CN111210359B - 面向智能矿山场景的数字孪生演化机理及方法 - Google Patents

面向智能矿山场景的数字孪生演化机理及方法 Download PDF

Info

Publication number
CN111210359B
CN111210359B CN201911388541.5A CN201911388541A CN111210359B CN 111210359 B CN111210359 B CN 111210359B CN 201911388541 A CN201911388541 A CN 201911388541A CN 111210359 B CN111210359 B CN 111210359B
Authority
CN
China
Prior art keywords
model
data
physical
intelligent
scene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911388541.5A
Other languages
English (en)
Other versions
CN111210359A (zh
Inventor
张帆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology Beijing CUMTB
Original Assignee
China University of Mining and Technology Beijing CUMTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology Beijing CUMTB filed Critical China University of Mining and Technology Beijing CUMTB
Priority to CN201911388541.5A priority Critical patent/CN111210359B/zh
Publication of CN111210359A publication Critical patent/CN111210359A/zh
Application granted granted Critical
Publication of CN111210359B publication Critical patent/CN111210359B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Mining
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Abstract

本发明公开了面向智能矿山场景的数字孪生演化机理及方法,所述数字孪生由物理模型、逻辑模型、仿真模型和数据模型相互耦合和演化集成,包含以下方法步骤:(1)物理模型定义;(2)逻辑模型表示;(3)仿真模型建立;(4)仿真模型优化;(5)仿真模型验证;(6)数据模型构建;(7)数字孪生集成。本发明通过构建数字孪生模型,实现数字孪生体与物理实体之间的数据镜像与信息交互,实现物理空间物理实体与虚拟空间数字孪生体的对象孪生、过程孪生和性能孪生;本发明通过数字孪生演化机理与方法,在虚拟空间智能矿山场景实现对物理空间智能矿山场景远程可视化监控,以及对矿山应用场景设备进行智能感知、实时监控、精确定位和健康预测。

Description

面向智能矿山场景的数字孪生演化机理及方法
技术领域
本发明涉及一种面向智能矿山的数字孪生技术,属于机器视觉、计算机仿真与物联网技术领域,具体涉及面向智能矿山场景的数字孪生演化机理及方法。
背景技术
当前,数字孪生技术广泛应用于智能制造和虚拟生产车间,并逐渐从数字化向智能化和智慧化发展。矿山无人化开采与机器学习等信息技术的深度融合,加快了矿井智能开采技术兴起并向纵深发展。数字孪生技术具有模型可视化、逻辑可控制和数据可计算的虚拟模型构建特点,其在工业智能制造和虚拟生产场景应用广泛。随着机器视觉三维建模技术以及视觉传感器测量技术在工业应用成果的不断推广,基于机器视觉的数字孪生技术将在智能矿山三维场景建模、物理信息技术以及虚拟空间数字镜像等应用方面发挥重要作用。
现有矿山应用场景采用VR或AR等虚拟现实仿真技术,物理模型与虚拟仿真的数据不同步,仿真模型的自学习、自优化能力弱,缺乏可计算性及信息交互能力,无法对智能矿山应用场景及作业设备进行智能感知、实时监控、精确定位和健康预测。因此,需要探索发明一种新的仿真模型构建方法,基于可视化三维模型进行感知分析、仿真模拟、迭代优化与决策控制,通过虚拟场景数字孪生模型实现智能矿山场景的远程可视化智能监控,以解决现有技术难题。
发明内容
本发明所要解决的技术问题是:为了克服现有技术不足之处,本发明提出了一种面向智能矿山场景的数字孪生演化机理及方法,旨在通过构建物理空间智能矿山场景在虚拟空间的数字孪生模型,实现数字孪生体与物理实体之间信息交互与虚拟监控,实现对智能矿山应用场景及作业设备的智能感知、实时监控、精确定位和健康预测。
本发明的技术方案是:面向智能矿山场景的数字孪生演化机理及方法,所述方法的数字孪生模型包括物理模型、逻辑模型、仿真模型和数据模型,数字孪生模型由物理模型、逻辑模型、仿真模型相互耦合及演化而成,并通过数字孪生实现虚拟空间智能矿山场景与物理空间智能矿山场景的映射重构、数据镜像、同步反馈与信息交互,所述数字孪生包括对象孪生、过程孪生和性能孪生。
所述数字孪生数据模型包括感知层、网络层、数据层和表示层。
感知层用于感知智能矿山场景工况环境、设备运行参数和设备工作状态,为数字孪生的对象孪生提供信息流。
网络层用于智能矿山场景设备的统一组网、协议转换、边缘计算和网络传输,为感知层和数据层提供通信接口,并为数字孪生的过程孪生提供控制流。
数据层用于智能矿山场景多源数据的汇聚融合、迭代计算、分析挖掘、数据孪生和存储管理,为数字孪生的性能孪生提供数据流。
表示层为用户提供智能矿山场景数字孪生与信息交互服务,以及智能矿山场景设备的智能识别、精确定位、实时监控和可靠运维,为数字孪生提供决策流。
所述方法的数字孪生建模,包括如下步骤:
步骤1,物理模型定义:选取智能矿山场景物理实体建立三维物理模型,定义物理实体的几何属性、运动属性和功能属性,以及几何外形和机械结构,定义仿真迭代优化条件;
步骤2,逻辑模型表示:将物理模型映射到逻辑模型,通过图形化、形式化描述逻辑模型的组成要素、组织结构和运行机制,并通过逻辑模型将各要素属性和行为反馈到物理模型,实现对物理模型的优化;
步骤3,仿真模型建立:根据步骤1和步骤2,基于开源图形场景OSG构建可视化的仿真模型,实现物理实体的孪生对象可视化、孪生结构可视化和孪生过程可视化;
步骤4,仿真模型优化:根据步骤3建立的仿真模型,基于多源数据,采用Pareto多目标优化算法对仿真模型进行训练和优化,将仿真结果反馈到物理模型,并对物理模型优化;
步骤5,仿真模型验证:对物理模型与仿真模型进行一致性与可靠性验证,如满足仿真模型的目标函数迭代优化条件,则执行步骤6,否则,执行步骤2;
步骤6,数据模型构建:构建可计算的数据模型,采用多源数据融合和深度学习算法,以及迭代优化和智能决策方法,实现物理实体与虚拟孪生体的数据镜像和数据交换;
步骤7,数字孪生表征:集成物理模型、逻辑模型、仿真模型和数据模型,通过数据驱动与实时交互,实现物理空间智能矿山场景在虚拟空间的数字孪生。
所述数字孪生演化机理及方法,进一步地包括如下步骤:
步骤1.1,三维实体建模:利用三维建模工具建立智能矿山场景的物理实体三维模型,并采用有限元分析法求解三维模型的结构参数、几何参数、材料参数、状态参数及边界条件;
步骤1.2,模型渲染优化:根据步骤1.1所获取的三维模型,使用3DsMax三维渲染工具对模型结构透视图或点云图进行渲染、添加材质,并对其边缘部分进行修补优化;
步骤1.3,仿真场景构建:将步骤1.2渲染后的模型导入虚拟现实仿真引擎,使用其内置的物理引擎构建可视化仿真模型,实现数字孪生体可视化建模、生产过程和应用场景可视化展示与虚拟漫游;
步骤1.4,数据融合:将物理实体的多源传感器数据作为输入,经多源数据融合后输出,据此驱动数字孪生体完成信息交换,并将传感器实时数据、历史数据及物理模型存储在云数据库中;
步骤1.5,交互控制:通过OPC UA、TCP/UDP和Web Service通信接口实现数据实时采集、远程通信和多源动态数据的实时更新,通过VR或AR人机接口和数据库接口,实现智能矿山场景数字孪生体与物理实体的实时交互及虚拟现实。
所述数字孪生采用物理实体结构模型、几何模型和材料模型的多尺度、多层次集成,将物理空间中的物理实体在虚拟空间进行全要素重构,通过实时数据采集、数据融合和迭代计算,形成具有感知、分析、决策和执行能力的数字孪生体。
所述数字孪生体作为物理实体在虚拟空间的1∶1映射,采用集成的多物理、多尺度和动态概率仿真模型,基于机器视觉和深度学习算法,实现对物理实体的数字镜像和数据驱动。
所述数字孪生采用OPC UA服务架构和边缘计算技术,具有独立于底层通信协议的实时数据采集和边缘计算功能,支持Web Service接口和ODBC数据库通信接口,并实现模型分布式计算及数据低延时安全传输。
所述数字孪生基于卷积神经网络深度学习算法对多源传感器感知数据、状态数据以及历史数据进行数据挖掘,通过训练和优化实现数字孪生模型的自学习、自优化,提高所述模型的准确性和鲁棒性。
所述步骤1.1三维实体建模,进一步包括如下子步骤:
步骤2-1,参数初始化:初始化智能矿山应用场景物理实体的结构参数、几何参数、状态参数及边界条件;
步骤2-2,有限元分析:采用有限元法求解计算,获取智能矿山应用场景在三维动态优化中的结构参数、几何参数、状态参数及边界条件,得出其随状态变量变化的收敛条件;
步骤2-3,收敛性评估:如果智能矿山应用场景物理模型优化的目标函数随状态变量的变化而收敛,则获取应用场景物理模型点云图,执行步骤1-4;否则,放弃对应用场景物理模型的点云采集,修改参数,执行步骤1-1;
步骤2-4,目标函数优化:更新参数集并进行迭代计算,直至求得目标函数的局部最优解为止,获取智能矿山应用场景物理模型的点云图最优方案,计算结束。
所述步骤1.2模型渲染优化,进一步包括如下子步骤:
步骤3-1,获取三维智能矿山应用场景的物理模型透视图;
步骤3-2,定义物理模型的表面颜色、透明度、粗糙度和纹理;
步骤3-3,添加物理模型的材料参数、结构数据和几何数据及优化边界条件;
步骤3-4,导入物理模型,使用3DsMax对其渲染,并对模型边缘进行渲染优化。
所述步骤1.3仿真场景构建,进一步包括如下子步骤:
步骤4-1,采用虚拟现实仿真引擎建立智能矿山应用场景的物理模型;
步骤4-2,利用物理引擎的计算结果驱动图形渲染引擎进行渲染和绘制;
步骤4-3,对智能矿山场景的物理模型旋转、平移和姿态进行解析,求解出其倾角、夹角、位置与运动状态变量之间的关系;
步骤4-4,构建智能矿山场景可视化仿真模型,实现数字孪生体可视化建模、虚拟空间智能矿山生产过程与应用场景可视化展示。
所述数字孪生具有感知分析、仿真模拟、迭代优化与决策控制功能,通过数字孪生体实现对智能矿山物理实体的智能感知、实时监控、精确定位和健康预测。
所述数字孪生实现数字孪生体的三维建模工具包括激光扫描仪、Creoparametric、UG NX或3DsMax,虚拟现实仿真引擎采用Unity3D开发工具。
所述智能矿山场景包括矿井无人化综采工作面、矿井无人化综掘工作面、矿井智能化开采工作面、露天矿智能化开采工作面和矿山机器人化采矿装备作业场景,以及矿井智能化掘进、智能化提升、智能化运输、智能化辅助运输、智能化洗选、智能化原位开采和流态化开采场景。
本发明的有益效果在于:
该发明基于卷积网络深度学习算法,通过构建和集成物理模型、逻辑模型、仿真模型和数据模型,描述数字孪生演化过程及实现方法。本发明解决了现有矿山应用场景虚拟现实的仿真模型自学习、自优化能力弱、缺乏可计算性及信息交互能力,无法对智能矿山应用场景现场设备进行远程实时监控和健康状况预测等问题。本发明通过虚拟场景数字孪生实现智能矿山的远程可视化监控,解决了现有虚拟现实技术无法实现对矿山应用场景目标实时监控难题。
附图说明
图1为面向智能矿山场景的数字孪生总体框图。
图2为面向智能矿山的数字孪生演化机理及方法的演化模型。
图3为面向智能矿山的数字孪生演化机理及方法的数据模型。
图4为面向智能矿山的数字孪生演化机理及方法的流程图。
图5为面向智能矿山场景的数字孪生演化机理及方法的数据流程图。
图6为面向智能矿山场景的数字孪生演化机理及方法的仿真模型构建流程图。
图7为面向智能矿山场景的数字孪生演化机理及方法的实施例示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合附图对本发明的具体实施方式进行详细描述。
图1为面向智能矿山场景的数字孪生总体框图。参照图1,基于物理空间智能矿山场景与虚拟空间智能矿山场景的信息物理映射关系,建立了上述数字孪生驱动的理论架构,包括物理空间、虚拟空间和数字孪生模型。其中,物理空间元素包括智能矿山场景物理对象、智能矿山作业场景与工况状况、智能矿山生产过程和智能矿山采矿装置。虚拟空间元素包括的三维物理模型、虚拟智能矿山场景以及智能矿山场景仿真模型,数字孪生包括对象孪生、过程孪生和性能孪生,数字孪生模型通过数据驱动动态优化仿真模型,实现智能矿山场景在物理空间与虚拟空间的信息交互;采用多源数据融合和深度学习算法,并通过模型训练、迭代优化和智能决策方法,对智能矿山场景采矿装置进行数据分析与健康预测。
图2为面向智能矿山的数字孪生演化机理及方法的演化模型。参照图2,基于物理空间智能矿山场景与虚拟空间智能矿山场景的信息物理映射关系,构建了上述数字孪生演化机理及方法的演化模型,包括数字孪生模型、物理空间智能矿山场景和虚拟空间智能矿山场景及其数字孪生。数字孪生模型由三维物理模型、可控制逻辑模型、可计算数据模型和可视化仿真模型构成,通过三维物理模型、可控制逻辑模型、可视化仿真模型相互耦合与演化而成,并基于数字孪生和数据驱动实现物理实体的对象孪生、过程孪生和性能孪生。可视化仿真模型通过构建与物理空间在视觉效果上几何结构一致的虚拟场景,为数字孪生提供人机交互平台,体现模型的可交互性。逻辑模型通过对物理空间组成要素、组织结构和运行过程建模,通过对历史数据、更新数据和仿真数据等多源数据融合与分析,实现对物理模型的优化,达到与物理模型运动状态一致的虚拟场景,体现模型的可控制性。数据模型通过构建数据采集通信、数据分析、优化与决策,实现物理空间或虚拟空间的1:1镜像,体现模型的可计算性。其演化过程包括:基于感知分析和边缘计算的仿真模型验证,进行数字孪生模型仿真,基于数据驱动的数字孪生场景实时监控与生产过程控制,基于卷积神经网络的数据挖掘和模型迭代优化,实现物理空间到虚拟空间的映射重构与信息交互,即完成由智能矿井场景虚拟化到场景模型数字化、再到数字场景镜像化和镜像场景数字孪生化的全周期演化闭环过程。
图3为面向智能矿山的数字孪生演化机理及方法的数据模型。如图3所示,上述方法的数据模型为四层体系结构,包括感知层、网络层、数据层和表示层。其中,感知层作为数字孪生数据模型的最底层,用于感知智能矿山场景工况环境、设备运行参数和设备工作状态,为数字孪生的对象孪生提供信息流;网络层在数据模型的感知层之上,用于智能矿山场景设备的统一组网、协议转换、边缘计算和网络传输,为感知层和数据层提供通信接口,为数字孪生的过程孪生提供控制流;数据层在数据模型的网络层之上,用于智能矿山场景多源数据的汇聚融合、迭代计算、数据孪生、分析挖掘和存储管理,为数字孪生的性能孪生提供数据流;表示层在数据模型的最上层,为用户提供数字孪生与信息交互服务,以及智能矿山应用场景设备的智能识别、精确定位、实时监控和可靠运维,为数字孪生提供决策流。
图4为面向智能矿山的数字孪生演化机理及方法的流程图。如图4所示,面向智能矿山场景的数字孪生演化机理及方法步骤包括:(1)选取物理实体作为建立三维可视化的物理模型,定义物理实体的几何属性、运动属性和功能属性,以及几何外形和机械结构,定义仿真分析和评估优化条件。(2)建立可控制的逻辑模型,将物理模型映射到逻辑模型,通过图形化、形式化描述逻辑模型的组成要素、组织结构和运行机制,并通过逻辑模型将各要素属性和行为反馈到物理模型,实现对物理模型的优化。(3)基于开源图形场景OSG构建可视化的仿真模型,实现物理实体的孪生对象可视化、孪生结构可视化和孪生过程可视化;(4)根据步骤(3)建立的仿真模型,基于实时和历史数据对仿真模型进行训练和优化,并将仿真结果反馈到物理模型。(5)利用模型相关性与相容性测量与评估算法对物理模型与仿真模型进行一致性与可靠性验证,如满足仿真模型的目标函数迭代优化条件,则执行步骤(6),否则,返回执行步骤(2);(6)构建可计算的数据模型,通过数据采集、数据挖掘和数据决策体系,采用多源数据融合和深度学习算法,以及迭代优化和智能决策方法,实现物理实体与虚拟孪生体的数据镜像和数据交换。(7)集成物理模型、可控制逻辑模型、可视化仿真模型和可计算数据模型,通过数据驱动与实时交互,实现智能矿山场景物理实体与数字孪生体的数字孪生、双向通信和智能监控。
图5为面向智能矿山场景的数字孪生演化机理及方法的数据流程图。如图5所示,面向智能矿山场景的数字孪生演化机理及方法的数据流程包括:(1)利用三维建模工具建立智能矿山场景的物理实体三维模型,并采用有限元分析法求解三维模型的结构参数、几何参数、材料参数、状态参数及边界条件;(2)对所获取的三维模型,使用3DsMax三维渲染工具对模型结构透视图或点云图进行渲染、添加材质,并对其边缘部分进行修补优化;(3)将渲染后的模型导入虚拟现实仿真引擎,使用其内置的物理引擎,基于开源图形场景OSG构建可视化仿真模型,实现数字孪生体可视化建模、生产过程和作业场景虚拟展示;(4)将物理实体的多源传感器数据和仿真模型的监控数据作为输入,经多源数据融合后输出,据此驱动数字孪生体完成与物理实体的信息交换,并将传感器实时数据、历史数据及仿真模型的融合数据存储在云数据库中;(5)通过OPC UA、TCP/UDP、Web Service通信接口实现数据实时采集、远程通信和多源动态数据的实时更新,通过视频终端、人机接口和数据库接口,为用户提供Web Service服务,实现智能矿山场景数字孪生体与物理实体的实时交互及虚拟监控。
图6为面向智能矿山场景的数字孪生演化机理及方法的仿真模型构建流程图。如图6所示,上述方法的仿真模型构建流程主要包括:(1)获取三维场景中智能矿山场景物理模型的透视图;(2)定义智能矿山场景物理模型的表面颜色、透明度、粗糙度和纹理;(3)添加智能矿山场景物理模型的材料参数、结构数据和几何数据及优化边界条件;(4)导入智能矿山场景物理模型,使用3DsMax对其渲染,并对模型边缘进行渲染优化;(5)输出渲染模型,使用Unity3D物理引擎的计算结果驱动图形渲染引擎进行渲染和绘制;(6)对智能矿山场景物理模型旋转、平移和姿态进行解析,求解出其倾角、夹角、位置与运动状态变量之间的关系;(7)基于开源图形场景OSG构建可视化仿真模型;(8)对仿真模型进行优化和验证,如果满足优化迭代条件,则输出仿真模型,否则,继续迭代,直到满足迭代优化条件为止。
图7为面向智能矿山场景的数字孪生演化机理及方法的实施例示意图。参照图7,物理空间综采工作面通过数字孪生实现与虚拟空间综采工作面的相互映射和信息交互。其中,实施例数字孪生包括对象孪生、过程孪生和性能孪生。数字孪生模型由物理模型、逻辑模型、数据模型和仿真模型演化集成,并通过数据驱动方式实现物理实体与数字孪生体之间的对象孪生、过程孪生和性能孪生。基于综采智能监控系统设计理论和数据模型,通过物理综采工作面和虚拟数字孪生综采工作面在对象要素级、生产过程级和设备性能级实现双向映射与实时交互,实现对象孪生、过程孪生和性能孪生。实施例根据综采工作面孪生数据库、历史数据和设备实时运行数据进行数据的实时更新与同步,实现物理无人化工作面与虚拟无人工作面孪生数据的全要素、全流程、全数据集成与融合。实施例在孪生数据的驱动下,通过物理空间综采工作面、虚拟空间综采工作面、综采工作面数字孪生模型与孪生数据的迭代运行,实现综采工作面生产要素管理、生产过程预仿真、设备性能实时监控,从而使综采工作面生产系统在虚拟数字孪生场景下实现远程控制、智能监测。
显然,本领域的技术人员应该明白,本发明及上述实施例所涉及面向智能矿山场景的数字孪生演化机理及方法,除作为矿井数字孪生应用于智能矿山场景外,通过适当集成或改进后也适用于非金属和金属等非煤矿山场景的数字孪生应用场景。
以上内容是结合具体的优选实施例方式对本发明所做的进一步详细说明,不能认定本发明的具体实施方式仅限于此,对于本发明所属技术领域的普通技术人员来说,在不脱离本发明设计思路的前提下,还可进行若干简单的替换和更改,都应当视为属于本发明所提交的权利要求书所涉及的保护范围。

Claims (7)

1.面向智能矿山场景的数字孪生演化机理及方法,其特征在于,所述方法的数字孪生模型包括物理模型、逻辑模型、仿真模型和数据模型,数字孪生模型由物理模型、逻辑模型、仿真模型相互耦合及演化而成,并通过数字孪生实现虚拟空间智能矿山场景与物理空间智能矿山场景的映射重构、数据镜像、同步反馈与信息交互,所述数字孪生包括对象孪生、过程孪生和性能孪生;
所述数字孪生数据模型包括感知层、网络层、数据层和表示层;
感知层用于感知智能矿山场景工况环境、设备运行参数和设备工作状态,为数字孪生的对象孪生提供信息流;
网络层用于智能矿山场景设备的统一组网、协议转换、边缘计算和网络传输,为感知层和数据层提供通信接口,并为数字孪生的过程孪生提供控制流;
数据层用于智能矿山场景多源数据的汇聚融合、迭代计算、分析挖掘、数据孪生和存储管理,为数字孪生的性能孪生提供数据流;
表示层为用户提供智能矿山场景数字孪生与信息交互服务,以及智能矿山场景设备的智能识别、精确定位、实时监控和可靠运维,为数字孪生提供决策流;
所述方法的数字孪生建模,包括如下步骤:
步骤1,物理模型定义:选取智能矿山场景物理实体建立三维物理模型,定义物理实体的几何属性、运动属性和功能属性,以及几何外形和机械结构,定义仿真迭代优化条件;
步骤2,逻辑模型表示:将物理模型映射到逻辑模型,通过图形化、形式化描述逻辑模型的组成要素、组织结构和运行机制,并通过逻辑模型将各要素属性和行为反馈到物理模型,实现对物理模型的优化;
步骤3,仿真模型建立:根据步骤1和步骤2,基于开源图形场景OSG构建可视化的仿真模型,实现物理实体的孪生对象可视化、孪生结构可视化和孪生过程可视化;
步骤4,仿真模型优化:根据步骤3建立的仿真模型,基于多源数据,采用Pareto多目标优化算法对仿真模型进行训练和优化,将仿真结果反馈到物理模型,并对物理模型优化;
步骤5,仿真模型验证:对物理模型与仿真模型进行一致性与可靠性验证,如满足仿真模型的目标函数迭代优化条件,则执行步骤6,否则,执行步骤2;
步骤6,数据模型构建:构建可计算的数据模型,采用多源数据融合和深度学习算法,以及迭代优化和智能决策方法,实现物理实体与虚拟孪生体的数据镜像和数据交换;
步骤7,数字孪生表征:集成物理模型、逻辑模型、仿真模型和数据模型,通过数据驱动与实时交互,实现物理空间智能矿山场景在虚拟空间的数字孪生;
所述数字孪生演化机理及方法,进一步地包括如下步骤:
步骤1.1,三维实体建模:利用三维建模工具建立智能矿山场景的物理实体三维模型,并采用有限元分析法求解三维模型的结构参数、几何参数、材料参数、状态参数及边界条件;
步骤2.1,模型渲染优化:根据步骤1.1所获取的三维模型,使用3DsMax三维渲染工具对模型结构透视图或点云图进行渲染、添加材质,并对其边缘部分进行优化;
步骤3.1,仿真场景构建:将步骤2.1渲染后的模型导入虚拟现实仿真引擎,使用其内置的物理引擎构建可视化仿真模型,实现数字孪生体可视化建模、生产过程和应用场景可视化展示与虚拟漫游;
步骤4.1,数据融合:将物理实体的多源传感器数据作为输入,经多源数据融合后输出,据此驱动数字孪生体完成信息交换,并将传感器实时数据、历史数据及物理模型存储在云数据库中;
步骤5.1,交互控制:通过OPC UA、TCP/UDP、Web Service通信接口实现数据实时采集、远程通信和多源动态数据的实时更新,通过VR或AR人机接口和数据库接口,实现智能矿山场景数字孪生体与物理实体的实时交互及虚拟现实;
所述数字孪生采用物理实体结构模型、几何模型和材料模型的多尺度、多层次集成,将物理空间中的物理实体在虚拟空间进行全要素重构,通过实时数据采集、数据融合和迭代计算,形成具有感知、分析、决策和执行能力的数字孪生体;
所述数字孪生体作为物理实体在虚拟空间的1∶1映射,采用集成的多物理、多尺度和动态概率仿真模型,基于机器视觉和深度学习算法,实现对物理实体的数字镜像和数据驱动;
所述数字孪生采用OPC UA服务架构和边缘计算技术,具有独立于底层通信协议的实时数据采集和边缘计算功能,支持Web Service接口和ODBC数据库通信接口,实现模型分布式计算及数据低延时安全传输;以及,
所述数字孪生基于卷积神经网络深度学习算法对多源传感器感知数据、状态数据以及历史数据进行数据挖掘,通过训练和优化实现数字孪生模型的自学习、自优化,提高所述模型的准确性和鲁棒性。
2.根据权利要求1所述的方法,其特征在于,所述步骤1.1三维实体建模,进一步包括如下子步骤:
步骤2-1,参数初始化:初始化智能矿山场景物理实体的结构参数、几何参数、状态参数及边界条件;
步骤2-2,有限元分析:采用有限元法求解计算,获取智能矿山场景在三维动态优化中的结构参数、几何参数、状态参数及边界条件,得出其随状态变量变化的收敛条件;
步骤2-3,收敛性评估:如果智能矿山场景物理模型优化的目标函数随状态变量的变化而收敛,则获取应用场景物理模型点云图,执行步骤2-4;否则,放弃对应用场景物理模型的点云采集,修改参数,执行步骤2-1;
步骤2-4,目标函数优化:更新参数集并进行迭代计算,直至求得目标函数的局部最优解为止,获取智能矿山场景物理模型的点云图最优方案,计算结束。
3.根据权利要求1所述的方法,其特征还在于,所述步骤2.1模型渲染优化,进一步包括如下子步骤:
步骤3-1,获取智能矿山场景三维物理模型的透视图;
步骤3-2,定义物理模型的表面颜色、透明度、粗糙度和纹理;
步骤3-3,添加物理模型的材料参数、结构数据和几何数据及优化边界条件;
步骤3-4,导入物理模型,使用3DsMax对其渲染,并对模型边缘进行渲染优化。
4.根据权利要求1所述的方法,其特征在于,所述步骤3.1仿真场景构建,进一步包括如下子步骤:
步骤4-1,采用虚拟现实仿真引擎建立智能矿山应用场景物理模型;
步骤4-2,利用物理引擎的计算结果驱动图形渲染引擎进行渲染和绘制;
步骤4-3,对智能矿山场景物理模型旋转、平移和姿态进行解析,求解出其倾角、夹角、位置与运动状态变量之间的关系;
步骤4-4,构建智能矿山场景可视化仿真模型,实现数字孪生体可视化建模、虚拟空间智能矿山生产过程与应用场景可视化展示。
5.根据权利要求1所述的方法,其特征在于,所述数字孪生具有感知分析、仿真模拟、迭代优化与决策控制功能,通过数字孪生体实现对智能矿山物理实体的智能感知、实时监控、精确定位和健康预测。
6.根据权利要求1所述的方法,其特征在于,实现数字孪生体的三维建模工具包括激光扫描仪、Creo parametric、UG NX或3DsMax,虚拟现实仿真引擎采用Unity3D开发工具。
7.根据权利要求1所述的方法,其特征在于,所述智能矿山场景包括矿井无人化综采工作面、矿井无人化综掘工作面、矿井智能化开采工作面、露天矿智能化开采工作面和矿山机器人化采矿装备作业场景,以及矿井智能化掘进、智能化提升、智能化运输、智能化辅助运输、智能化洗选、智能化原位开采和流态化开采场景。
CN201911388541.5A 2019-12-30 2019-12-30 面向智能矿山场景的数字孪生演化机理及方法 Active CN111210359B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911388541.5A CN111210359B (zh) 2019-12-30 2019-12-30 面向智能矿山场景的数字孪生演化机理及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911388541.5A CN111210359B (zh) 2019-12-30 2019-12-30 面向智能矿山场景的数字孪生演化机理及方法

Publications (2)

Publication Number Publication Date
CN111210359A CN111210359A (zh) 2020-05-29
CN111210359B true CN111210359B (zh) 2022-01-28

Family

ID=70789437

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911388541.5A Active CN111210359B (zh) 2019-12-30 2019-12-30 面向智能矿山场景的数字孪生演化机理及方法

Country Status (1)

Country Link
CN (1) CN111210359B (zh)

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111857065B (zh) * 2020-06-08 2023-06-20 北京邮电大学 基于边缘计算和数字孪生的智能生产系统和方法
CN111596604B (zh) * 2020-06-12 2022-07-26 中国科学院重庆绿色智能技术研究院 一种基于数字孪生的工程装备故障智能诊断与自愈控制系统及方法
CN111754754A (zh) * 2020-06-19 2020-10-09 上海奇梦网络科技有限公司 一种基于数字孪生技术的设备实时监控方法
CN111797163B (zh) * 2020-06-24 2023-04-07 西北工业大学 基于数字孪生的虚实同步系统及实现方法
CN111723448B (zh) * 2020-06-29 2023-04-18 中国矿业大学(北京) 数字孪生智能综采工作面液压支架直线度监测方法
CN111835565B (zh) * 2020-07-06 2023-06-20 重庆金美通信有限责任公司 一种基于数字孪生的通信网络优化方法、装置和系统
CN111862323A (zh) * 2020-07-08 2020-10-30 北京科技大学 多元孕灾数字孪生智能感知辨识预警系统及方法
CN111859566B (zh) * 2020-07-17 2023-11-17 重庆大学 基于数字孪生的表面粗糙度稳定方法
CN111833426B (zh) * 2020-07-23 2022-09-02 四川长虹电器股份有限公司 基于数字孪生的三维可视化方法
CN111968004A (zh) * 2020-08-07 2020-11-20 东华大学 一种基于数字孪生的高精密产品装调一体化系统
CN112051750B (zh) * 2020-08-07 2023-10-03 广东工业大学 一种四旋翼无人机数字孪生系统
CN111950147B (zh) * 2020-08-10 2022-09-06 上海数设科技有限公司 一种以统一形式样机模型定义数字孪生体的方法及装置
CN112016748A (zh) * 2020-08-26 2020-12-01 国网重庆市电力公司电力科学研究院 一种稳控装置运行状态的动态分析与量化评估方法
CN111985112B (zh) * 2020-08-27 2024-01-30 宝武集团鄂城钢铁有限公司 一种基于Unity3D的高炉数字孪生系统
CN111950066B (zh) * 2020-08-27 2022-09-13 中国国家铁路集团有限公司 一种基于bim和gis技术的数字孪生数据驱动系统
CN112116140B (zh) * 2020-09-10 2022-09-20 同济大学 一种基于孪生模型的建筑能耗预测方法
CN112037543A (zh) * 2020-09-14 2020-12-04 中德(珠海)人工智能研究院有限公司 基于三维建模的城市交通灯控制方法、装置、设备和介质
CN112053085B (zh) * 2020-09-16 2023-04-07 四川大学 一种基于数字孪生的机场场面运行管理系统及方法
CN112115607B (zh) * 2020-09-16 2024-04-26 同济大学 一种基于多维赛博空间的移动智能体数字孪生系统
CN112289107A (zh) * 2020-09-27 2021-01-29 武汉恩逸互联科技有限公司 一种工业互联网双向仿真映射实训系统
CN112214816A (zh) * 2020-09-28 2021-01-12 中国矿业大学(北京) 一种基于数字孪生技术的断层结构滑动失稳的反向控制方法和系统
CN112288168B (zh) * 2020-10-30 2022-07-29 西南电子技术研究所(中国电子科技集团公司第十研究所) 基于数字孪生的smt产线质量分析平台
CN112365167B (zh) * 2020-11-13 2023-04-18 广西电网有限责任公司南宁供电局 基于动态本体模型的电网设备数字孪生体构建方法及装置
CN112417619B (zh) * 2020-11-23 2021-10-08 江苏大学 一种基于数字孪生的泵机组优化运行调节系统及方法
CN112417568B (zh) * 2020-12-04 2024-04-26 广东省科学院智能制造研究所 抱桩器数字孪生体的构建系统、方法、设备及介质
CN112597584A (zh) * 2020-12-15 2021-04-02 北京动力机械研究所 基于数字孪生的数字样机构建及模型转换方法及装置
CN112633532B (zh) * 2020-12-29 2023-06-02 上海工程技术大学 一种基于数字孪生技术的列车车轮维修管理系统
CN112836404B (zh) * 2021-01-07 2023-09-19 大连理工大学 智能挖掘机的结构性能数字孪生体构建方法
CN112818446B (zh) * 2021-01-26 2024-04-02 西安交通大学 一种智能车间数字孪生系统的构建方法
CN112905385B (zh) * 2021-01-27 2022-01-07 北京航空航天大学 一种基于模型备份的数字孪生模型运行及迭代演化方法
CN112836157A (zh) * 2021-02-09 2021-05-25 北京工业大学 一种基于容器编排系统的分布式四域计算服务架构实时交互分析实现方法
CN113094867B (zh) * 2021-03-01 2022-05-06 广州铁路职业技术学院(广州铁路机械学校) 一种基于数字孪生的列车车厢噪音环境建模方法
CN113065276A (zh) * 2021-03-09 2021-07-02 北京工业大学 一种基于数字孪生的智能建造方法
CN112925496A (zh) * 2021-03-30 2021-06-08 四川虹微技术有限公司 一种基于数字孪生的三维可视化设计方法及系统
CN113515837A (zh) * 2021-03-30 2021-10-19 清华大学 仿真测试平台的建立方法、装置和电子设备
CN113128109B (zh) * 2021-04-08 2022-11-29 太原理工大学 一种面向智能化综采机器人生产系统的测试与评估方法
CN113010930A (zh) * 2021-04-15 2021-06-22 北京航空航天大学 一种数字孪生模型多维多尺度验证方法
CN113101140B (zh) * 2021-04-16 2022-05-13 中国科学技术大学 基于数字孪生的柔性下肢外骨骼康复单元构建方法及系统
CN113126569B (zh) * 2021-04-19 2022-03-08 北京航空航天大学 一种数字孪生装备构建方法和系统
CN113066188A (zh) * 2021-04-23 2021-07-02 上海逸舟信息科技有限公司 一种用于室外施工作业的三维仿真方法及设备
CN114035515A (zh) * 2021-04-28 2022-02-11 南京航空航天大学 面向离散车间生产过程的数字孪生系统及其构建方法
CN113516903A (zh) * 2021-05-11 2021-10-19 中钢集团马鞍山矿山研究总院股份有限公司 面向智能矿山场景的数字孪生演化机理及方法
CN113344505A (zh) * 2021-05-11 2021-09-03 广东省科学院智能制造研究所 一种基于数字孪生的卫陶产品装配生产管理系统及方法
CN113221352A (zh) * 2021-05-11 2021-08-06 中国科学院自动化研究所 基于数字孪生的复杂装备健康管理方法及系统
CN113221461B (zh) * 2021-05-20 2022-09-27 太原理工大学 一种基于数字孪生技术的掘锚一体机监控系统
CN113406968B (zh) * 2021-06-17 2023-08-08 广东工业大学 基于数字孪生的无人机自主起降巡航方法
CN113420448B (zh) * 2021-06-25 2023-05-23 中国兵器装备集团自动化研究所有限公司 一种弹药熔铸装药成型过程的数字孪生系统及方法
CN113435657B (zh) * 2021-07-09 2022-12-23 清华四川能源互联网研究院 数据集成处理方法、系统、能源管理系统、电子设备及计算机可读存储介质
CN113359653B (zh) * 2021-07-15 2022-01-28 山东黄金矿业科技有限公司充填工程实验室分公司 基于云平台大数据融合的智慧充填控制系统
CN113554230A (zh) * 2021-07-26 2021-10-26 东华大学 一种面向制造全生命周期的数字孪生可表示性建模系统
CN113673948A (zh) * 2021-08-02 2021-11-19 江苏杰瑞信息科技有限公司 一种基于工业互联网的数字孪生基础开发平台
CN113325816A (zh) * 2021-08-03 2021-08-31 山东捷瑞数字科技股份有限公司 面向工业互联网的数字孪生体数据管理方法
CN113609672B (zh) * 2021-08-03 2024-02-02 东华大学 一种基于增量模型的数字孪生系统协同进化方法
CN113345063B (zh) * 2021-08-05 2021-10-29 南京万生华态科技有限公司 基于深度学习的pbr三维重建方法、系统与计算机存储介质
CN113378418B (zh) * 2021-08-16 2021-12-21 傲林科技有限公司 一种基于事件网技术的模型构建方法、装置及电子设备
CN113705095B (zh) * 2021-08-27 2024-03-19 西安科技大学 一种循环水泵数字孪生建模方法
CN113673113B (zh) * 2021-08-30 2023-10-20 苏州同元软控信息技术有限公司 基于GIS系统和modelica数字化建模的仿真方法以及相关装置
CN113806978B (zh) * 2021-08-31 2023-07-18 华南理工大学 基于bim-fem的桥梁结构数字孪生体及方法
CN113917851A (zh) * 2021-09-16 2022-01-11 北京天玛智控科技股份有限公司 一种基于数字孪生的虚拟测试环境搭建方法
CN113849022A (zh) * 2021-09-23 2021-12-28 上海孪数科技有限公司 一种基于数字孪生及空间计算的光伏温室环境管理系统
CN113868803A (zh) * 2021-10-13 2021-12-31 大连理工大学 机理模型和动态数据联合驱动的“云-边”结合数字孪生方法
CN114253228B (zh) * 2021-11-22 2023-09-12 中国科学院软件研究所 一种基于数字孪生的工业设备对象建模方法及装置
CN114505852B (zh) * 2021-12-07 2023-07-25 中国科学院沈阳自动化研究所 基于数字孪生的人机协同固体燃料整形系统及建立方法
CN113965606A (zh) * 2021-12-23 2022-01-21 武汉数澎科技有限公司 一种基于以太网和过程控制的深海采矿监控系统
CN114584571B (zh) * 2021-12-24 2024-02-27 北京中电飞华通信有限公司 基于空间计算技术的电网场站数字孪生同步通信方法
CN114815654B (zh) * 2022-03-01 2023-02-24 北京理工大学 一种面向无人车控制的数字孪生系统及其搭建方法
CN114708393B (zh) * 2022-03-28 2023-04-25 中国矿业大学 全时空采掘过程的矿山应力场孪生建模同化系统及方法
CN114827144B (zh) * 2022-04-12 2024-03-01 中煤科工开采研究院有限公司 一种煤矿综采工作面三维虚拟仿真决策分布式系统
CN114926583B (zh) * 2022-05-09 2023-06-27 北京工业大学 场地仿真管理方法、装置、电子设备及存储介质
CN114775724A (zh) * 2022-06-17 2022-07-22 山东捷瑞数字科技股份有限公司 一种基于数字孪生的井控应急抢险远程协同作业方法
CN115051926B (zh) * 2022-06-22 2023-06-09 烽火通信科技股份有限公司 一种数字孪生装置、模型评价系统以及模型运行方法
CN115097782B (zh) * 2022-06-23 2024-05-03 山东大学 一种数字孪生增强的复杂装备检测补偿方法与系统
CN115392476B (zh) * 2022-07-07 2023-06-27 中国人民解放军军事科学院系统工程研究院 一种有无人协同作战体系中的智能孪生体
CN115080275B (zh) * 2022-07-12 2023-04-14 泽恩科技有限公司 一种基于实时数据模型的孪生服务组件及其方法
CN115186555B (zh) * 2022-07-18 2023-05-23 深圳市鹏翔运达机械科技有限公司 基于数字孪生的干燥设备实况仿真方法及相关设备
CN115221704B (zh) * 2022-07-18 2023-06-09 应急管理部国家自然灾害防治研究院 一种基于数字孪生仿真平台的地质灾害推演方法及系统
CN115034147B (zh) * 2022-08-15 2022-10-28 天津天缘科技有限公司 一种基于数字孪生的智能制造系统
CN115222792B (zh) * 2022-08-29 2023-10-10 中铁云网信息科技有限公司 一种铁路桥梁数字孪生建模方法
CN115527013B (zh) * 2022-09-06 2023-06-27 北京龙软科技股份有限公司 一种矿山多维可视化巡检虚实协同方法
CN115688514B (zh) * 2022-10-18 2023-09-29 中煤科工开采研究院有限公司 一种综采工作面围岩的数字孪生体构建方法、系统及设备
CN115688491B (zh) * 2022-12-30 2023-03-10 长江水利委员会长江科学院 一种基于区块链的水利数字孪生仿真模拟方法
CN116032971B (zh) * 2023-01-10 2024-03-22 吉林大学 一种面向数字孪生机加车间的全要素智能感知实现方法
CN116052864B (zh) * 2023-02-03 2023-10-20 广东工业大学 基于数字孪生的穿刺手术机器人虚拟测试环境构建方法
CN115859700B (zh) * 2023-03-02 2023-05-05 国网湖北省电力有限公司电力科学研究院 一种基于数字孪生技术的电网建模方法
CN116127821A (zh) * 2023-04-14 2023-05-16 浪潮软件科技有限公司 一种运维数据的三维可视化呈现方法及平台
CN117218310B (zh) * 2023-09-22 2024-04-05 北京三友卓越科技有限公司 一种基于数字孪生的虚拟重构方法、装置、设备及介质
CN117272416A (zh) * 2023-09-25 2023-12-22 海南大学 高精度数字孪生模型构建方法
CN117671447B (zh) * 2023-12-18 2024-05-07 河北建工集团有限责任公司 一种面向复杂场景的数字孪生与智能传感器的融合系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108107841A (zh) * 2017-12-26 2018-06-01 山东大学 一种数控机床数字孪生建模方法
WO2019141615A1 (en) * 2018-01-19 2019-07-25 Siemens Aktiengesellschaft A method and apparatus for dynamically optimizing industrial production processes
CN110083119A (zh) * 2019-05-08 2019-08-02 国网江苏省电力有限公司信息通信分公司 一种基于数字孪生的可视化电力系统机房监控系统和方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108107841A (zh) * 2017-12-26 2018-06-01 山东大学 一种数控机床数字孪生建模方法
WO2019141615A1 (en) * 2018-01-19 2019-07-25 Siemens Aktiengesellschaft A method and apparatus for dynamically optimizing industrial production processes
CN110083119A (zh) * 2019-05-08 2019-08-02 国网江苏省电力有限公司信息通信分公司 一种基于数字孪生的可视化电力系统机房监控系统和方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A Digital Twin-Based Approach for Quality Control and Optimization of Complex Product Assembly;Yuanye Ma;《2019 International Conference on Artificial Intelligence and Advanced Manufacturing (AIAM)》;20191018;第762-767页 *
基于数字孪生的智能装配机械臂实验系统;林润泽等;《实验室研究与探索》;20191215(第12期);第91-96页 *

Also Published As

Publication number Publication date
CN111210359A (zh) 2020-05-29

Similar Documents

Publication Publication Date Title
CN111210359B (zh) 面向智能矿山场景的数字孪生演化机理及方法
CN111161410B (zh) 一种矿井数字孪生模型及其构建方法
CN111208759B (zh) 矿井无人化综采工作面数字孪生智能监控系统
CN111177942B (zh) 矿井无人化综掘工作面数字孪生智能监控系统
CN115099075A (zh) 一种基于智能化棒、线、型车间数字孪生方法
CN113344505A (zh) 一种基于数字孪生的卫陶产品装配生产管理系统及方法
CN110399642B (zh) 一种针对生产流水线的数字孪生体及其构建方法和应用
JP7078392B2 (ja) 深度センサノイズ
CN110083119A (zh) 一种基于数字孪生的可视化电力系统机房监控系统和方法
CN115222792B (zh) 一种铁路桥梁数字孪生建模方法
CN112836404A (zh) 智能挖掘机的结构性能数字孪生体构建方法
CN111968004A (zh) 一种基于数字孪生的高精密产品装调一体化系统
CN115100339A (zh) 图像生成方法、装置、电子设备和存储介质
CN111739167B (zh) 3d人头重建方法、装置、设备和介质
CN115936546A (zh) 基于数字孪生的装配式建筑绿色施工管理方法及装置
CN115659445A (zh) 一种基于Open Cascade的CAD模型在网页轻量化渲染显示的方法
CN114147706A (zh) 一种基于数字孪生的协作机器人远程监测系统与方法
CN116758199A (zh) 一种多层次tin地质模型的连续剖切面实时渲染封闭的方法
CN116308128A (zh) 装配式建筑绿色施工管理方法、设备及介质
CN114049678B (zh) 一种基于深度学习的面部动作捕捉方法及系统
CN113221461B (zh) 一种基于数字孪生技术的掘锚一体机监控系统
CN115509178A (zh) 数字孪生驱动的刀具磨损监测方法及数控机床设备
CN114170408A (zh) 基于三维建模技术的3d自由编辑模块化平台
Li et al. Digital twin technology in intelligent manufacturing
CN113888726A (zh) 一种基于webGL框架的3D空间模型参数修正编辑器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant