoculation with recombinant PRRS virus HV-NSP2 (56).
Observing whether clinical symptoms such as cough, dyspnea, anorexia, diarrhea, unstable standing, shivering and the like appear every day after toxin attack; rectal temperature, body weight were monitored and survival was counted. The forechamber venous blood was collected every two days after challenge (2, 4, 6, 10, 13, 16, 21, 24, 28 days after challenge) for serum isolation and virus titer detection therein. 3 piglets were each necropsied 6 days after challenge and were necropsied when the HV-vaccinated piglets died. And (3) observing pathological changes of each organ during the autopsy and sampling, fixing 1 part of sample with 4% formaldehyde solution, slicing the tissue and performing HE staining, quickly freezing the other 1 part of sample with liquid nitrogen, and storing the sample at-80 ℃ for extracting tissue RNA and real-time PCR (polymerase chain reaction) for determining the content of viral RNA in the tissue.
The method for detecting the virus titer in the serum comprises the following steps:
adding 750 microliter Trizol (invitrogen) into every 250 microliter, repeatedly blowing by using a gun, and standing for 5 minutes at room temperature; adding 0.2mL of chloroform into the EP tube, covering the lid of the EP tube, shaking vigorously in hands for 15 seconds, standing at room temperature for 10 minutes, and centrifuging at 12000g and 4 ℃ for 15 minutes; placing the upper water phase in a new EP tube, adding 0.5mL of isopropanol, standing at room temperature for 10 minutes, and centrifuging at 12000g and 4 ℃ for 10 minutes; carefully abandoning the supernatant, adding 1mL of 75% ethanol for washing, centrifuging at 7500g and 4 ℃ for 5 minutes, and abandoning the supernatant; allowing the precipitated RNA to dry naturally at room temperature; finally 20. mu.l of DEPC water was added to dissolve the RNA and RNA was quantified using Nanodrop 1000(Thermo scientific).
5 microliters of RNA was taken for RT-PCR. Add 5. mu.l of RNA and 1. mu.l of Random Primer (10. mu.M, TaKaRa) into a 250. mu.l PCR tube and mix well; reacting at 70 ℃ for 5 minutes, and quickly cooling on ice for 2 minutes; to the above mixture was added the following components: 5. mu.l M-MLV 5 × Reaction Buffer, 5. mu.l dNTP (2.5mM), 25units of Recombinant RNase Ribonuclense Inhibitor, 200units of M-MLV RT (Promega), and finally adding DEPC water to make up the volume to 25. mu.l; mixing the mixture lightly, and reacting the mixture for 60 minutes at 37 ℃; transferring the PCR tube to 70 ℃ for reaction for 15 minutes; the cDNA product was cooled on ice and stored at-20 ℃.
The Real-Time PCR was performed using the SYBR Premix Ex TaqTM II (Perfect Real Time) reaction system from TaKaRa.
Figure BDA0001879483520000091
Premix Ex TaqTM (2X) 10. mu.l, PCR primers ORF7F (AATAACAACGGCAAGCAGCA), ORF7R (GCACAGTATGATGCGTCGGC) (10. mu.M) 0.8. mu.l each, ROX Reference Dye II (50X) 0.4. mu.l, cDNA template 2. mu.l, sterile double distilled water 6. mu.l, total volume 20. mu.l. Reacting on an ABI 7900Real-Time PCR System by adopting a two-step PCR amplification standard program: 30s at 95 ℃; 95 ℃ for 5s, 60 ℃ for 30s (40 cycles). Each experiment contained a single 10 diluted with a gradient0–107Standard curves of TCID50/mL PRRSV particles were analyzed with SDS2.2.2for 7900 software.
The method for measuring the content of the viral RNA in the tissues comprises the following steps:
adding 1mL of Trizol (invitrogen) into each 5mg of tissue, grinding, blowing by using a gun in a reversed mode, and standing for 5 minutes at room temperature; adding 0.2mL of chloroform into the EP tube, covering the lid of the EP tube, shaking vigorously in hands for 15 seconds, standing at room temperature for 10 minutes, and centrifuging at 12000g and 4 ℃ for 15 minutes; placing the upper water phase in a new EP tube, adding 0.5mL of isopropanol, standing at room temperature for 10 minutes, and centrifuging at 12000g and 4 ℃ for 10 minutes; carefully abandoning the supernatant, adding 1mL of 75% ethanol for washing, centrifuging at 7500g and 4 ℃ for 5 minutes, and abandoning the supernatant; allowing the precipitated RNA to dry naturally at room temperature; finally 20. mu.l of DEPC water was added to dissolve the RNA and RNA was quantified using Nanodrop 1000(Thermo scientific).
500ng of RNA was used for RT-PCR. Adding 500ng of RNA and 1 microliter of Random Primer (10. mu.M, TaKaRa) into a 250 microliter PCR tube, and uniformly mixing; reacting for 5 minutes at 70 ℃, and rapidly cooling for 2 minutes on ice; to the above mixture was added the following components: 5. mu.l M-MLV 5 × Reaction Buffer, 5. mu.l dNTP (2.5mM), 25units of recombined RNase Ribonucleae Inhibitor, 200units M-MLV RT (Promega), and finally adding DEPC water to make up the volume to 25. mu.l; mixing the mixture lightly, and reacting the mixture for 60 minutes at 37 ℃; transferring the PCR tube to 70 ℃ for reaction for 15 minutes; the cDNA product was cooled on ice and stored at-20 ℃.
The Real-Time PCR was performed using the SYBR Premix Ex TaqTM II (Perfect Real Time) reaction system from TaKaRa.
Figure BDA0001879483520000092
Premix Ex TaqTM (2X) 10. mu.l, PCR primers ORF7F (AATAACAACGGCAAGCAGCA), ORF7R (GCACAGTATGATGCGTCGGC) (10. mu.M) 0.8. mu.l each, ROX Reference Dye II (50X) 0.4. mu.l, cDNA template 2. mu.l, sterile double distilled water 6. mu.l, total volume 20. mu.l. Reacting on an ABI 7900Real-Time PCR System by adopting a two-step PCR amplification standard program: 30s at 95 ℃; 95 ℃ for 5s, 60 ℃ for 30s (40 cycles). Each experiment contained a single 10 diluted with a gradient0–107Standard curves of TCID50/mL PRRSV particles were analyzed with SDS2.2.2for 7900 software.
The detection results of onset symptoms and rectal temperature after challenge are shown in fig. 4-6. The results show that: piglets infected with wild type HV strain quickly develop symptoms such as high fever, dyspnea, cough, anorexia, diarrhea, unstable standing and the like, and the rectal temperature of the piglets rises to about 40 2 days after challenge (as shown in figure 4); all died 15-18 days after infection (as shown in figure 5). The rectal temperature of the piglets infected with HV-NSP2(500-596) is still in the normal temperature range (38-39.5 ℃) within 5-6 days after challenge, but the rectal temperature of the piglets rises up to about 40 ℃ after 6 days of challenge, but the rectal temperature of the piglets falls back to the normal temperature range (as shown in figure 4) after 19 days of challenge, wherein one piglet dies after 21 days of challenge (as shown in figure 5), and the appetite of the piglets is normal in the whole experimental process (as shown in figure 5). The piglets infected with HV-NSP2(658-777) and HV-NSP2(56) virus had large rectal temperature changes after 12-16 days of infection, and all were within normal temperature range (as shown in FIG. 4), and all piglets survived healthily until the end of the experiment (as shown in FIG. 5), had good mental status, normal coat and good appetite throughout the experiment (FIG. 6).
The results of the virus titer after challenge are shown in fig. 7. The results show that: after 2 days of virus challenge, the titer of the piglet virus infected with the wild type HV strain reaches 104TCID50/mL, but with the increase of the challenge time, the virus titer in the serum of the piglet infected with the wild type HV strain is always increased, and after 10 days of challenge, the virus titer reaches 107TCID50/mL, and maintain high titers until death. In piglets infected with recombinant virus, the virus titer in serum reaches 10 days after challenge3About TCID50/mL, with the increase of the challenge time, the virus titer in the serum of the piglet infected with the recombinant virus is increased, but the increase rate is very slow compared with the wild type HV strain, although the peak value is reached 10-16 days after the challenge, the titer is only 105 TCID 50/mL. And the virus titer in the serum of the piglet infected with the recombinant virus gradually decreases after 16 days of challenge, and the virus titer in the serum already decreases to 10 days after 28 days of challenge2TCID50/mL。
The results of the detection of viral RNA content and pathological changes in organ tissues after challenge are shown in fig. 8 and 9. The results show that: in lung and brain, the amount of viral RNA in the recombinant PRRS viruses HV-nsp2 (500-.
Sequence listing
<110> university of agriculture in China
<120> recombinant PRRS virus HV-NSP2(500-596) and application thereof
<160>4
<170>PatentIn version 3.5
<210>1
<211>15320
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>1
atgacgtata ggtgttggct ctatgccacg gcatttgtat tgtcaggagc tgtgaccatt 60
ggcacagccc aaaacttgct gcacgggaac acccgcctgt gacagccctc ttcaggggga 120
ttaggggtct gtccctaaca ccttgcttcc ggagttgcac tgctttacgg tctctccacc 180
cctttaacca tgtctgggat acttgatcgg tgcacgtgta cccccaatgc cagggtgttt 240
gtggcggagg gccaggtcta ctgcacacga tgtctcagtg cacggtctct ccttcctctg 300
aatctccaag ttcctgagct tggggtgctg ggtctatttt ataggcccga agagccactc 360
cggtggacgt tgccacgtgc attccccact gtcgagtgct cccccgccgg ggcctgctgg 420
ctttctgcga tctttccgat tgcacgaatg actagtggaa acctgaactt tcaacaaaga 480
atggtgcggg tcgcagctga aatctacaga gccggccaac tcacccctac agttctaaag 540
actctgcaag tttatgaacg gggttgtcgt tggtacccca ttgtcgggcc cgtccctggg 600
gtgggcgttt acgccaactc cctacatgtg agtgacaaac ctttcccggg agcaactcat 660
gtgttaacca acttgccgct cccgcagagg cccaaacctg aggacttttg cccttttgag 720
tgtgctatgg ctgacgtcta tgacattggt cgtggcgccg tcatgtatgt ggccggagga 780
aaggtctctt gggcccctcg tggtgggaat gaagtgaaat ttgaacctgt ccccaaggag 840
ttgaagttgg ttgcgaaccg actccacacc tccttcccgc cccatcacgt agtggacatg 900
tccaggttta ccttcatgac ccctgggagt ggtgtctcca tgcgggttga gtaccaacac 960
ggctgcctcc ccgctgacac tgtccctgaa ggaaactgct ggtggtgctt gtttgactcg 1020
ctcccaccgg aagttcagta caaagaaatt cgccatgcta accaatttgg ctatcaaacc 1080
aagcatggtg tccctggcaa atacctacag cggaggctgc aagttaatgg tcttcgagca 1140
gtgaccgaca cacatggacc tatcgtcata cagtacttct ctgttaagga gagttggatc 1200
cgccacctga agttggtgga agagcccagt ctccccgggt ttgaggatct cctcagaatc 1260
agggttgagc ccaatacgtc accactggct ggaaaggatg agaagatttt ccggtttggc 1320
agtcataagt ggtacggtgc cggaaagaga gcaaggaaaa cacgctctgg tgcgactact 1380
gtggtcgctc atcacgcttc gtccgctcat gaaacccggc aggccacgaa gcacgagggt 1440
gccggcgcta acaaggctga gcatctcaag cgctactctc cgcctgccga agggaactgt 1500
ggttggcact gcatttccgc catcgccaac cggatggtga attccaactt tgagaccacc 1560
cttcctgaaa gagtaaggcc ttcagatgac tgggccactg acgaggatct tgtgaacacc 1620
atccaaatcc tcaggctccc tgcggccttg gacaggaacg gcgcttgcgg tagcgccaag 1680
tacgtgctta aactggaggg tgagcattgg actgtctctg tgatccctgg gatgtcccct 1740
actttgctcc cccttgaatg tgttcagggt tgttgtgagc ataagggcag tcttgtttcc 1800
ccggatgcgg tcgaaatttc cggatttgat cctgcctgcc ttgaccgact ggctaaggta 1860
atgcacttgc ctagcagtac catcccagcc gctctggccg aattgtccga cgactccaac 1920
cgtccggttt ccccggccgc tactacgtgg actgtttcgc aattctatgc tcgtcataga 1980
ggaggagatc atcatgacca agtgtgcttg gggaaaatca tcagcctttg tcaagttatt 2040
gaggattgct gctgccatca gaataaaacc aaccgggcta ctccggaaga ggtcgcggca 2100
aagattgatc agtacctccg tggcgcaaca agtcttgagg aatgcttggc caaacttgag 2160
agagtttccc cgccgagcgc tgcggacacc tcctttgatt ggaatgttgt gcttcctggg 2220
gttgaggcgg cgaatcagac aaccgaacaa cctcacgtca actcatgctg caccctggtc 2280
cctcccgtga ctcaagagcc tttgggcaag gactcggtcc ctctgaccgc cttctcactg 2340
tccaattgct attaccctgc acaaggtgac gaggttcatc accgtgagag gttaaattcc 2400
gtactctcta agttggaaga ggttgtcctg gaagaatatg ggctcatgtc cactggactt 2460
ggcccgcgac ccgtgctgcc gagcgggctc gacgagctta aagaccagat ggaggaggat 2520
ctgctaaaac tagccaacac ccaggcgact tcagaaatga tggcctgggc ggctgagcag 2580
gtcgatttaa aagcttgggt caaaagctac ccgcggtgga caccaccacc ccctccacca 2640
agagttcaac ctcgaagaac aaagtctgtc aaaagcttgt cagagggcaa gcctgtccct 2700
gctccgcgca ggaaggtcag atccgattgc ggcagcccgg ttttgatggg cgacaatgtc 2760
cctaacggtt cggaagaaac tgtcggtggt cccctcaatt ttcctacacc atccgagccg 2820
atgacaccta tgagtgagcc cgtacttgtg cccgcgtcgc gacgtgtccc caagctgatg 2880
acacctttga gtgggtcggc accagttcct gcaccgcgta gaactatgac aacaacgccg 2940
acgcaccagg atgaacctct ggatttgtct gcgtcctcac agacggaata tgaggctttc 3000
cccctggcac catcgcagaa catgggcatc ctggaggcgg gggggcaaga agttgaggaa 3060
gtcctgagtg aaatctcgga tatactaaat gacaccaacc ctgcacctgt gtcatcaagc 3120
agctccctgt caagtattaa gatcacacgc ccaaaatact cagctcaagc catcatcgac 3180
tctggcgggc cttgcagtgg gcatctccaa aaggaaaaag aagcatgcct cagcatcatg 3240
cgtgaggctt gtgatgcgtc caagcttggt gatcctgcta cgcaggaatg gctctctcgc 3300
atgtgggata gggttgacat gctgacttgg cgcaacacgt ctgcttacca ggcgtttcgc 3360
atcttaaatg gcaggtttga gtttctccca aagatgattc tcgagacacc gccgccccac 3420
ccgtgcgggt ttgtgatgtt acctcgcacg cctgcacctt ccgtgagtgc agagagtgac 3480
ctcaccattg gttcagtggc caccgaggat gttccacgca tcctcgggaa agtaggagac 3540
actgacgagc tgcttgaccg gggtccttcg gcaccctcca agggagaacc ggtctgcgac 3600
caacctgcca aagatccccg gatgtcgccg cgggagtctg acgagagcat gatagctccg 3660
cccgcagata caggtggtat cggctcattc actgatttgc cgtcttcaga tggtgtggat 3720
gtggacgggg gggggccgtt aagaacggta aaaacaaaag caggaaggct cttagaccaa 3780
ctgagctgcc aggtttttag cctcgtttcc catctcccta ttttcttctc acacctcttc 3840
aaatctgaca gtggttattc tccgggtgat tggggttttg cagcttttac tctattttgc 3900
ctctttctat gttacagtta cccattcttc ggttttgctc ccctcttggg tgtattttct 3960
gggtcttctc ggcgtgtgcg aatgggggtt tttggctgct ggttggcttt tgctgttggt 4020
ctgttcaagc ctgtgtccga cccagtcggc actgcttgtg agtttgactc gccagagtgt 4080
aggaacgtcc ttcattcttt tgagcttctc aaaccttggg accctgtccg cagccttgtt 4140
gtgggccccg tcggtctcgg ccttgccatt cttggcaggt tactgggcgg ggcacgctac 4200
atctggcact ttttgcttag gcttggcatt gttgcagact gtatcttggc tggagcttat 4260
gtgctttctc aaggtaggtg taaaaggtgc tggggatctt gtgtaagaac tgctcctaat 4320
gagatcgcct tcaacgtgtt cccttttaca cgtgcgacca ggtcgtcact catcgacctg 4380
tgcgatcggt tttgcgcacc aaaaggcatg gaccccattt ttctcgccac tgggtggcgt 4440
gggtgctgga ccggccggag tcccattgag caaccttctg aaaaacccat cgcgttcgcc 4500
cagctggatg agaagagaat tacggctaga actgtggtcg ctcagcctta tgatcccaac 4560
caggccgtaa agtgcttgcg agtattacag gcgggtgggg cgatggtggc cgaggcagtc 4620
ccaaaagtgg tcaaagtttc cgctattcca ttccgagctc ctttctttcc cgctggagtg 4680
aaagttgatc ctgaatgcag aatcgtggtt gatcccgata cttttactac agccctccgg 4740
tctggctatt ccaccgcgaa cctcgtcctt ggtacggggg actttgccca gctgaatgga 4800
ctaaagatca ggcaaatttc caagccttca gggggaggcc cacacctcat tgctgccttg 4860
catgttgcct gctcgatggc gttacacatg cttgctggtg tttatgtaac tgcagtgggg 4920
tcctgcggta ccggtaccaa cgatccgtgg tgcactaacc cgtttgccgt ccctggctac 4980
ggacctggct ctctttgcac gtctagattg tgcatctccc aacacggcct caccttgccc 5040
ttgacagcac ttgtggcggg attcggcctt caagagattg ccttggtcgt tttgattttt 5100
gtctccatcg gaggcatggc tcataggttg agttgtaagg ctgacatgtt gtgcatctta 5160
ctcgcaatcg ctagttatgt ttgggtacct cttacctggt tgctttgtgt gtttccttgt 5220
tggttgcgct ggttctcttt gcaccccctc accatcctgt ggttggtgtt tttcttgatt 5280
tctgtaaata taccctcggg aatcttggcc gtggtgttat tggtttctct ctggctttta 5340
ggtcgttata ctaacattgc tggtctcgtc accccctatg acattcatca ttacaccagc 5400
ggcccccgcg gtgtcgccgc cttggccacc gcaccagatg gaacctactt ggctgccgtc 5460
cgccgtgctg cgctgactgg tcgtaccatg cttttcaccc cgtctcagct cgggtccctc 5520
cttgagggcg ctttcagaac tcaaaagccc tcactgaaca ccgtcaatgt ggtcgggtcc 5580
tccatgggct ctggcggagt gttcactatt gacgggaaaa tcaagtgcgt gactgccgca 5640
catgtcctta cgggtaactc agctagggtt tccggggtcg gcttcaatca aatgcttgac 5700
tttgatgtaa aaggggactt cgccatagct gattgcccga attggcaagg ggttgctccc 5760
aaggcccagt tctgcgagga tgggtggact ggtcgcgcct attggctgac atcctctggc 5820
gttgaacccg gtgttattgg gaatgggttc gccttctgct tcaccgcgtg tggcgattct 5880
ggatccccag tgattaccga agccggtgag cttgtcggcg ttcacacagg atcaaacaaa 5940
caaggaggag gcattgtcac gcgcccctca ggccagtttt gtaatgtgaa gcccatcaag 6000
ctgagcgagt tgagtgaatt cttcgctgga cctaaggtcc cgctcggtga tgtgaaaatt 6060
ggcagtcaca taattaaaga cacatgcgag gtgccttcag atctttgtgc cctacttgct 6120
gccaaacccg aactggaagg aggcctttcc acagttcaac ttctgtgtgt gtttttcctc 6180
ctgtggagaa tgatggggca tgcttggacg cccttggttg ctgtggggtt tttcatcctg 6240
aatgagattc tcccagctgt cctggtccgg agtgttttct cctttgggat gtttgtgcta 6300
tcttggctca caccatggtc tgcgcaagtc ctgatgatca ggcttctgac agcagccctt 6360
aacagaaaca gatggtctct tggtttttat agccttggtg cagtaaccag ttttgtcgca 6420
gatcttgcgg taactcaagg gcatccgtta caggtggtaa tgaacttaag cacctatgcc 6480
ttcctgcccc ggatgatggt tgtgacctcg ccagtcccag tgatcgcgtg tggtgttgtg 6540
cacctccttg ccataatttt gtacttgttt aagtaccgct gccttcacaa tgtccttgtt 6600
ggcgatgggg tgttctcttc ggctttcttc ttgcgatact ttgccgaggg aaagttgagg 6660
gaaggggtgt cgcaatcctg cgggatgagt catgagtcgc tgactggtgc cctcgccatg 6720
agactcactg acgaggactt ggatttcctt acgaaatgga ctgattttaa gtgctttgtt 6780
tctgcgtcca acatgaggaa tgcagcgggc caatttatcg aggctgctta tgcaaaagca 6840
ctaagaattg aacttgctca gttggtacag gttgataagg tccgaggcac catggccaaa 6900
ctcgaggctt ttgccgatac cgtggcaccc caactctcgc ccggtgacat tgttgttgcc 6960
cttggccaca cgcctgttgg cagcatcttc gacctaaagg ttggtagcac taagcatact 7020
ctccaagcca ttgagactag agtccttgcc gggtccaaaa tgactgtggc gcgtgtcgtt 7080
gacccaaccc ccgcaccccc acccgtacct gtgcccatcc ctctcccacc gaaagttctg 7140
gagaacggtc ccaatgcctg gggggatgag gaccgtttga acaagaagaa gaggcgcagg 7200
atggaagccg tcggcatttt tgtcatggac gggaaaaagt accagaaatt ttgggacaag 7260
aattccggtg atgtgtttta tgaggaggtc catattagca cagacgagtg ggagtgcctt 7320
aggactggcg accctgtcga ctttgatcct gagacaggga ttcagtgtgg gcatatcacc 7380
attgaagata aggtttacaa tgtcttcacc tccccatctg gtaggagatt cttggtcccc 7440
gccaaccccg agaatagaag agctcagtgg gaagccgcca agctttccgt ggagcaagcc 7500
cttggtatga tgaacgtcga cggcgaactg actgccaaag aactggagaa actgaaaaga 7560
ataattgaca aactccaggg cctgactaag gagcagtgtt taaactgcta gccgccagcg 7620
gcttgacccg ctgtggtcgc ggcggcttag ttgttactga gacagcggta aaaatagtca 7680
aatttcacaa ccggaccttc accctaggac ctgtgaactt aaaagtggcc agtgaggttg 7740
agctaaaaga cgcggttgag cacaaccaac atccggttgc caaaccggtt gatggtggtg 7800
ttgtgctcct gcgctctgca gttccttcgc ttatagatgt cttgatctcc ggcgctgatg 7860
catctcctaa gttactcgcc cgccacgggc cgggaaacac tgggattgat ggcacgcttt 7920
gggattttga ggccgaggct actaaagagg aagtcgcact cagtgcgcaa ataatacagg 7980
cttgtgatat taggcgcggc gacgcgcctg aaattggtct cccttataag ttgtaccctg 8040
ttaggggcaa ccctgagcgg gtaaaaggag ttttacagaa tacaaggttt ggagacatac 8100
cttacaaaac ccctagtgac actggaagcc cggtgcatgc ggctgcctgc ctcacgccta 8160
atgctactcc ggtgactgat gggcgctccg tcttggctac aaccatgccc tctggctttg 8220
agttgtatgt gccgaccatt ccagcgtccg tccttgatta tcttgattct aggcctgact 8280
gccctaaaca gttaacagag cacggttgtg aggatgctgc attaagagac ctctccaagt 8340
atgatttgtc cacccaaggc tttgttttgc ctggagttct tcgcctcgtg cggaagtacc 8400
tgttcgccca cgtgggtaag tgcccgcccg ttcatcggcc ttccacttac cctgctaaga 8460
attctatggc tggaataaat gggaacaggt ttccaaccaa ggacattcag agcgtccctg 8520
aaatcgacgt tctgtgcgca caggctgtgc gagaaaactg gcaaactgtt accccttgta 8580
ccctcaagaa acagtactgt gggaagaaga agactaggac aatacttggc accaataact 8640
tcattgcgtt ggcccatcgg gcagcgttga gtggtgttac ccagggcttc atgaaaaagg 8700
cgttcaactc gcccatcgcc ctcgggaaaa acaaatttaa ggagctacaa gccccggtcc 8760
taggcaggtg ccttgaagcc gatcttgcgt cctgcgatcg atccacacct gcaattgtcc 8820
gctggtttgc cgccaatctt ctttatgaac tcgcctgtgc tgaggagcat ctaccgtcgt 8880
acgtgcttaa ctgctgccac gacttactgg tcacgcagtc cggcgcggtg actaagagag 8940
gtggcctgtc gtctggcgac ccgattacct ctgtgtcaaa caccatttac agcttagtga 9000
tatatgcaca gcacatggtg ctcagttact tcaaaagtgg tcaccctcat ggccttctgt 9060
ttctgcaaga ccagctaaag tttgaggaca tgctcaaggt tcaacccctg atcgtctatt 9120
ccgacgacct tgtgctgtat gccgagtctc cctccatgcc aaactaccac tggtgggttg 9180
aacatctgaa tcttatgctg ggtttccaga cggacccaaa gaagacaacc atcacagact 9240
caccatcatt cctaggttgc aggataataa atgggcgcca gctagtccct aaccgtgaca 9300
ggatcctcgc ggccctcgcc tatcacatga aggcaagtaa tgtttctgaa tactacgcct 9360
cggcggctgc aatactcatg gacagctgtg cttgtttaga gtatgatcct gaatggtttg 9420
aagagctcgt ggttgggata gcgcagtgcg cccgcaagga cggctacagc tttcctggcc 9480
caccgttctt cttgtccatg tgggaaaaac tcaggtccaa tcatgagggg aagaagtcca 9540
gaatgtgcgg gtactgcggg gccccggctc cgtacgccac tgcctgtggt ctcgatgtct 9600
gtgtttacca cacccacttc caccagcatt gtcctgttat aatctggtgt ggccacccgg 9660
cgggttctgg ttcttgtagt gagtgcgaac cccccctagg aaaaggcaca agccctctag 9720
atgaggtgtt agaacaagtt ccgtacaagc ctccgcggac tgtgatcatg catgtggagc 9780
agggtctcac ccctcttgac ccaggtagat accagactcg ccgcggatta gtctccgtta 9840
ggcgtggcat caggggaaat gaagtcgacc taccagacgg tgattacgct agtaccgcct 9900
tgctccctac ttgtaaagag atcaacatgg tcgctgtcgc ctctaacgtg ttgcgcagca 9960
ggtttatcat cggcccaccc ggtgctggga aaacacactg gcttcttcaa caagtccagg 10020
atggtgatgt catttacacg ccaactcacc agaccatgct cgacatgatt agggctttgg 10080
ggacgtgccg gttcaacgtt ccagcaggta caacgctgca attccctgcc ccctcccgta 10140
ccggcccatg ggttcgcatc ttggccggcg gttggtgtcc tggcaagaac tccttcctgg 10200
atgaagcggc gtattgcaat caccttgatg tcttgaggct tctcagtaaa acaactctca 10260
cttgcctagg ggacttcaaa caactccacc ctgtgggttt tgactcccat tgctatgtat 10320
ttgacatcat gcctcagacc caattaaaga ccatttggag gttcgggcag aatatctgtg 10380
atgccattca accagattac agggacaaac ttatgtccat ggtcaacacg acccgtgtga 10440
cctatgtgga aaaacctgtc aggtatgggc aagtcctcac cccctaccac agggaccgag 10500
aggacagcgc cattactatc gactccagtc aaggcgccac atttgatgtg gttacactgc 10560
atttgcccac taaagattca ctcaacaggc aaagagctct tgttgctatc accagggcaa 10620
gacatgctat cttcgtgtat gacccacaca ggcaattgca gagtatgttt gatctccccg 10680
cgaaaggcac acccgtcaac ctcgcagtgc accgtgacga acagctgatc gtattagaca 10740
gaaacaacag agaaatcacg gttgctcagg ctctaggcaa tggagataaa ttcagggcca 10800
cagataagcg cgttgtagat tctctccgcg ctatttgcgc agacctggaa gggtcgagct 10860
ccccgctccc caaggtcgcg cataacttgg gattctattt ctcacctgat ttgactcagt 10920
ttgctaaact cccggcagaa cttgcacccc actggcccgt ggtgacaacc cagaacaatg 10980
aaaggtggcc agatcggctg gtagccagcc ttcgccctat ccataaatat agccgcgcgt 11040
gcattggtgc cggctatatg gtgggcccct cggtgttttt aggcacccct ggggttgtgt 11100
catactatct cacaaaattt gttagaggcg aggctcaagt gcttccggag acagtcttca 11160
gcaccggccg aattgaggta gattgtcgag agtatcttga tgatcgggag cgagaagttg 11220
ctgagtccct cccacatgcc ttcatcggcg atgtcaaagg taccaccgtt gggggatgtc 11280
atcacgttac ctccaaatac cttccgcgct tccttcccaa ggaatcagtt gcggtggtcg 11340
gggtttcgag ccccgggaaa gccgcgaaag cagtttgcac attgacggat gtgtacctcc 11400
cagaccttga agcgtacctc cacccagaga cccaatccag gtgctggaaa gtgatgttgg 11460
actttaagga ggttcgactg atggtatgga aagacaagac ggcctatttt caacttgaag 11520
gccgccattt cacctggtat caacttgcaa gctacgcctc atacatccga gttcctgtta 11580
attctactgt gtacttggac ccctgcatgg gccctgctct ttgcaacaga agggttgtcg 11640
ggtccaccca ttggggagct gacctcgcag tcacccctta tgattacggt gccaaaatta 11700
ttctgtctag tgcataccat ggtgaaatgc ctccaggtta caaaattctg gcgtgcgcgg 11760
agttctcgct tgatgatcca gtaaggtaca aacacacctg gggatttgaa tcggatacag 11820
cgtatctgta cgagtttact ggaaatggtg aggactggga ggattacaat gatgcgtttc 11880
gggcgcgcca gaaagggaaa atttataaag ctaatgccac cagcatgagg tttcattttc 11940
ccccgggccc tgtcattgaa ccaactttag gcctgaattg aaatgaaatg gggtctatgc 12000
aaagcctctt tgacaaaatt ggccaacttt ttgtggatgc tttcacggaa tttctggtgt 12060
ccattgttga tatcatcata tttttggcca ttttgtttgg cttcacaatc gccggttggc 12120
tggtggtctt atgcatcaga ctggtttgct ccgcggtact ccgtgcgcgc tctaccgttc 12180
accctgagca attacagaag atcttatgag gtctttcttt ctcagtgtca ggtggacatt 12240
cccacctggg gcgtcaaaca ccctttgggg gtgctttggc accataaggt gtcaaccctg 12300
attgatgaaa tggtgtcgcg tcgaatgtac cgcatcatgg aaaaagcagg gcaggctgcc 12360
tggaaacagg tggtgagcga ggctacattg tctcgcatta gtggtttgga tgtggtggct 12420
cactttcaac atcttgccgc tattgaagcc gagacttgta aatatttggc ttcccggcta 12480
cccatgctgc ataacctgcg cttgacaggg tcaaatgtaa ccatagtgta taatagtact 12540
ttggatcagg tgtttgccat tttcccaacc cctggttccc ggccaaagct tcatgacttt 12600
cagcaatggc taatagctgt acattcctcc atattttcct ccgttgcagc ttcttgtact 12660
ctttttgttg tgctgtggtt gcgaattcca atgctacgtt ctgtttttgg tttccgctgg 12720
ttaggggcaa cttttctttt gaactcatgg tgaattacac ggtatgcccg ctttgcccaa 12780
cccggcaggc agccgctgag atccttgaac ccggcaagtc tttttggtgc aggatagggc 12840
atgaccgatg tagtgagaac gatcatgacg aactagggtt catggttccg cccggcctct 12900
ccagcgaagg ccacttgacc agtgtttacg cctggttggc gttcctgtcc ttcagctaca 12960
cggcccagtt ccatcccgag atatttggga tagggaatgt gagtcaagtt tatgttgaca 13020
tcaagcacca attcatctgc gctgttcacg acggggataa cgccaccttg cctcgccatg 13080
acaatatttc agccgtattt cagacctact accaacacca ggtcgacggc ggcaattggt 13140
ttcacctgga atggctgcgt cctttctttt cctcttggtt ggttttaaat gtttcgtggt 13200
ttctcaggcg ttcgcctgca agccatgttt cagttcgagt ctttcggaca tcaaaaccaa 13260
caccaccgca gcatcagact tcgttgtcct ccaggacatc agctgcctta ggcatggcga 13320
ctcgtcctct ccgacgattc gcaaaagttc tcagtgccgc acggcgatag ggacgcccgt 13380
gtatatcacc atcaccgcca atgtcacaga tgaaaattat ctacattctt ctgatctcct 13440
catgctttct tcttgccttt tctacgcttc cgagatgagt gaaaagggat tcaaagtggt 13500
gtttggcaat gtgtcaggca tcgtggctgt gtgcgtcaac tttaccagct acgtccaaca 13560
cgtcaaggag tttactcaac gctccttagt ggtcgatcat gtgcgactgc ttcatttcat 13620
gacacctgag accatgaggt gggcaaccgt tttagcctgt ctttttgcca tcctactggc 13680
aatttgaatg ttcaagtatg ttggggaagt gcttgaccgc gtgctgttgc tcgcgattgc 13740
tttttttgtg gtgtatcgtg ccgttctatc ttgctgtgct cgtcaacgcc agcaacaaca 13800
acagctctca tattcagttg atttataact taacgctatg tgagctgaat ggcacagatt 13860
ggctggcgca aaaatttgac tgggcagtgg agacttttgt catcttcccc gtgttgactc 13920
acattgtttc ctatggggca ctcaccacca gccatttcct tgacacagtt ggtctggcca 13980
ctgtgtccac cgccggatat tatcacgggc ggtatgtctt gagtagcatt tacgcagtct 14040
gtgctctggc tgcgctgatt tgctttgtca ttaggcttgc gaagaactgc atgtcctggc 14100
gctactcttg taccagatat accaacttcc ttctggacac taagggcaga ctctatcgtt 14160
ggcggtcgcc cgtcattgtg gagaaagggg gtaaggttga ggtcgaaggt cacctgatcg 14220
acctcaagag agttgtgctt gatggttccg cggcaacccc tttaaccaga gtttcagcgg 14280
aacaatgggg tcgtctctag acgacttctg caatgatagc acagctccac agaaggtgct 14340
tttggcgttt tccattacct acacgccagt gatgatatat gctctaaagg taagtcgcgg 14400
ccgactgcta gggcttctgc accttttgat ctttctgaat tgtgctttta ccttcgggta 14460
catgacattc gtgcactttg agagcacaaa tagggtcgcg ctcactatgg gagcagtagt 14520
tgcacttctt tggggagtgt actcagccat agaaacctgg aaattcatca cctccagatg 14580
ccgtttgtgc ttgctaggcc gcaagtacat tctggcccct gcccaccacg tcgaaagtgc 14640
cgcgggcttt catccgattg cggcaaatga taaccacgca tttgtcgtcc ggcgtcccgg 14700
ctccactacg gtcaacggca cattggtgcc cgggttgaaa agcctcgtgt tgggtggcag 14760
aaaagctgtt aagcagggag tggtaaacct tgttaagtat gccaaataac aacggcaagc 14820
agcaaaagaa aaagaagggg aatggccagc cagtcaatca gctgtgccaa atgctgggta 14880
agatcatcgc ccaacaaaac cagtccagag gcaagggacc ggggaagaaa aataggaaga 14940
aaaacccgga gaagccccat ttccctctag cgactgaaga tgacgtcagg catcacttta 15000
cccctagtga gcggcaattg tgtctgtcgt cgatccagac tgcctttaat cagggcgctg 15060
gaacttgtgc cctgtcagat tcagggagga taagttacac tgtggagttt agtttgccga 15120
cgcaacatac tgtgcgtctg atccgcgcca cagcatcacc ctcagcgtga tgggctggca 15180
ttctttggca cctcagtgtt agaattggga gaatgtgtgg tgaatggcac tgattgacac 15240
tgtgcctcta agtcacctat tcaattaggg cgaccgtgtg ggggtaaagt ttaattggcg 15300
agaaccatgc ggccgtaatt 15320
<210>2
<211>3206
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>2
cgatctttcc gattgcacga atgactagtg gaaacctgaa ctttcaacaa agaatggtgc 60
gggtcgcagc tgaaatctac agagccggcc aactcacccc tacagttcta aagactctgc 120
aagtttatga acggggttgt cgttggtacc ccattgtcgg gcccgtccct ggggtgggcg 180
tttacgccaa ctccctacat gtgagtgaca aacctttccc gggagcaact catgtgttaa 240
ccaacttgcc gctcccgcag aggcccaaac ctgaggactt ttgccctttt gagtgtgcta 300
tggctgacgt ctatgacatt ggtcgtggcg ccgtcatgta tgtggccgga ggaaaggtct 360
cttgggcccc tcgtggtggg aatgaagtga aatttgaacc tgtccccaag gagttgaagt 420
tggttgcgaa ccgactccac acctccttcc cgccccatca cgtagtggac atgtccaggt 480
ttaccttcat gacccctggg agtggtgtct ccatgcgggt tgagtaccaa cacggctgcc 540
tccccgctga cactgtccct gaaggaaact gctggtggtg cttgtttgac tcgctcccac 600
cggaagttca gtacaaagaa attcgccatg ctaaccaatt tggctatcaa accaagcatg 660
gtgtccctgg caaataccta cagcggaggc tgcaagttaa tggtcttcga gcagtgaccg 720
acacacatgg acctatcgtc atacagtact tctctgttaa ggagagttgg atccgccacc 780
tgaagttggt ggaagagccc agtctccccg ggtttgagga tctcctcaga atcagggttg 840
agcccaatac gtcaccactg gctggaaagg atgagaagat tttccggttt ggcagtcata 900
agtggtacgg tgccggaaag agagcaagga aaacacgctc tggtgcgact actgtggtcg 960
ctcatcacgc ttcgtccgct catgaaaccc ggcaggccac gaagcacgag ggtgccggcg 1020
ctaacaaggc tgagcatctc aagcgctact ctccgcctgc cgaagggaac tgtggttggc 1080
actgcatttc cgccatcgcc aaccggatgg tgaattccaa ctttgagacc acccttcctg 1140
aaagagtaag gccttcagat gactgggcca ctgacgagga tcttgtgaac accatccaaa 1200
tcctcaggct ccctgcggcc ttggacagga acggcgcttg cggtagcgcc aagtacgtgc 1260
ttaaactgga gggtgagcat tggactgtct ctgtgatccc tgggatgtcc cctactttgc 1320
tcccccttga atgtgttcag ggttgttgtg agcataaggg cagtcttgtt tccccggatg 1380
cggtcgaaat ttccggattt gatcctgcct gccttgaccg actggctaag gtaatgcact 1440
tgcctagcag taccatccca gccgctctgg ccgaattgtc cgacgactcc aaccgtccgg 1500
tttccccggc cgctactacg tggactgttt cgcaattcta tgctcgtcat agaggaggag 1560
atcatcatga ccaagtgtgc ttggggaaaa tcatcagcct ttgtcaagtt attgaggatt 1620
gctgctgcca tcagaataaa accaaccggg ctactccgga agaggtcgcg gcaaagattg 1680
atcagtacct ccgtggcgca acaagtcttg aggaatgctt ggccaaactt gagagagttt 1740
ccccgccgag cgctgcggac acctcctttg attggaatgt tgtgcttcct ggggttgagg 1800
cggcgaatca gacaaccgaa caacctcacg tcaactcatg ctgcaccctg gtccctcccg 1860
tgactcaaga gcctttgggc aaggactcgg tccctctgac cgccttctca ctgtccaatt 1920
gctattaccc tgcacaaggt gacgaggttc atcaccgtga gaggttaaat tccgtactct 1980
ctaagttgga agaggttgtc ctggaagaat atgggctcat gtccactgga cttggcccgc 2040
gacccgtgct gccgagcggg ctcgacgagc ttaaagacca gatggaggag gatctgctaa 2100
aactagccaa cacccaggcg acttcagaaa tgatggcctg ggcggctgag caggtcgatt 2160
taaaagcttg ggtcaaaagc tacccgcggt ggacaccacc accccctcca ccaagagttc 2220
aacctcgaag aacaaagtct gtcaaaagct tgtcagaggg caagcctgtc cctgctccgc 2280
gcaggaaggt cagatccgat tgcggcagcc cggttttgat gggcgacaat gtccctaacg 2340
gttcggaaga aactgtcggt ggtcccctca attttcctac accatccgag ccgatgacac 2400
ctatgagtga gcccgtactt gtgcccgcgt cgcgacgtgt ccccaagctg atgacacctt 2460
tgagtgggtc ggcaccagtt cctgcaccgc gtagaactat gacaacaacg ccgacgcacc 2520
aggatgaacc tctggatttg tctgcgtcct cacagacgga atatgaggct ttccccctgg 2580
caccatcgca gaacatgggc atcctggagg cgggggggca agaagttgag gaagtcctga 2640
gtgaaatctc ggatatacta aatgacacca accctgcacc tgtgtcatca agcagctccc 2700
tgtcaagtat taagatcaca cgcccaaaat actcagctca agccatcatc gactctggcg 2760
ggccttgcag tgggcatctc caaaaggaaa aagaagcatg cctcagcatc atgcgtgagg 2820
cttgtgatgc gtccaagctt ggtgatcctg ctacgcagga atggctctct cgcatgtggg 2880
atagggttga catgctgact tggcgcaaca cgtctgctta ccaggcgttt cgcatcttaa 2940
atggcaggtt tgagtttctc ccaaagatga ttctcgagac accgccgccc cacccgtgcg 3000
ggtttgtgat gttacctcgc acgcctgcac cttccgtgag tgcagagagt gacctcacca 3060
ttggttcagt ggccaccgag gatgttccac gcatcctcgg gaaagtagga gacactgacg 3120
agctgcttga ccggggtcct tcggcaccct ccaagggaga accggtctgc gaccaacctg 3180
ccaaagatcc ccggatgtcg ccgcgg 3206
<210>3
<211>938
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>3
cgatctttcc gattgcacga atgactagtg gaaacctgaa ctttcaacaa agaatggtgc 60
gggtcgcagc tgaaatctac agagccggcc aactcacccc tacagttcta aagactctgc 120
aagtttatga acggggttgt cgttggtacc ccattgtcgg gcccgtccct ggggtgggcg 180
tttacgccaa ctccctacat gtgagtgaca aacctttccc gggagcaact catgtgttaa 240
ccaacttgcc gctcccgcag aggcccaaac ctgaggactt ttgccctttt gagtgtgcta 300
tggctgacgt ctatgacatt ggtcgtggcg ccgtcatgta tgtggccgga ggaaaggtct 360
cttgggcccc tcgtggtggg aatgaagtga aatttgaacc tgtccccaag gagttgaagt 420
tggttgcgaa ccgactccac acctccttcc cgccccatca cgtagtggac atgtccaggt 480
ttaccttcat gacccctggg agtggtgtct ccatgcgggt tgagtaccaa cacggctgcc 540
tccccgctga cactgtccct gaaggaaact gctggtggtg cttgtttgac tcgctcccac 600
cggaagttca gtacaaagaa attcgccatg ctaaccaatt tggctatcaa accaagcatg 660
gtgtccctgg caaataccta cagcggaggc tgcaagttaa tggtcttcga gcagtgaccg 720
acacacatgg acctatcgtc atacagtact tctctgttaa ggagagttgg atccgccacc 780
tgaagttggt ggaagagccc agtctccccg ggtttgagga tctcctcaga atcagggttg 840
agcccaatac gtcaccactg gctggaaagg atgagaagat tttccggttt ggcagtcata 900
agtggtacgg tgccggaaag agagcaagga aaacacgc 938
<210>4
<211>2883
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>4
ccaaagatcc ccggatgtcg ccgcgggagt ctgacgagag catgatagct ccgcccgcag 60
atacaggtgg tatcggctca ttcactgatt tgccgtcttc agatggtgtg gatgtggacg 120
ggggggggcc gttaagaacg gtaaaaacaa aagcaggaag gctcttagac caactgagct 180
gccaggtttt tagcctcgtt tcccatctcc ctattttctt ctcacacctc ttcaaatctg 240
acagtggtta ttctccgggt gattggggtt ttgcagcttt tactctattt tgcctctttc 300
tatgttacag ttacccattc ttcggttttg ctcccctctt gggtgtattt tctgggtctt 360
ctcggcgtgt gcgaatgggg gtttttggct gctggttggc ttttgctgtt ggtctgttca 420
agcctgtgtc cgacccagtc ggcactgctt gtgagtttga ctcgccagag tgtaggaacg 480
tccttcattc ttttgagctt ctcaaacctt gggaccctgt ccgcagcctt gttgtgggcc 540
ccgtcggtct cggccttgcc attcttggca ggttactggg cggggcacgc tacatctggc 600
actttttgct taggcttggc attgttgcag actgtatctt ggctggagct tatgtgcttt 660
ctcaaggtag gtgtaaaagg tgctggggat cttgtgtaag aactgctcct aatgagatcg 720
ccttcaacgt gttccctttt acacgtgcga ccaggtcgtc actcatcgac ctgtgcgatc 780
ggttttgcgc accaaaaggc atggacccca tttttctcgc cactgggtgg cgtgggtgct 840
ggaccggccg gagtcccatt gagcaacctt ctgaaaaacc catcgcgttc gcccagctgg 900
atgagaagag aattacggct agaactgtgg tcgctcagcc ttatgatccc aaccaggccg 960
taaagtgctt gcgagtatta caggcgggtg gggcgatggt ggccgaggca gtcccaaaag 1020
tggtcaaagt ttccgctatt ccattccgag ctcctttctt tcccgctgga gtgaaagttg 1080
atcctgaatg cagaatcgtg gttgatcccg atacttttac tacagccctc cggtctggct 1140
attccaccgc gaacctcgtc cttggtacgg gggactttgc ccagctgaat ggactaaaga 1200
tcaggcaaat ttccaagcct tcagggggag gcccacacct cattgctgcc ttgcatgttg 1260
cctgctcgat ggcgttacac atgcttgctg gtgtttatgt aactgcagtg gggtcctgcg 1320
gtaccggtac caacgatccg tggtgcacta acccgtttgc cgtccctggc tacggacctg 1380
gctctctttg cacgtctaga ttgtgcatct cccaacacgg cctcaccttg cccttgacag 1440
cacttgtggc gggattcggc cttcaagaga ttgccttggt cgttttgatt tttgtctcca 1500
tcggaggcat ggctcatagg ttgagttgta aggctgacat gttgtgcatc ttactcgcaa 1560
tcgctagtta tgtttgggta cctcttacct ggttgctttg tgtgtttcct tgttggttgc 1620
gctggttctc tttgcacccc ctcaccatcc tgtggttggt gtttttcttg atttctgtaa 1680
atataccctc gggaatcttg gccgtggtgt tattggtttc tctctggctt ttaggtcgtt 1740
atactaacat tgctggtctc gtcaccccct atgacattca tcattacacc agcggccccc 1800
gcggtgtcgc cgccttggcc accgcaccag atggaaccta cttggctgcc gtccgccgtg 1860
ctgcgctgac tggtcgtacc atgcttttca ccccgtctca gctcgggtcc ctccttgagg 1920
gcgctttcag aactcaaaag ccctcactga acaccgtcaa tgtggtcggg tcctccatgg 1980
gctctggcgg agtgttcact attgacggga aaatcaagtg cgtgactgcc gcacatgtcc 2040
ttacgggtaa ctcagctagg gtttccgggg tcggcttcaa tcaaatgctt gactttgatg 2100
taaaagggga cttcgccata gctgattgcc cgaattggca aggggttgct cccaaggccc 2160
agttctgcga ggatgggtgg actggtcgcg cctattggct gacatcctct ggcgttgaac 2220
ccggtgttat tgggaatggg ttcgccttct gcttcaccgc gtgtggcgat tctggatccc 2280
cagtgattac cgaagccggt gagcttgtcg gcgttcacac aggatcaaac aaacaaggag 2340
gaggcattgt cacgcgcccc tcaggccagt tttgtaatgt gaagcccatc aagctgagcg 2400
agttgagtga attcttcgct ggacctaagg tcccgctcgg tgatgtgaaa attggcagtc 2460
acataattaa agacacatgc gaggtgcctt cagatctttg tgccctactt gctgccaaac 2520
ccgaactgga aggaggcctt tccacagttc aacttctgtg tgtgtttttc ctcctgtgga 2580
gaatgatggg gcatgcttgg acgcccttgg ttgctgtggg gtttttcatc ctgaatgaga 2640
ttctcccagc tgtcctggtc cggagtgttt tctcctttgg gatgtttgtg ctatcttggc 2700
tcacaccatg gtctgcgcaa gtcctgatga tcaggcttct gacagcagcc cttaacagaa 2760
acagatggtc tcttggtttt tatagccttg gtgcagtaac cagttttgtc gcagatcttg 2820
cggtaactca agggcatccg ttacaggtgg taatgaactt aagcacctat gccttcctgc 2880
ccc 2883

Claims (10)

1. A recombinant PRRS virus, the cDNA sequence corresponding to the genome of the recombinant PRRS virus is a sequence obtained by deleting the cDNA sequence corresponding to the genome of the wild type PRRS virus from the DNA molecule shown in the 2833-3036 th site at the 5' end;
the cDNA sequence corresponding to the genome of the wild type PRRS virus is shown as a sequence 1 in a sequence table.
2. Use of the recombinant PRRS virus of claim 1 for the preparation of a PRRS vaccine;
or, the use of the recombinant PRRS virus of claim 1 for the preparation of a PRRS attenuated vaccine.
3. Use of the recombinant PRRS virus of claim 1 in the manufacture of a medicament for the prevention of porcine reproductive and respiratory syndrome.
The DNA fragment is obtained by deleting the DNA molecule shown in the 2833-3036 th site from the 5' end of the sequence 1 in the sequence table.
5. Use of the DNA fragment of claim 4 for the preparation of the recombinant PRRS virus of claim 1;
or, the use of the DNA fragment of claim 4 for the preparation of a PRRS vaccine;
or, the use of the DNA fragment of claim 4 for the preparation of a PRRS attenuated vaccine.
6. A recombinant plasmid, a recombinant bacterium or a recombinant cell comprising the DNA fragment of claim 5.
7. The recombinant plasmid according to claim 6, wherein: the recombinant plasmid is a sequence obtained by deleting DNA molecules which correspond to the 2833-3036 th site at the 5' tail end in the sequence 1 in the plasmid pcDNA3.1-HV.
8. Use of the recombinant plasmid, recombinant bacterium or recombinant cell of claim 6 in the preparation of the recombinant PRRS virus of claim 1.
9. Use of the recombinant plasmid, recombinant bacterium or recombinant cell of claim 6 in the preparation of a PRRS vaccine.
10. Use of the recombinant plasmid, recombinant bacterium or recombinant cell of claim 6 in the preparation of a PRRS attenuated vaccine.
CN201811416015.0A 2018-11-26 2018-11-26 Recombinant PRRS virus HV-NSP2(500-596) and application thereof Active CN111218427B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811416015.0A CN111218427B (en) 2018-11-26 2018-11-26 Recombinant PRRS virus HV-NSP2(500-596) and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811416015.0A CN111218427B (en) 2018-11-26 2018-11-26 Recombinant PRRS virus HV-NSP2(500-596) and application thereof

Publications (2)

Publication Number Publication Date
CN111218427A CN111218427A (en) 2020-06-02
CN111218427B true CN111218427B (en) 2022-05-24

Family

ID=70809996

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811416015.0A Active CN111218427B (en) 2018-11-26 2018-11-26 Recombinant PRRS virus HV-NSP2(500-596) and application thereof

Country Status (1)

Country Link
CN (1) CN111218427B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111996213A (en) * 2020-02-06 2020-11-27 广西大学 Construction method of porcine reproductive and respiratory syndrome virus double-fluorescence labeling gene recombinant strain

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101045917A (en) * 2007-03-14 2007-10-03 中国动物疫病预防控制中心 Swine reproduction and respiration syndrome vaccine and its prepn process and application
CN101633909A (en) * 2009-08-13 2010-01-27 武华 Attenuated live vaccine strain for preventing pig-pig infection breeding and respiratory syndrome
CN104419686A (en) * 2013-09-03 2015-03-18 中国农业大学 Recombinant prrs virus hv-nsp9 and application thereof
CN107475459A (en) * 2017-09-30 2017-12-15 山东省农业科学院畜牧兽医研究所 Differentiate the detection method of american type PRRSV classical strainses, variation strain and new virus class NADC30 strains simultaneously

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8728487B2 (en) * 2011-01-20 2014-05-20 Hua Wu Attenuated live vaccine for prevention of porcine reproductive and respiratory syndrome

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101045917A (en) * 2007-03-14 2007-10-03 中国动物疫病预防控制中心 Swine reproduction and respiration syndrome vaccine and its prepn process and application
CN101633909A (en) * 2009-08-13 2010-01-27 武华 Attenuated live vaccine strain for preventing pig-pig infection breeding and respiratory syndrome
CN104419686A (en) * 2013-09-03 2015-03-18 中国农业大学 Recombinant prrs virus hv-nsp9 and application thereof
CN107475459A (en) * 2017-09-30 2017-12-15 山东省农业科学院畜牧兽医研究所 Differentiate the detection method of american type PRRSV classical strainses, variation strain and new virus class NADC30 strains simultaneously

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Attenuation of highly pathogenic porcine reproductive and respiratory syndrome virus by inserting an additional transcription unit;Lianghai Wang et al.;《Vaccine》;20140826;第32卷;第5740-5748页 *
Complete Genome Sequence of a Novel Variant Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Strain: Evidence for Recombination between Vaccine and Wild-Type PRRSV Strains;Lu Wenhui et al.;《Journal of Virology》;20120930;第86卷(第17期);第9543页 *
In vivo growth of porcine reproductive and respiratory syndrome virus engineered nsp2 deletion mutants;Kay S. Faaberg et al.;《Virus research》;20100729;第154卷;第77–85页 *
新型高致病性猪繁殖与呼吸综合征病毒弱毒株全长cDNA克隆的构建与分析;王松豪等;《中国兽医科学》;20131231;第43卷(第05期);第458-465页 *
猪瘟免疫猪接种PRRSV nsp2Δ1882-2241弱毒疫苗后IL-12、IL-10、TNF-α应答特征;单悦等;《中国兽医学报》;20120731;第32卷(第07期);第937-940、944页 *

Also Published As

Publication number Publication date
CN111218427A (en) 2020-06-02

Similar Documents

Publication Publication Date Title
AU2009285843B2 (en) Vaccine against Highly Pathogenic Porcine Reproductive and Respiratory Syndrome (HP PRRS)
DK2675475T3 (en) NEW EUROPEAN PRRSV TRIAL
EP1838343B1 (en) Prrs vaccines
Han et al. Molecular mutations associated with the in vitro passage of virulent porcine reproductive and respiratory syndrome virus
Liu et al. Recombination in JXA1-R vaccine and NADC30-like strain of porcine reproductive and respiratory syndrome viruses
CN109762792B (en) Porcine reproductive and respiratory syndrome virus chimeric strain and application thereof
JP2003523727A (en) Porcine (porcelain) reproduction and respiratory syndrome vaccine based on isolated JA-142
Greiser-Wilke et al. Genetic diversity of Porcine reproductive and respiratory syndrome virus (PRRSV) in selected herds in a pig-dense region of North-Western Germany
WO2013017568A1 (en) INFECTIOUS cDNA CLONE OF EUROPEAN PRRS VIRUS AND USES THEREOF
Sun et al. Emergence of novel recombination lineage 3 of porcine reproductive and respiratory syndrome viruses in Southern China
CN101205539B (en) Highly pathogenic PRRS virus recombinant plasmid and genetic engineering vaccines
Sui et al. Genomic sequence and virulence of a novel NADC30-like porcine reproductive and respiratory syndrome virus isolate from the Hebei province of China
CN111218427B (en) Recombinant PRRS virus HV-NSP2(500-596) and application thereof
Kiss et al. Genetic variation of the prevailing porcine respiratory and reproductive syndrome viruses occurring on a pig farm upon vaccination
JP2014506795A (en) PRRSV industrial scale manufacturing method
CN111218428B (en) Recombinant PRRS virus HV-NSP2(658-777) and HV-NSP2(56) and application thereof
Kim et al. Genetic analysis of ORF5 of recent Korean porcine reproductive and respiratory syndrome viruses (PRRSVs) in viremic sera collected from MLV-vaccinating or non-vaccinating farms
CAI et al. Attenuation of virulent porcine reproductive and respiratory syndrome virus strain CH-1a and genetic variation of ORF5 gene
Meng T. Opriessnig, PG Halbur, K.-J. Yoon, RM Pogranichniy
Ignjatovic et al. Infectious Bronchitis Viruses with a Novel
Kosinova et al. Restriction fragment length polymorphism of ORF6 and ORF7 genes of porcine reproductive and respiratory syndrome virus (PRRSV) vaccine strains registered in the Czech Republic
Li et al. Research Article The Genomic and Pathogenic Characteristics of the Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Isolate WUH2
Restored and 3′ Identification of 5

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant