CN111217616A - Preparation method of C/SiC structural material with near-zero expansion characteristic - Google Patents
Preparation method of C/SiC structural material with near-zero expansion characteristic Download PDFInfo
- Publication number
- CN111217616A CN111217616A CN202010095425.0A CN202010095425A CN111217616A CN 111217616 A CN111217616 A CN 111217616A CN 202010095425 A CN202010095425 A CN 202010095425A CN 111217616 A CN111217616 A CN 111217616A
- Authority
- CN
- China
- Prior art keywords
- silicon carbide
- carbon fiber
- preparing
- mts
- ceramic matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5053—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
- C04B41/5057—Carbides
- C04B41/5059—Silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/85—Coating or impregnation with inorganic materials
- C04B41/87—Ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5216—Inorganic
- C04B2235/524—Non-oxidic, e.g. borides, carbides, silicides or nitrides
- C04B2235/5248—Carbon, e.g. graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/614—Gas infiltration of green bodies or pre-forms
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
The invention relates to a preparation method of a C/SiC structural material with near-zero expansion characteristic, which comprises the steps of preparing continuous carbon fibers into fiber preforms, enabling the volume fraction of the fibers to be larger than or equal to 40%, preparing a pyrolytic carbon interface layer on the surfaces of fiber strands through a Chemical Vapor Infiltration (CVI) process, carrying out high-temperature treatment, depositing 13-18% of silicon carbide on the surfaces of the interface phases through the CVI process, rapidly preparing a multiphase ceramic matrix through slurry infiltration combined with a reaction melt infiltration process (RMI), and finally preparing a silicon carbide coating through the Chemical Vapor Deposition (CVD) process for surface sealing. The advantages are that: (1) greatly reduces the linear expansion coefficient of the prior ceramic matrix composite material, and the ceramic matrix composite material wire prepared by the methodExpansion coefficient close to zero (less than 1 x 10)‑7K); (2) the uniformity and the density of the composite material are effectively improved; (3) the preparation period of the material is shortened.
Description
Technical Field
The invention belongs to the field of preparation of ceramic matrix composite materials, and relates to a preparation method of a C/SiC structural material with near-zero expansion characteristic. The preparation method specifically comprises the steps of preparing a preform by using a continuous carbon fiber bundle wire, preparing an interface phase on the surface of the fiber bundle wire through a chemical vapor infiltration process, depositing a certain content of silicon carbide on the outer surface of the interface phase by adopting the chemical vapor infiltration process, rapidly preparing a silicide ceramic matrix by using a slurry infiltration combined reaction melt infiltration process, and finally preparing a silicon carbide coating through the chemical vapor deposition process. The method greatly reduces the linear expansion coefficient of the existing ceramic matrix composite material, and the linear expansion coefficient of the C/SiC structural material prepared by the method is close to zero (less than 1 multiplied by 10)-7/K)。
Background
With the rapid development of scientific technology, the pace of exploring the universe by human beings is more and more distant, the new discovery of the universe exploration continuously refreshes the cognition of human beings, and countries in the world, particularly developed countries, develop scientific exploration satellites without losing power and develop key technical research of space observation. The strategic leading special item of the space science approved in 2010 in China defines the development direction of space astronomy in China in the future 15-20 years, and provides clear requirements for space astronomy observation technology with high energy resolution and high space resolution and high-precision earth observation technology. In order to meet the requirements of long-distance ultra-high precision observation, a space optical-mechanical structure serving as a carrying platform of an optical element must achieve ultra-staticity and ultra-stability, in the space optical-mechanical structure, the main influence factors of the surface tolerance of the optical element are a supporting structure of a reflector, the main influence factors of the position tolerance of the optical element include structural rigidity, thermal adaptability, supporting structure rigidity and the like of a camera frame, and meanwhile, the space optical-mechanical structure is subjected to vibration in a rocket launching process, severe change of environmental temperature, space radiation, space atomic oxygen impact and the like in a using process, so that the space optical-mechanical structure provides more severe requirements for structural materials of the space optical-mechanical structure, and the used materials must have excellent mechanical properties, ultra-low expansion, light weight, stable space environmental properties and the like.
Traditional space optical-mechanical structure materialMainly comprises alloy materials and resin-based composite materials. Alloy materials such as INVAR alloy have low expansion coefficient of 1.6 × 10-6A density of about 8.lg/cm3The processing and forming process is difficult, and the preparation of the optical-mechanical component with a complex structure is difficult to meet; the resin-based composite material has a low expansion coefficient of about 2 x 10-6The product has the advantages of low radiation resistance, deformation due to moisture absorption, and deflation and denaturation in space environment. The requirements of the new generation of space optical machine structure materials are difficult to meet. The ceramic matrix composite has the advantages of low expansion coefficient, excellent mechanical property, low density, good space environment stability, high designability and the like, and is the most potential future space optical-mechanical structure material. However, the existing ceramic matrix composite has long manufacturing period and high cost, and the linear expansion coefficient is commonly 1-3 multiplied by 10-6K, higher requirements (less than 1 × 10) for meeting advanced space optical-mechanical structure-7There is also a greatly increased demand for/K).
Produced by German ECM companyThe series products are put on the market and operated for years, are successfully applied to space telescopes such as GREGOR, SPIRALE, WSO/UV, JWST and the like,the product is a chopped fiber reinforced ceramic matrix composite, and the preparation process mainly adopts a chopped fiber preform, forms a porous C/C preform through mould pressing, carbonization and graphitization, and adopts a liquid siliconizing process to prepare a silicon carbide substrate. Reported at presentThe linear expansion coefficient of the material is 2.1 multiplied by 10-6K-1Bending strength of 111MPa and fracture toughness of 2.4 MPa-m1/2. MELCO in Japan and ECM in GermanyTechnically new C/SiC composites are being developed jointly, i.e.The main improvement is that different types of chopped carbon fibers are mixed in the carbon fiber preform, the uniformity of the composite material is improved, and the linear expansion coefficient of the composite material is 2.1 multiplied by 10-6K, but the ratio is obtainedMore excellent mechanical property, the bending strength is 320MPa, and the fracture toughness is 3.9 MPa.m1/2The excellent performance of the compound can be used for developing large-size astronomical telescopes, such as E-ELT, SPICA, ULT and the likeGerman ECM was introduced by the American general energy companyTechnically, a 1.04m primary mirror is manufactured for a Solar Lite telescope, a 1.54m primary mirror prototype is manufactured for a Gregor telescope, and the material performance of the prototype is equal to that of Germany ECMAnd (4) the equivalent.
The patent 201318009074.8 of Shanghai silicate research institute discloses a preparation method of a fiber-reinforced ceramic matrix composite material with a low thermal expansion coefficient, the patent adopts a preform with a continuous fiber woven structure, a chemical vapor infiltration process is firstly adopted, then an organic precursor-impregnation cracking process is adopted to prepare a silicon carbide matrix, and the linear expansion coefficient of the prepared material represents the general level of the linear expansion coefficient of the existing ceramic matrix composite material (namely 1-3 multiplied by 10)-6/K)。
According to the report of the literature, the northwest industrial university adopts plain fiber cloth lamination to manufacture a preform, then adopts a chemical vapor infiltration process to prepare a silicon carbide substrate, and the linear expansion coefficient of the prepared ceramic matrix composite material is still 1-3 multiplied by 10-6and/K is between.
By combining the reports, the linear expansion coefficient of the C/SiC prepared at present is higherDistance to future space structure material requirement (less than 1 x 10)-7K) also have a considerable distance. The reason for this is that there are fewer cracks inside the matrix and there is no space for buffering expansion inside the material, so that the material exhibits a high linear expansion coefficient.
Disclosure of Invention
Technical problem to be solved
In order to avoid the defects of the prior art, the invention provides a preparation method of a C/SiC structural material with near-zero expansion characteristic, which adopts a silicide ceramic matrix with a large number of cracks to be compounded with carbon fibers, realizes the preparation of the C/SiC structural material with the near-zero expansion characteristic, and greatly reduces the linear expansion coefficient of the existing ceramic matrix composite material. Compared with the traditional chemical vapor deposition process, the invention adopts the reaction melt infiltration process to realize rapid densification, and provides a preparation method with short period, simple process and low cost.
Technical scheme
A preparation method of a C/SiC structural material with near-zero expansion characteristic is characterized by comprising the following steps: the method adopts a silicide ceramic matrix with cracks to be compounded with carbon fibers, and comprises the following specific steps:
step 1, preparing a carbon fiber preform: weaving continuous carbon fiber bundles into plain woven carbon fiber cloth, laying the plain woven carbon fiber cloth layer by layer according to the designed number of layers, and sewing the plain woven carbon fiber cloth along the thickness direction by using continuous carbon fibers to obtain a carbon fiber preform with the fiber volume fraction being more than or equal to 40%;
step 2, depositing a pyrolytic carbon interface layer by a chemical vapor infiltration method: placing the carbon fiber preform in a high-temperature vacuum furnace, heating to 850 ℃ under the pressure of less than 300Pa, introducing argon and propylene, preserving heat for 65-200 h, and obtaining a pyrolytic carbon interface layer with the thickness of 150-500 nm on the surface of a fiber bundle; the argon flow is 3L/min; the flow rate of the propylene is 3L/min;
step 3, interface layer high-temperature treatment: performing high-temperature treatment on the carbon fiber preform subjected to interface layer deposition, vacuumizing until the pressure is less than 300Pa, the high-temperature treatment temperature is 1200-1300 ℃, and keeping the temperature for 1-2 hours;
step 4, depositing the silicon carbide substrate by a chemical vapor infiltration method: putting the prefabricated body processed in the step 3 into a deposition furnace, and vacuumizing to pressure<300Pa, raising the temperature to 1000-1100 ℃, introducing argon, hydrogen and methyl trichlorosilane MTS, and carrying out chemical reaction on the MTS to generate a silicon carbide substrate; keeping the temperature for 70-80 h to enable the MTS to continuously react in the deposition furnace to generate a nanocrystalline silicon carbide substrate; the argon flow is 3.5L/min; the hydrogen flow is 5L/min; said H2The molar mass ratio of the MTS to the MTS is 10: 1;
controlling the content of the silicon carbide matrix through multiple deposition, so that the volume density of the material is controlled to be 1.3-1.5 g/cm3The open porosity is 20-30%, and the volume fraction of the silicon carbide matrix is 13-18%;
step 5, preparing a multiphase ceramic matrix by combining slurry permeation and a reaction melt permeation process: adding carbon powder or carbide powder into a solution taking sodium carboxymethylcellulose and polyethyleneimine as dispersing agents, mixing, and performing ball milling on the mixture for 24-48 hours on a roller ball mill to prepare slurry for infiltration;
soaking the prefabricated part processed in the step 4 in the slurry in a vacuum container with the air pressure lower than-0.09 Mpa, and keeping for 10-50 min; then putting the container containing the impregnated preform and the slurry into a closed device, pressurizing to 0.8-1.2 MPa, and keeping for 10-50 min; finally, taking out the prefabricated body from the slurry, putting the prefabricated body into an oven, drying for 1-3 h, and taking out; wrapping the prefabricated body in silicon powder, putting the silicon powder into a vacuum furnace, heating to 1450-1700 ℃, and preserving heat for 30-120 min to obtain a compact multi-phase ceramic matrix with the volume fraction of 34-39%;
step 6, preparing the surface silicon carbide coating by a chemical vapor deposition method: putting the compact multi-phase ceramic matrix into a deposition furnace, vacuumizing to the pressure of less than 300Pa, heating to 1000-1100 ℃, introducing argon, hydrogen and Methyl Trichlorosilane (MTS), carrying out chemical reaction on the MTS to generate a silicon carbide matrix, preserving heat for 80-160 h, generating a uniform and compact silicon carbide coating with the thickness of about 0.05-0.1 mm on the surface of the material, and sealing and filling micropores on the surface of the material to obtain the C/SiC structural material with the near-zero expansion characteristic;
the argon flow is 3.5L/min; the hydrogen flow is 5L/min; said H2Molar with MTSThe mass ratio is 10: 1.
Weaving the continuous carbon fiber bundle wires into plain-weave carbon fiber cloth, and then laying the plain-weave carbon fiber cloth layer by layer according to the designed number of layers: but are not limited to 2D lay-up, 2.5D weaving and 3D solid woven forming structures.
Such carbides include, but are not limited to: b is4C. TiC, SiC or ZrC.
Advantageous effects
The invention provides a preparation method of a C/SiC structural material with near-zero expansion characteristic, which comprises the following steps: preparing continuous carbon fibers into a fiber preform, wherein the volume fraction of the fibers is more than or equal to 40%, preparing a pyrolytic carbon interface layer on the surface of a fiber bundle filament by a Chemical Vapor Infiltration (CVI) process, performing high-temperature treatment, depositing 13-18% volume fraction of silicon carbide on the surface of an interface phase by the CVI process, rapidly preparing a multiphase ceramic matrix by a slurry infiltration combined reaction melt infiltration process (RMI), and finally preparing a silicon carbide coating by the Chemical Vapor Deposition (CVD) process for surface sealing.
Because the compact silicide matrix has high brittleness, a great amount of cracks can be generated in the compact silicide matrix when the compact silicide matrix is cooled to normal temperature from preparation temperature, and the linear expansion coefficient is lower than 1 multiplied by 10-7K; due to the use of the pyrolytic carbon interface layer, the bending strength of the prepared ceramic matrix composite material can reach 350MPa, and the fracture toughness reaches 16 MPa-m1/2The method can meet the severe requirements of future space optical-mechanical systems on structural materials; the preparation process is simple, the period is short, and compared with the traditional ceramic matrix composite preparation process, the preparation process is shortened by one third; meanwhile, raw materials used in the material manufacturing process are all products purchased in the common market, so that the preparation cost of the composite material is greatly reduced. The process of the invention involves the cooperative optimization of a plurality of parameters of deposition time, high-temperature treatment temperature, slurry components, reaction melt infiltration process temperature, heat preservation time and the like of the thermal interface layer, and the process sequence is unchangeable, so that enough cracks can be introduced into the matrix, and the linear expansion coefficient is lower than 1 multiplied by 10-7K-1The requirements of (1).
The process has the advantages that: (1) greatly reduces the linear expansion of the prior ceramic matrix composite materialThe coefficient of expansion of the ceramic matrix composite prepared by the method is close to zero (less than 1 multiplied by 10)-7K); (2) the uniformity and the density of the composite material are effectively improved; (3) the preparation period of the material is shortened.
Drawings
FIG. 1: scanning Electron micrograph of composite prepared in example 1
FIG. 2: scanning electron microscope photograph of composite material prepared by original process
FIG. 3: scanning electron microscope photograph of C/SiC structural material with near-zero expansion characteristic
Detailed Description
The invention will now be further described with reference to the following examples and drawings:
example 1:
the plain weave carbon fiber cloth laying prefabricated body is used as a reinforcement, the fiber volume content is 40%, a carbon interface layer is prepared on the surface of a prefabricated body fiber bundle through a chemical vapor infiltration process and is subjected to high-temperature treatment, and the carbon interface layer with the thickness of 150nm is obtained on the surface of the fiber bundle. The silicon carbide substrate is prepared by adopting a chemical vapor infiltration process, the deposition temperature is 1000 ℃, and the deposition time is 200 h. And then infiltrating carbon powder into the fiber preform by a slurry infiltration process, and rapidly preparing the silicon carbide substrate by a chemical vapor infiltration process, wherein the melt reaction temperature is 1450 ℃, and the heat preservation time is 2 hours. And finally, preparing a silicon carbide coating with the thickness of 0.1mm on the surface of the material by adopting a chemical vapor deposition process. The density of the obtained ceramic matrix composite material is 2.1g/cm3The porosity was 10%. Fig. 1 shows the microstructure of the material, and the main micro-components comprise carbon fiber bundles, a pyrolytic carbon interface layer, a silicon carbide matrix, multiphase ceramics and the like. The linear expansion coefficient of the composite material in the plane direction is 0.8 multiplied by 10 measured in the range of-20 ℃ to 50 DEG C-7and/K. If a compact silicide matrix is introduced without adopting a reaction solution infiltration process, the microstructure photo is shown in figure 2, no obvious crack can be seen in the matrix, and the linear expansion coefficient is as high as 1.0 multiplied by 10-6/K。
Example 2:
the plain carbon fiber cloth laying prefabricated body is used as a reinforcement, the fiber volume content is 40 percent, and the plain carbon fiber cloth laying prefabricated body is passed throughAnd preparing a carbon interface phase on the surface of the prefabricated fiber bundle by a chemical vapor infiltration process, and performing high-temperature treatment to obtain a carbon interface layer with the thickness of 300nm on the surface of the fiber bundle. The silicon carbide substrate is prepared by adopting a chemical vapor infiltration process, the deposition temperature is 1000 ℃, and the deposition time is 300 h. And infiltrating boron carbide powder into the fiber preform by a slurry infiltration process, and rapidly preparing the silicide matrix by a reaction melt infiltration process, wherein the melt reaction temperature is 1500 ℃, and the heat preservation time is 60 minutes. And finally, preparing a silicon carbide coating with the thickness of 0.05mm on the surface of the material by adopting a chemical vapor deposition process. The density of the obtained ceramic matrix composite material is 2.2g/cm3The porosity was 8%. The microstructure is shown in fig. 3, and the existence of cracks in the matrix can be clearly seen. The linear expansion coefficient of the composite material in the plane direction is 0.2 multiplied by 10 measured in the range of-20 ℃ to 50 DEG C-7A bending strength of 350MPa and a fracture toughness of 16 MPa-m1/2The comprehensive performance exceeds that of German HB-The properties disclosed.
Example 3:
the plain weave carbon fiber cloth laying prefabricated body is used as a reinforcement, the fiber volume content is 40%, a carbon interface layer is prepared on the surface of a prefabricated body fiber bundle through a chemical vapor infiltration process and is subjected to high-temperature treatment, and the carbon interface layer with the thickness of 400nm is obtained on the surface of the fiber bundle. The silicon carbide substrate is prepared by adopting a chemical vapor infiltration process, the deposition temperature is 1000 ℃, and the deposition time is 150 h. And infiltrating silicon carbide powder into the fiber preform by a slurry infiltration process, rapidly preparing a silicide matrix by a reaction melt infiltration process, reacting the melt at 1600 ℃, keeping the temperature for 40 minutes, and preparing a silicon carbide coating with the thickness of 0.1mm on the surface of the material by a CVD process. The density of the obtained ceramic matrix composite material is 2.3g/cm3The porosity was 7%. Fig. 2 is the microstructure of the material, and the main micro-components comprise carbon fiber bundles, a pyrolytic carbon interface layer, a silicon-based ceramic matrix and the like. The linear expansion coefficient of the composite material in the plane direction is 0.4 multiplied by 10 measured in the range of-20 ℃ to 50 DEG C-7/K。
Example 4:
the plain weave carbon fiber cloth laying prefabricated body is used as a reinforcement, the fiber volume content is 40%, a carbon interface layer is prepared on the surface of a prefabricated body fiber bundle through a chemical vapor infiltration process, and the carbon interface layer with the thickness of 500nm is obtained on the surface of the fiber bundle through high-temperature treatment. The silicon carbide substrate is prepared by adopting a chemical vapor infiltration process, the deposition temperature is 1000 ℃, and the deposition time is 300 h. And then infiltrating titanium carbide powder into the fiber preform by a slurry infiltration process, rapidly preparing a silicide matrix by a reaction melt infiltration process, reacting the melt at 1700 ℃, keeping the temperature for 30 minutes, and preparing a silicon carbide coating with the thickness of 0.1mm on the surface of the material by a chemical vapor deposition process. The density of the obtained ceramic matrix composite material is 2.4g/cm3The porosity was 6%. The linear expansion coefficient of the composite material in the plane direction is 0.5 multiplied by 10 measured in the range of-20 ℃ to 50 DEG C-7/K。
Claims (3)
1. A preparation method of a C/SiC structural material with near-zero expansion characteristic is characterized by comprising the following steps: the method adopts a silicide ceramic matrix with cracks to be compounded with carbon fibers, and comprises the following specific steps:
step 1, preparing a carbon fiber preform: weaving continuous carbon fiber bundles into plain woven carbon fiber cloth, laying the plain woven carbon fiber cloth layer by layer according to the designed number of layers, and sewing the plain woven carbon fiber cloth along the thickness direction by using continuous carbon fibers to obtain a carbon fiber preform with the fiber volume fraction being more than or equal to 40%;
step 2, depositing a pyrolytic carbon interface layer by a chemical vapor infiltration method: placing the carbon fiber preform in a high-temperature vacuum furnace, heating to 850 ℃ under the pressure of less than 300Pa, introducing argon and propylene, preserving heat for 65-200 h, and obtaining a pyrolytic carbon interface layer with the thickness of 150-500 nm on the surface of a fiber bundle; the argon flow is 3L/min; the flow rate of the propylene is 3L/min;
step 3, interface layer high-temperature treatment: performing high-temperature treatment on the carbon fiber preform subjected to interface layer deposition, vacuumizing until the pressure is less than 300Pa, the high-temperature treatment temperature is 1200-1300 ℃, and keeping the temperature for 1-2 hours;
and 4, depositing a silicon carbide substrate by a chemical vapor infiltration method: putting the preform treated in the step 3 into a deposition furnaceVacuum-pumping to pressure<300Pa, raising the temperature to 1000-1100 ℃, introducing argon, hydrogen and methyl trichlorosilane MTS, and carrying out chemical reaction on the MTS to generate a silicon carbide substrate; keeping the temperature for 70-80 h to enable the MTS to continuously react in the deposition furnace to generate a nanocrystalline silicon carbide substrate; the argon flow is 3.5L/min; the hydrogen flow is 5L/min; said H2The molar mass ratio of the MTS to the MTS is 10: 1;
controlling the content of the silicon carbide matrix through multiple deposition, so that the volume density of the material is controlled to be 1.3-1.5 g/cm3The open porosity is 20-30%, and the volume fraction of the silicon carbide matrix is 13-18%;
step 5, preparing a multiphase ceramic matrix by combining slurry permeation and a reaction melt permeation process: adding carbon powder or carbide powder into a solution taking sodium carboxymethylcellulose and polyethyleneimine as dispersing agents, mixing, and performing ball milling on the mixture for 24-48 hours on a roller ball mill to prepare slurry for infiltration;
soaking the prefabricated part processed in the step 4 in the slurry in a vacuum container with the air pressure lower than-0.09 Mpa, and keeping for 10-50 min; then putting the container containing the impregnated preform and the slurry into a closed device, pressurizing to 0.8-1.2 MPa, and keeping for 10-50 min; finally, taking out the prefabricated body from the slurry, putting the prefabricated body into an oven, drying for 1-3 h, and taking out; wrapping the prefabricated body in silicon powder, putting the silicon powder into a vacuum furnace, heating to 1450-1700 ℃, and preserving heat for 30-120 min to obtain a compact multi-phase ceramic matrix with the volume fraction of 34-39%;
step 6, preparing the surface silicon carbide coating by a chemical vapor deposition method: putting the compact multi-phase ceramic matrix into a deposition furnace, vacuumizing to the pressure of less than 300Pa, heating to 1000-1100 ℃, introducing argon, hydrogen and Methyl Trichlorosilane (MTS), carrying out chemical reaction on the MTS to generate a silicon carbide matrix, preserving heat for 80-160 h, generating a uniform and compact silicon carbide coating with the thickness of about 0.05-0.1 mm on the surface of the material, and sealing and filling micropores on the surface of the material to obtain the C/SiC structural material with the near-zero expansion characteristic;
the argon flow is 3.5L/min; the hydrogen flow is 5L/min; said H2The molar mass ratio to MTS was 10: 1.
2. The method for preparing a C/SiC structural material having near-zero expansion characteristics according to claim 1, wherein: weaving the continuous carbon fiber bundle wires into plain-weave carbon fiber cloth, and then laying the plain-weave carbon fiber cloth layer by layer according to the designed number of layers: but are not limited to 2D lay-up, 2.5D weaving and 3D solid woven forming structures.
3. A method for preparing a C/SiC structural material of near-zero expansion characteristics according to claim 1 or 2, characterized in that: such carbides include, but are not limited to: b is4C. TiC, SiC or ZrC.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010095425.0A CN111217616B (en) | 2020-02-17 | 2020-02-17 | Preparation method of C/SiC structural material with near-zero expansion characteristic |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010095425.0A CN111217616B (en) | 2020-02-17 | 2020-02-17 | Preparation method of C/SiC structural material with near-zero expansion characteristic |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111217616A true CN111217616A (en) | 2020-06-02 |
CN111217616B CN111217616B (en) | 2022-07-05 |
Family
ID=70810854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010095425.0A Active CN111217616B (en) | 2020-02-17 | 2020-02-17 | Preparation method of C/SiC structural material with near-zero expansion characteristic |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111217616B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111848219A (en) * | 2020-07-13 | 2020-10-30 | 航天特种材料及工艺技术研究所 | Method for improving performance of ceramic-based composite material prepared by RMI process and prepared ceramic-based composite material |
CN112277123A (en) * | 2020-11-02 | 2021-01-29 | 西北工业大学 | Preparation method of low-thermal-expansion high-modulus ceramic thermal metamaterial |
CN112358315A (en) * | 2020-11-27 | 2021-02-12 | 西北工业大学 | Preparation method of ceramic matrix composite material containing cooling pore channel |
CN114195537A (en) * | 2021-12-20 | 2022-03-18 | 北京理工大学 | Pyrolytic carbon interface phase, preparation method and application thereof, carbon fiber reinforced silicon carbide ceramic matrix composite and preparation method thereof |
CN114645226A (en) * | 2020-12-21 | 2022-06-21 | 南京航空航天大学 | Unidirectional laminated structure carbon fiber reinforced silicon carbide/aluminum-based composite material and preparation method thereof |
CN114853492A (en) * | 2022-05-19 | 2022-08-05 | 江南大学 | Deep sea high-density carbon fiber ceramic-based pressure-resistant shell and preparation method thereof |
CN114920571A (en) * | 2022-05-18 | 2022-08-19 | 中国船舶重工集团公司第七二五研究所 | Carbon fiber toughened silicon carbide sealing material and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2171794C2 (en) * | 1994-11-01 | 2001-08-10 | Эдванст Сирэмикс Копэрейшн | Insulating coating for ceramic fibrous material and coating procedure method |
JP2003252694A (en) * | 2002-03-01 | 2003-09-10 | Chokoon Zairyo Kenkyusho:Kk | SiC-FIBER-COMPOSITED SiC COMPOSITE MATERIAL |
CN101508591A (en) * | 2008-11-10 | 2009-08-19 | 西北工业大学 | Process for producing composite material of Ti3SiC2 modified C/SiC |
-
2020
- 2020-02-17 CN CN202010095425.0A patent/CN111217616B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2171794C2 (en) * | 1994-11-01 | 2001-08-10 | Эдванст Сирэмикс Копэрейшн | Insulating coating for ceramic fibrous material and coating procedure method |
JP2003252694A (en) * | 2002-03-01 | 2003-09-10 | Chokoon Zairyo Kenkyusho:Kk | SiC-FIBER-COMPOSITED SiC COMPOSITE MATERIAL |
CN101508591A (en) * | 2008-11-10 | 2009-08-19 | 西北工业大学 | Process for producing composite material of Ti3SiC2 modified C/SiC |
Non-Patent Citations (4)
Title |
---|
XIAOMENG FAN: "Oxidation behavior of C/SiC-Ti3SiC2at 800–1300◦C in air", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 * |
XIAOYU CAO: "Effect of PyC interphase thickness on mechanical behaviors of SiBC matrix modified C/SiC composites fabricated by reactive melt infiltration", 《CARBON》 * |
何飞: "《材料物理性能分析》", 31 January 2018, 哈尔滨工业大学出版社 * |
宋索成: "碳纤维改性反应烧结碳化硅陶瓷组织及力学性能", 《西安交通大学学报》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111848219A (en) * | 2020-07-13 | 2020-10-30 | 航天特种材料及工艺技术研究所 | Method for improving performance of ceramic-based composite material prepared by RMI process and prepared ceramic-based composite material |
CN112277123A (en) * | 2020-11-02 | 2021-01-29 | 西北工业大学 | Preparation method of low-thermal-expansion high-modulus ceramic thermal metamaterial |
CN112358315A (en) * | 2020-11-27 | 2021-02-12 | 西北工业大学 | Preparation method of ceramic matrix composite material containing cooling pore channel |
CN114645226A (en) * | 2020-12-21 | 2022-06-21 | 南京航空航天大学 | Unidirectional laminated structure carbon fiber reinforced silicon carbide/aluminum-based composite material and preparation method thereof |
CN114645226B (en) * | 2020-12-21 | 2023-04-14 | 南京航空航天大学 | Unidirectional laminated structure carbon fiber reinforced silicon carbide/aluminum-based composite material and preparation method thereof |
CN114195537A (en) * | 2021-12-20 | 2022-03-18 | 北京理工大学 | Pyrolytic carbon interface phase, preparation method and application thereof, carbon fiber reinforced silicon carbide ceramic matrix composite and preparation method thereof |
CN114920571A (en) * | 2022-05-18 | 2022-08-19 | 中国船舶重工集团公司第七二五研究所 | Carbon fiber toughened silicon carbide sealing material and preparation method thereof |
CN114853492A (en) * | 2022-05-19 | 2022-08-05 | 江南大学 | Deep sea high-density carbon fiber ceramic-based pressure-resistant shell and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN111217616B (en) | 2022-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111217616B (en) | Preparation method of C/SiC structural material with near-zero expansion characteristic | |
Wang et al. | A review of third generation SiC fibers and SiCf/SiC composites | |
Naslain | Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview | |
CN104311090B (en) | A kind of hot pressed sintering/presoma cracking process prepares the method for Cf/ZrC-SiC ultrahigh temperature ceramic composite | |
Li et al. | Fabrication of 2D C/ZrC–SiC composite and its structural evolution under high-temperature treatment up to 1800° C | |
KR101494116B1 (en) | SiC CERAMIC MATERIAL AND SiC CERAMIC STRUCTURE, AND PRODUCTION METHOD FOR SAME | |
Zhang et al. | Mechanical properties and thermal stability of carbon fiber cloth reinforced sol-derived mullite composites | |
EP0891956B1 (en) | Silicon-silicon carbide material and silicon carbide fiber-reinforced silicon-silicon carbide composite material | |
Liu et al. | Effects of CVI SiC amount and deposition rates on properties of SiCf/SiC composites fabricated by hybrid chemical vapor infiltration (CVI) and precursor infiltration and pyrolysis (PIP) routes | |
CN106588060A (en) | High-compactness silicon carbide ceramic-based composite material and preparation method thereof | |
US10662117B2 (en) | Method of fabricating a part out of ceramic matrix composite material | |
Iveković et al. | Densification of a SiC-matrix by electrophoretic deposition and polymer infiltration and pyrolysis process | |
Luo et al. | Mechanical properties of SiC/SiC composites by PIP process with a new precursor at elevated temperature | |
Magnant et al. | Fiber-reinforced ceramic matrix composites processed by a hybrid technique based on chemical vapor infiltration, slurry impregnation and spark plasma sintering | |
CN114315394B (en) | By using Ti 3 SiC 2 Preparation method of three-dimensional network porous prefabricated body reinforced SiC ceramic matrix composite material | |
Ding | Processing, properties and applications of ceramic matrix composites, SiCf/SiC: an overview | |
Sayano et al. | Development of a reaction-sintered silicon carbide matrix composite | |
Yano et al. | Fabrication of silicon carbide fiber-reinforced silicon carbide composite by hot-pressing | |
Honglei et al. | Microstructure, mechanical properties and reaction mechanism of KD-1 SiCf/SiC composites fabricated by chemical vapor infiltration and vapor silicon infiltration | |
Fenetaud et al. | SiC/SiC ceramic matrix composites with BN interphase produced by gas phase routes: An overview | |
CN102603344A (en) | Preparing process of silicon carbide whisker toughened zirconium diboride ceramic | |
KR20100123048A (en) | Method for manufacturing high density sicf/sic composites | |
Fan et al. | Thermal stability and oxidation resistance of C/Al2O3 composites fabricated from a sol with high solid content | |
Kim et al. | Mechanical properties of C f/SiC composite using a combined process of chemical vapor infiltration and precursor infiltration pyrolysis | |
Zhao et al. | Design, fabrication, characterization and simulation of PIP-SiC/SiC composites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |