CN111217996B - 4-arm star-shaped nylon and preparation method thereof - Google Patents

4-arm star-shaped nylon and preparation method thereof Download PDF

Info

Publication number
CN111217996B
CN111217996B CN202010181399.3A CN202010181399A CN111217996B CN 111217996 B CN111217996 B CN 111217996B CN 202010181399 A CN202010181399 A CN 202010181399A CN 111217996 B CN111217996 B CN 111217996B
Authority
CN
China
Prior art keywords
nylon
kettle
arm star
pressure
diacid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010181399.3A
Other languages
Chinese (zh)
Other versions
CN111217996A (en
Inventor
王贤文
胡三友
黄华鹏
谭麟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhuhai Pairuier New Material Co ltd
Original Assignee
Zhuhai Pairuier New Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhuhai Pairuier New Material Co ltd filed Critical Zhuhai Pairuier New Material Co ltd
Priority to CN202010181399.3A priority Critical patent/CN111217996B/en
Publication of CN111217996A publication Critical patent/CN111217996A/en
Application granted granted Critical
Publication of CN111217996B publication Critical patent/CN111217996B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/40Polyamides containing oxygen in the form of ether groups

Abstract

The invention discloses a 4-arm star-shaped nylon and a preparation method thereof, wherein the 4-arm star-shaped nylon has a simple molecular structure as follows:
Figure 100004_DEST_PATH_IMAGE001
(ii) a Wherein R =
Figure 881754DEST_PATH_IMAGE002
Figure 842757DEST_PATH_IMAGE003
Figure 366273DEST_PATH_IMAGE004
Figure 172555DEST_PATH_IMAGE005

Description

4-arm star-shaped nylon and preparation method thereof
Technical Field
The invention relates to the technical field of high polymer materials, and particularly relates to 4-arm star nylon and a preparation method thereof.
Background
Star-shaped nylon polymers are the simplest class of nonlinear polymers and are structurally characterized by a branched core from which a plurality of polymeric branches or arms extend. Compared with the corresponding linear polymer, the generation of the branched structure leads to the reduction of the hydrodynamic volume and the reduction of the molecular size of the star-shaped polymer, thereby reducing the melt viscosity and the solution viscosity of the polymer and leading the polymer to be subjected to molding processing at lower temperature. In particular, the low melt viscosity is very advantageous for thin-walled articles or articles with complex structures.
However, the core of star-shaped nylon is difficult to slide between molecular chains, and causes stress concentration to lower the fracture productivity and the notch impact strength of the star-shaped nylon, that is, lower the toughness. (Parapeng, jingqiong, etc.. Four-arm star nylon 6 synthesis and characterization [ J ] polymer material science and engineering, 2002,27 (9): 33-35.).
Disclosure of Invention
In order to overcome the disadvantages or shortcomings of the prior art, the present invention is primarily directed to a 4-arm star-shaped nylon containing diphenyl ether tetracarboxylic acid as a core of the star-shaped nylon, which has not only significantly improved mobile phase but also significantly improved toughness as compared to a corresponding linear nylon.
The invention also aims to provide a preparation method of the 4-arm star-shaped nylon.
The invention is realized by the following technical scheme:
a4-arm star-shaped nylon has a molecular structure simple formula as follows:
Figure 693145DEST_PATH_IMAGE001
wherein R =
Figure 415114DEST_PATH_IMAGE002
Figure 685427DEST_PATH_IMAGE003
Figure 543661DEST_PATH_IMAGE004
Figure 359171DEST_PATH_IMAGE005
Figure 319167DEST_PATH_IMAGE006
A heterocyclic aromatic group or a polycyclic aromatic group.
The preparation method of the 4-arm star-shaped nylon comprises the following steps:
1) Prepolymerization: adding diacid, diamine and deionized water into a reaction kettle in proportion, replacing air in the kettle with inert gas, filling 0.05-0.2 MPa of inert gas, heating to 110-180 ℃, stabilizing the pressure at 0.1-1.1 MPa, discharging after reacting for a period of time, centrifuging, and drying a product to obtain a nylon prepolymer;
2) Polymerization reaction: adding the obtained nylon prepolymer or lactam or amino acid and tetracarboxylic acid compound into a reaction kettle, adding deionized water and a reaction auxiliary agent, replacing air in the kettle with inert gas, filling 0.05-0.2 MPa of inert gas, heating to 160-300 ℃, maintaining the pressure in the kettle to be 0.6-3.0 MPa, reacting for a period of time, slowly reducing the pressure in the kettle to normal pressure within a period of time, continuing to react for a period of time, slowly increasing the temperature in the kettle to 230-330 ℃ in the pressure reduction process, vacuumizing, continuing to react for a period of time, discharging, and drying to obtain the 4-arm star nylon.
Wherein in the step 1), the diacid is selected from one or more of terephthalic acid, isophthalic acid or aliphatic diacid with 4 to 14 carbon atoms; the diamine is selected from one or more of butanediamine, pentanediamine and hexanediamine; the molar ratio of the dibasic acid to the diamine is 1 to 1.08, preferably 1.01 to 1.
In the step 2), the lactam is one or more of lactams with 5 to 14 carbon atoms, preferably one or more of caprolactam, decanolactam and dodecanolactam; the amino acid is one or more of amino acids with 4 to 14 carbon atoms, preferably one or more of aminocaproic acid and aminocaproic acid.
Wherein in the step 1), the addition amount of the deionized water is 30-100% of the total mass of the diacid and the diamine; the inert gas is selected from one of nitrogen, carbon dioxide and argon; the drying is carried out by a vacuum oven at the temperature of 80-145 ℃ for 12-24 h.
The reaction time in the step 1) can be set in a relatively wide range, and the same effect as that of the patent can be achieved by prolonging the reaction time, but the longer the reaction time is, the lower the efficiency is, and the reaction time is preferably 1 to 5h.
In the step 2), the constant pressure reaction time can be set in a wider range, the same effect as the patent can be achieved by prolonging the constant pressure reaction time, but the efficiency is lower the longer the time is, and the constant pressure reaction time is preferably 1 to 5 hours; the time for reducing the pressure in the kettle to the normal pressure can be set in a wider range, the same effect as the patent can be achieved by prolonging the pressure reduction time, but the longer the time is, the lower the efficiency is, and the pressure reduction time is preferably 1 to 4h; the normal-pressure reaction time can be set in a wider range, the same effect as the patent can be achieved by prolonging the normal-pressure reaction time, but the efficiency is lower as the time is longer, and the normal-pressure reaction time is preferably 2 to 5 hours; the vacuum reaction time after vacuumizing can be set in a wider range, the same effect as the patent can be achieved by prolonging the vacuum reaction time, but the longer the time is, the lower the efficiency is, and the preferable vacuum reaction time is 2 to 5h; the vacuum degree after vacuum pumping is based on vacuum pumping equipment, the lower the vacuum degree is, the more favorable the reaction is, the higher the vacuum degree is, the longer the required reaction time is, and the preferable reaction time is 0 to 60Pa.
In the step 2), the addition amount of the deionized water is 10-100% of the total mass of the diacid and the diamine; the inert gas is selected from one of nitrogen, carbon dioxide and argon.
In the step 2), the general structural formula of the tetracarboxylic acid compound is:
Figure 878325DEST_PATH_IMAGE007
wherein R =
Figure 591066DEST_PATH_IMAGE008
Figure 311897DEST_PATH_IMAGE009
Figure 260655DEST_PATH_IMAGE010
Figure 357924DEST_PATH_IMAGE011
Figure 190751DEST_PATH_IMAGE012
One of a heterocyclic aromatic group and a polycyclic aromatic group; the tetracarboxylic acid compound is preferably one of biphenyl diphenol type diphenyl ether tetracarboxylic acid, hydroquinone type diphenyl ether tetracarboxylic acid, m-benzene type diphenyl ether tetracarboxylic acid, bisphenol A type diphenyl ether tetracarboxylic acid, bisphenol S type diphenyl ether tetracarboxylic acid heterocyclic dihydroxy type diphenyl ether tetracarboxylic acid or polycyclic diphenol type diphenyl ether tetracarboxylic acid.
In the step 2), the adding amount of the tetracarboxylic acid compound is 0-2% of the molar weight of the nylon prepolymer monomer or lactam or amino acid, and preferably 0.5-1.5%.
Wherein, in the step 2), the coating also comprises an end-capping reagent and other auxiliary agents; the end capping agent is selected from one or more of benzoic acid, acetic acid, propionic acid or phthalic anhydride, and the addition amount is 0-2% of the total mole number of the dibasic acid monomer; the other auxiliary agents are selected from one or more of catalysts, antioxidants and ultraviolet-resistant additives; wherein the catalyst is selected from one or more of sodium phosphate, calcium phosphate, sodium phosphite, calcium phosphite, magnesium phosphite, zinc phosphite, sodium hypophosphite, calcium hypophosphite, magnesium hypophosphite and zinc hypophosphite, and the addition amount of the catalyst is 0-0.5% of the total mass of the dibasic acid and the diamine monomer; the antioxidant is selected from one or more of antioxidant 1010, antioxidant 1098 and antioxidant 1076, and the addition amount of the antioxidant is 0-0.5 percent of the total mass of the dibasic acid and the diamine monomer; the anti-ultraviolet additive is selected from salicylic acid esters, benzophenones and benzotriazoles, and the addition amount of the anti-ultraviolet additive is 0-0.5 percent of the total mass of the dibasic acid and the diamine monomer.
Compared with the prior art, the invention has the following beneficial effects:
1) The 4-arm star-shaped nylon contains diphenyl ether tetracarboxylic acid as a core of the star-shaped nylon, has a novel structure, can ensure that the toughness of the star-shaped nylon is obviously improved and the toughness is also obviously improved compared with that of the corresponding linear nylon by introducing an ether bond into the core.
2) The invention prepares the novel 4-arm star-shaped nylon taking diphenyl ether tetracarboxylic acid as the core by adding the tetracarboxylic acid compound with specific structure and content as the core of the star-shaped nylon and reacting with the nylon prepolymer or lactam or amino acid, compared with the corresponding linear nylon, the invention obviously improves the mobile phase on the basis of ensuring other performances of the nylon; compared with the conventional star-shaped nylon, the fluidity reaches a considerable level, and the toughness is greatly improved.
Detailed Description
The present invention is further illustrated by the following specific embodiments, which are not intended to limit the scope of the invention.
The test method of each performance index is as follows:
TABLE 1
Performance item Test standard
Melt index g/10min ISO 1133
Elongation at break% ISO 527-1/-2
Notched impact strength kJ/m 2 ISO 180/1A
The tetracarboxylic acid compound is prepared as follows:
(1) Biphenyl diphenol type diphenyl ether tetracarboxylic acid: adding biphenyl diphenyl ether dianhydride and water into a reaction kettle, replacing gas in the kettle with nitrogen, starting stirring, heating to 120-180 ℃, maintaining the pressure in the kettle at 0.2MPa-1.0 MPa, reacting for 1-5 h, then cooling, discharging, centrifuging, and drying to obtain biphenyl diphenol diphenyl ether tetracarboxylic acid.
(2) The process for producing hydroquinone type diphenyl ether tetracarboxylic acid, m-phenylene type diphenyl ether tetracarboxylic acid, bisphenol a type diphenyl ether tetracarboxylic acid, bisphenol S type diphenyl ether tetracarboxylic acid heterocyclic dihydroxy type diphenyl ether tetracarboxylic acid, and polycyclic diphenol type diphenyl ether tetracarboxylic acid is carried out by merely replacing the corresponding raw materials with hydroquinone type diphenyl ether dianhydride, m-phenylene type diphenyl ether dianhydride, bisphenol a type diphenyl ether dianhydride, bisphenol S type diphenyl ether dianhydride, heterocyclic dihydroxy type diphenyl ether dianhydride, and polycyclic diphenol type diphenyl ether dianhydride.
Example 1
Adding 1.97kg of laurolactam, 92.5g of biphenyldiphenol type diphenyl ether tetracarboxylic acid, 4g of sodium hypophosphite and 2000ml of deionized water into a high-pressure reaction kettle, sealing the reaction kettle, replacing air in the kettle with nitrogen, pressurizing to 0.1MPa, starting stirring, gradually heating to 260 ℃, maintaining the pressure in the kettle at 2.5MPa for reaction for 2 hours, slowly reducing the pressure in the kettle to normal pressure within 2 hours, continuing to react for 2 hours, vacuumizing, reducing the pressure in the kettle to 50Pa, continuing to react for 1 hour, discharging and drying to obtain the 4-arm star-shaped nylon 12. The results of testing the performance indexes such as melting point, relative viscosity, melt index, elongation at break, notched impact strength and the like of the obtained 4-arm star nylon 12 are shown in table 1.
Example 2
Adding 1.97kg of dodecalactam, 30.0g of biphenyldiphenol diphenyl ether tetracarboxylic acid, 4g of sodium hypophosphite and 2000ml of deionized water into a high-pressure reaction kettle, sealing the reaction kettle, replacing air in the kettle with nitrogen, pressurizing to 0.1MPa, starting stirring, gradually heating to 260 ℃, maintaining the pressure in the kettle to be 2.5MPa, reacting for 2 hours, maintaining the reaction temperature within 2 hours, slowly reducing the pressure in the kettle to be normal pressure, continuing to react for 2 hours, vacuumizing, reducing the pressure in the kettle to be 50Pa, continuing to react for 1 hour, discharging, and drying to obtain the 4-arm star nylon 12. The test results of the performance indexes of the obtained 4-arm star nylon 12, such as melting point, relative viscosity, melt index, elongation at break, notched impact strength, are shown in table 1.
Example 3
Adding 1.97kg of dodecalactam, 10g of biphenyldiphenol diphenyl ether tetracarboxylic acid, 4g of sodium hypophosphite and 2000ml of deionized water into a high-pressure reaction kettle, sealing the reaction kettle, replacing air in the kettle with nitrogen, pressurizing to 0.1MPa, starting stirring, gradually heating to 260 ℃, maintaining the pressure in the kettle to be 2.5MPa, reacting for 2 hours, maintaining the reaction temperature within 2 hours, slowly reducing the pressure in the kettle to the normal pressure, continuing to react for 2 hours, vacuumizing, reducing the pressure in the kettle to 50Pa, continuing to react for 1 hour, discharging, and drying to obtain the 4-arm star nylon 12. The test results of the performance indexes of the obtained 4-arm star nylon 12, such as melting point, relative viscosity, melt index, elongation at break, notched impact strength, are shown in table 1.
Example 4
Adding 1.97kg of laurolactam, 51.4g of biphenyldiphenol type diphenyl ether tetracarboxylic acid, 4g of sodium hypophosphite and 2000ml of deionized water into a high-pressure reaction kettle, sealing the reaction kettle, replacing air in the kettle with nitrogen, pressurizing to 0.1MPa, starting stirring, gradually heating to 260 ℃, maintaining the pressure in the kettle at 2.5MPa for reaction for 2 hours, slowly reducing the pressure in the kettle to normal pressure within 2 hours, continuing to react for 2 hours, vacuumizing, reducing the pressure in the kettle to 50Pa, continuing to react for 1 hour, discharging and drying to obtain the 4-arm star-shaped nylon 12. The test results of the performance indexes of the obtained 4-arm star nylon 12, such as melting point, relative viscosity, melt index, elongation at break, notched impact strength, are shown in table 1.
Example 5
And (3) prepolymerization: 1.46kg of adipic acid and 1.18kg of adipic acid were added to a reaction kettle, 2600ml of deionized water was added, the reaction kettle was closed, and N was used 2 Replacing the gas in the kettle, and filling N into the kettle 2 Stirring under 0.2MPa, heating to 180 deg.C, reacting for 3 hr, cooling, discharging, centrifuging, and treating in vacuum oven at 80 deg.C for 12 hr to obtain PA66 prepolymer.
Polymerization reaction: adding 2.26kg of PA66 prepolymer prepared by prepolymerization, 33g of bisphenol A diphenyl ether tetraacid, 11g of sodium hypophosphite and 2000ml of deionized water into a reaction kettle, sealing the reaction kettle, replacing air in the kettle with nitrogen, pressurizing to 0.1MPa, starting stirring, gradually heating to 260 ℃, maintaining the pressure in the kettle at 2.5MPa for reaction for 2 hours, maintaining the reaction temperature within 2 hours, slowly reducing the pressure in the kettle to normal pressure, continuing to react for 2 hours, vacuumizing, reducing the pressure in the kettle to 50Pa, continuing to react for 1 hour, discharging and drying to obtain the 4-arm star-shaped nylon 66. The test results of the performance indexes of the obtained 4-arm star nylon 66, such as melting point, relative viscosity, melt index, elongation at break, notched impact strength, are shown in table 1.
Comparative example 1
Adding 1.97kg of dodecalactam, 12.2g of benzoic acid, 4g of sodium hypophosphite and 2000ml of deionized water into a high-pressure reaction kettle, sealing the reaction kettle, replacing the air in the kettle with nitrogen, pressurizing to 0.1MPa, starting stirring, gradually heating to 260 ℃, maintaining the pressure in the kettle to be 2.5MPa for reaction for 2 hours, maintaining the reaction temperature within 2 hours, slowly reducing the pressure in the kettle to be normal pressure, continuing to react for 2 hours, vacuumizing, reducing the pressure in the kettle to be 50Pa, continuing to react for 1 hour, discharging and drying to obtain the 4-arm star-shaped nylon 12. The test results of the performance indexes of the obtained 4-arm star nylon 12, such as melting point, relative viscosity, melt index, elongation at break, notched impact strength, are shown in table 1.
Comparative example 2
Adding 1.97kg of laurolactam, 127.5g of biphenyldiphenol type diphenyl ether tetracarboxylic acid, 4g of sodium hypophosphite and 2000ml of deionized water into a high-pressure reaction kettle, sealing the reaction kettle, replacing air in the kettle with nitrogen, pressurizing to 0.1MPa, starting stirring, gradually heating to 260 ℃, maintaining the pressure in the kettle at 2.5MPa for reaction for 2 hours, slowly reducing the pressure in the kettle to normal pressure within 2 hours, continuing to react for 2 hours, vacuumizing, reducing the pressure in the kettle to 50Pa, continuing to react for 1 hour, discharging and drying to obtain the 4-arm star-shaped nylon 12. The test results of the performance indexes of the obtained 4-arm star nylon 12, such as melting point, relative viscosity, melt index, elongation at break, notched impact strength, are shown in table 1.
Comparative example 3
Adding 1.97kg of dodecalactam, 15g of pyromellitic acid, 4g of sodium hypophosphite and 2000ml of deionized water into a high-pressure reaction kettle, sealing the reaction kettle, replacing air in the kettle with nitrogen, pressurizing to 0.1MPa, starting stirring, gradually heating to 260 ℃, maintaining the pressure in the kettle at 2.5MPa for reaction for 2 hours, maintaining the reaction temperature within 2 hours, slowly reducing the pressure in the kettle to normal pressure, continuing to react for 2 hours, vacuumizing, reducing the pressure in the kettle to 50Pa, continuing to react for 1 hour, discharging and drying to obtain 4-arm star-shaped nylon 12; the test results of the performance indexes of the obtained 4-arm star nylon 12, such as melting point, relative viscosity, melt index, elongation at break, notched impact strength, are shown in table 1.
TABLE 1
Example 1 Example 2 Example 3 Example 4 Example 5 Comparative example 1 Comparative example 2 Comparative example 3
Melting Point/. Degree.C 177.5 177.3 177.3 177.4 262.2 176.8 177.2 177.6
Relative viscosity 1.47 1.62 1.82 1.61 1.58 1.86 1.35 1.52
Melt index g/10min 18.8 16.5 5.2 16.4 11.6 4.5 22.3 13.2
Elongation at break% 245 263 242 265 220 240 187 142
Notched impact strength kJ/m 2 5.2 6.7 5.8 6.9 3.5 5.5 3.6 2.4

Claims (11)

1. A4-arm star-shaped nylon is characterized in that the molecular structure is as follows:
Figure DEST_PATH_IMAGE001
wherein R =
Figure 707562DEST_PATH_IMAGE002
Figure DEST_PATH_IMAGE003
Figure 234489DEST_PATH_IMAGE004
Figure DEST_PATH_IMAGE005
Figure 155172DEST_PATH_IMAGE006
And a heterocyclic aromatic group;
the preparation method of the 4-arm star-shaped nylon comprises the following steps:
1) And (3) prepolymerization: adding diacid, diamine and deionized water into a reaction kettle in proportion, replacing air in the kettle with inert gas, filling 0.05-0.2 MPa of inert gas, heating to 110-180 ℃, stabilizing the pressure at 0.1-1.1 MPa, discharging after reacting for a period of time, centrifuging, and drying a product to obtain a nylon prepolymer;
2) Polymerization reaction: adding the obtained nylon prepolymer or lactam or amino acid and tetracarboxylic acid compound into a reaction kettle, adding deionized water and a reaction auxiliary agent, replacing air in the kettle with inert gas, filling 0.05-0.2 MPa of inert gas, heating to 160-300 ℃, maintaining the pressure in the kettle at 0.6-3.0 MPa, reacting for a period of time, slowly reducing the pressure in the kettle to normal pressure within a period of time, continuing to react for a period of time, slowly increasing the temperature in the kettle to 230-330 ℃ in the process of reducing the pressure, then vacuumizing, continuing to react for a period of time, discharging, and drying to obtain the 4-arm star nylon;
in the step 2), the adding amount of the tetracarboxylic acid compound is 0.5-2% of the molar weight of the nylon prepolymer monomer or lactam or amino acid.
2. The method for preparing the 4-arm star nylon according to claim 1, comprising the following steps:
1) And (3) prepolymerization: adding diacid, diamine and deionized water into a reaction kettle in proportion, replacing air in the kettle with inert gas, filling 0.05-0.2 MPa of inert gas, heating to 110-180 ℃, stabilizing the pressure at 0.1-1.1 MPa, discharging after reacting for a period of time, centrifuging, and drying a product to obtain a nylon prepolymer;
2) Polymerization reaction: adding the obtained nylon prepolymer or lactam or amino acid and tetracarboxylic acid compound into a reaction kettle, adding deionized water and a reaction auxiliary agent, replacing air in the kettle with inert gas, filling 0.05-0.2 MPa of inert gas, heating to 160-300 ℃, maintaining the pressure in the kettle to be 0.6-3.0 MPa, reacting for a period of time, slowly reducing the pressure in the kettle to normal pressure within a period of time, continuing to react for a period of time, slowly increasing the temperature in the kettle to 230-330 ℃ in the pressure reduction process, vacuumizing, continuing to react for a period of time, discharging, and drying to obtain the 4-arm star nylon;
in the step 2), the adding amount of the tetracarboxylic acid compound is 0.5-2% of the molar weight of the nylon prepolymer monomer or lactam or amino acid.
3. The method for preparing the 4-arm star nylon according to claim 2, wherein in the step 1), the diacid is selected from one or more of terephthalic acid, isophthalic acid or aliphatic diacid with 4 to 14 carbon atoms; the diamine is selected from one or more of aliphatic diamines with 4-14 carbon atoms; the molar ratio of the diacid to the diamine is 1 to 1.08.
4. The method for preparing a 4-arm star-shaped nylon according to claim 3, wherein the molar ratio of the diacid to the diamine is 1.01 to 1.05.
5. The preparation method according to claim 2, wherein the lactam is one or more of lactams with 5 to 14 carbon atoms; the amino acid is one or more of amino acids with 4 to 14 carbon atoms.
6. The preparation method according to claim 5, wherein the lactam is one or more of caprolactam, decanolactam and dodecanolactam.
7. The preparation method according to claim 5, wherein the amino acid is one or more of aminocaproic acid and aminocaproic acid.
8. The method for preparing the 4-arm star-shaped nylon according to claim 2, wherein in the step 1), the addition amount of the deionized water is 30-100% of the total mass of the diacid and the diamine; the inert gas is selected from one of nitrogen, carbon dioxide and argon; the drying is carried out by using a vacuum oven at the temperature of 80-145 ℃ for 12-24 h; the reaction time is preferably 1 to 5 hours.
9. The method for preparing the 4-arm star-shaped nylon according to claim 2, wherein in the step 2), the addition amount of the deionized water is 10-100% of the total mass of the diacid and the diamine; the inert gas is selected from one of nitrogen, carbon dioxide and argon.
10. The method for preparing a 4-arm star-shaped nylon according to claim 2, wherein the tetracarboxylic acid compound in the step 2) has a general structural formula:
Figure DEST_PATH_IMAGE007
wherein R =
Figure 422817DEST_PATH_IMAGE008
Figure DEST_PATH_IMAGE009
Figure 112556DEST_PATH_IMAGE010
Figure DEST_PATH_IMAGE011
Figure 810385DEST_PATH_IMAGE012
And a heterocyclic aromatic group.
11. The method for preparing the 4-arm star nylon according to claim 2, wherein the method further comprises an end-capping agent and other auxiliary agents in the step 2); the end capping agent is selected from one or more of benzoic acid, acetic acid, propionic acid or phthalic anhydride, and the addition amount of the end capping agent is 0-2% of the total mole number of diacid monomers; the other auxiliary agents are selected from one or more of catalysts, antioxidants and ultraviolet-resistant additives; wherein the catalyst is selected from one or more of sodium phosphate, calcium phosphate, sodium phosphite, calcium phosphite, magnesium phosphite, zinc phosphite, sodium hypophosphite, calcium hypophosphite, magnesium hypophosphite and zinc hypophosphite, and the addition amount of the catalyst is 0-0.5% of the total mass of the diacid and diamine monomers; the antioxidant is selected from one or more of antioxidant 1010, antioxidant 1098 and antioxidant 1076, and the addition amount of the antioxidant is 0-0.5 percent of the total mass of the diacid and diamine monomers; the anti-ultraviolet additive is selected from salicylic acid esters, benzophenones and benzotriazoles, and the addition amount of the anti-ultraviolet additive is 0-0.5 percent of the total mass of diacid and diamine monomers.
CN202010181399.3A 2020-03-16 2020-03-16 4-arm star-shaped nylon and preparation method thereof Active CN111217996B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010181399.3A CN111217996B (en) 2020-03-16 2020-03-16 4-arm star-shaped nylon and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010181399.3A CN111217996B (en) 2020-03-16 2020-03-16 4-arm star-shaped nylon and preparation method thereof

Publications (2)

Publication Number Publication Date
CN111217996A CN111217996A (en) 2020-06-02
CN111217996B true CN111217996B (en) 2022-11-04

Family

ID=70829990

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010181399.3A Active CN111217996B (en) 2020-03-16 2020-03-16 4-arm star-shaped nylon and preparation method thereof

Country Status (1)

Country Link
CN (1) CN111217996B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114316583B (en) * 2021-12-23 2024-03-15 广东优巨先进新材料股份有限公司 High-strength high-temperature-resistant nylon composite material and preparation method thereof
CN116003782A (en) * 2022-04-26 2023-04-25 湖南世博瑞高分子新材料有限公司 Synthesis method and application of high-flow low-temperature-resistant PA66 resin

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4395531A (en) * 1981-03-14 1983-07-26 Mitsui Toatsu Chemical Incorporated Process for the preparation of polyamide compounds by the reaction of polycarboxylic acids with diisocyanates in the presence of at least one mono-alkali metal salt of dicarboxylic acid
CA2096144A1 (en) * 1990-11-19 1992-05-20 Jean M.J. Frechet Hyperbranched polyesters and polyamides
JP3355612B2 (en) * 1992-04-14 2002-12-09 株式会社豊田中央研究所 Star-shaped nylon and its production method, and tetrasubstituted carboxylic acid and its production method
CN100591707C (en) * 2007-11-02 2010-02-24 湖南大学 Synthesis process for ultra-branching nylon 6
CN102477155B (en) * 2010-11-29 2014-03-19 上海杰事杰新材料(集团)股份有限公司 Preparation method of multi-arm star polyamide polymer
CN105622928B (en) * 2014-10-28 2017-12-15 株洲时代新材料科技股份有限公司 Branched polyamides and preparation method thereof
CN109749078A (en) * 2019-01-31 2019-05-14 珠海派锐尔新材料有限公司 A kind of high temperature resistant nylon and preparation method thereof
CN110156985B (en) * 2019-04-30 2021-12-21 珠海派锐尔新材料有限公司 High-fluidity random copolymerization semi-aromatic nylon and preparation method thereof
CN110156984A (en) * 2019-06-18 2019-08-23 北京旭阳科技有限公司 A kind of semiaromatic branched polyamide block copolymer and preparation method thereof
CN110591084B (en) * 2019-08-23 2021-09-17 惠生(泰州)新材料科技有限公司 Star-shaped high-temperature-resistant nylon and preparation method and application thereof

Also Published As

Publication number Publication date
CN111217996A (en) 2020-06-02

Similar Documents

Publication Publication Date Title
US10344126B2 (en) Method for manufacturing a thermoplastic material made from semi-crystalline polyamide
US4460762A (en) Preparation of high molecular polytetramethylene adipamide
CN111217996B (en) 4-arm star-shaped nylon and preparation method thereof
CN112280032B (en) Preparation method of long carbon chain nylon material
US9376535B2 (en) Branched polyamide with different blocks
CN105085903A (en) High-temperature-resistant branched polyamide block copolymer and preparation method thereof
JPS6411657B2 (en)
CN113292719A (en) Polyamide resin containing imide structure and preparation method thereof
CN108774317B (en) Super-tough nylon resin and preparation method thereof
CN111057233B (en) Copolymerized semi-aromatic polyamide and preparation method thereof
CN107337794B (en) Copolymerized nylon containing six-membered ring and preparation method thereof
CN111690130A (en) High-temperature-resistant nylon resin and preparation method thereof
CN115260487B (en) Low-water-absorption bio-based polyamide resin and preparation method and application thereof
US20130131307A1 (en) Process for preparing pa-4x, and pa-410 obtainable by the process
JPS63286429A (en) Alpha-amino-epsilon caplolactam reformed polyamide
EP2566910B1 (en) Process for the production of pa-410 and pa-410 obtainable by that process
JP4096446B2 (en) Transparent polyamide resin and method for producing the same
US4864009A (en) Molding composition consisting of aliphatic/aromatic copolyamide
CN109851780B (en) Preparation method of semi-aromatic polyamide
CN112480397A (en) High-performance polyamide elastomer material and preparation method thereof
CN112280031A (en) High-temperature-resistant semi-aromatic polymer and preparation method thereof
CN115286785B (en) High-temperature-resistant nylon based on m-xylylenediamine and preparation method thereof
CN111378124A (en) Polyamide elastomer resin and preparation method thereof
CN115044033B (en) Semi-aromatic polyamide resin and preparation method thereof
EP4071198A1 (en) Method for producing polyamide through anionic polymerization, and polyamide prepared thereby

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant