CN111210269B - 基于大数据的对象识别方法、电子装置及存储介质 - Google Patents
基于大数据的对象识别方法、电子装置及存储介质 Download PDFInfo
- Publication number
- CN111210269B CN111210269B CN202010002168.1A CN202010002168A CN111210269B CN 111210269 B CN111210269 B CN 111210269B CN 202010002168 A CN202010002168 A CN 202010002168A CN 111210269 B CN111210269 B CN 111210269B
- Authority
- CN
- China
- Prior art keywords
- lbs
- points
- data
- position information
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0201—Market modelling; Market analysis; Collecting market data
- G06Q30/0204—Market segmentation
- G06Q30/0205—Location or geographical consideration
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0201—Market modelling; Market analysis; Collecting market data
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Strategic Management (AREA)
- Finance (AREA)
- Development Economics (AREA)
- Accounting & Taxation (AREA)
- Data Mining & Analysis (AREA)
- Entrepreneurship & Innovation (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- Marketing (AREA)
- Economics (AREA)
- Game Theory and Decision Science (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
本发明涉及对象识别技术,提供了一种基于大数据的对象识别方法、电子装置及存储介质。该方法通过获取预设用户群的终端设备的位置信息后执行数据清洗操作,再筛选出属于预设时间段内的位置信息,对预设时间段内的位置信息执行聚类操作得到多个位置信息簇,将多个位置信息簇设置成对应的多个目标区域,分别获取各目标区域内的所有兴趣点的属性特征,对各所述目标区域进行标注生成样本集,将样本集输入随机森林模型中训练得到对象识别模型,接收用户发出的对象识别的请求,将待识别区域兴趣点的属性特征输入对象识别模型,得到待识别区域的识别结果。本发明通过对样本数据的处理,可以提高模型的泛化能力,从而提升对象识别的精准性。
Description
技术领域
本发明涉及对象识别领域,尤其涉及一种基于大数据的对象识别方法、电子装置及存储介质。
背景技术
现有技术中,对象识别通常是根据对象的单一类型数据进行建模,利用模型对待识别的对象进行识别,例如,在传统的商圈识别方法中,通常是采集商圈的单一类型数据(例如,商圈的人流量)作为样本数据进行建模,以此对待识别的商圈进行识别。该方法因样本数据类型单一且缺乏对样本数据的处理,导致对象识别的准确率低。
发明内容
鉴于以上内容,本发明提供一种基于大数据的对象识别方法、电子装置及存储介质,其目的在于现有技术中因缺乏对样本数据的处理,导致的对象识别的准确率较低的问题。
为实现上述目的,本发明提供一种基于大数据的对象识别方法,该方法包括:
获取步骤:获取预设用户群的终端设备的位置信息,对所述位置信息的数据执行数据清洗操作,从执行数据清洗后的位置信息中筛选出属于预设时间段内的位置信息;
聚类步骤:基于预设算法对所述预设时间段内的位置信息执行聚类操作,得到多个位置信息簇,将所述多个位置信息簇设置成对应的多个目标区域,分别获取各目标区域内的所有兴趣点的属性特征;
训练步骤:利用预设的标注规则对各所述目标区域进行标注,基于标注后的目标区域及各目标区域内的所有兴趣点的属性特征生成样本集,将所述样本集输入随机森林模型中进行训练,得到对象识别模型;及
识别步骤:接收某个用户发出的对象识别请求,解析得到所述请求携带的待识别区域的兴趣点的属性特征,将所述待识别区域的兴趣点的属性特征输入所述对象识别模型,得到所述待识别区域的识别结果,并将所述识别结果反馈至所述用户。
优选的,所述预设时间段内的位置信息为LBS点,所述基于预设算法对所述预设时间段内的位置信息执行聚类操作包括:
设置各LBS点之间的密度半径,及所述密度半径内最小的LBS点的数量,基于所述密度半径及所述最小的LBS点的数量,从所有LBS点中迭代计算得到核心LBS点、密度可达的LBS点以及边缘LBS点,将得到的核心LBS点、密度可达的LBS点以及边缘LBS点聚集成位置信息簇。
优选的,所述将得到的核心LBS点、密度可达的LBS点以及边缘LBS点聚集成位置信息簇包括:
获取所述核心LBS点的密度可达的LBS点,利用所述迭代计算得到的密度可达的LBS点,更新所述核心LBS点对应的聚类簇,直至获取到所述核心LBS点的位置信息簇。
优选的,所述训练步骤包括:
将所述样本集按预设比例分为训练集及验证集;
利用所述训练集的样本数据对随机森林模型进行训练,以确定模型的具体参数;
利用所述验证集的样本数据来验证模型的准确率,当所述准确率达到预设阈值时结束训练,得到所述对象识别模型,当所述准确率未达到预设阈值时,继续增加样本数据对随机森林模型进行训练。
优选的,所述对所述位置信息的数据执行数据清洗操作包括:
选取信息完整的终端设备的位置信息的数据作为清洗样本放入CART决策树的根部,并将所述清洗样本分为第一组数据和第二组数据;
利用所述第一组数据建立决策树,并以该决策树内部每个节点信息作为分割依据;
利用所述第二组数据修剪决策树,当决策树每个类只存在一个节点时,结束数据清洗。
为实现上述目的,本发明还提供一种电子装置,该电子装置包括:存储器及处理器,所述存储器上存储基于大数据的对象识别程序,所述基于大数据的对象识别程序被所述处理器执行,实现如下步骤:
获取步骤:获取预设用户群的终端设备的位置信息,对所述位置信息的数据执行数据清洗操作,从执行数据清洗后的位置信息中筛选出属于预设时间段内的位置信息;
聚类步骤:基于预设算法对所述预设时间段内的位置信息执行聚类操作,得到多个位置信息簇,将所述多个位置信息簇设置成对应的多个目标区域,分别获取各目标区域内的所有兴趣点的属性特征;
训练步骤:利用预设的标注规则对各所述目标区域进行标注,基于标注后的目标区域及各目标区域内的所有兴趣点的属性特征生成样本集,将所述样本集输入随机森林模型中进行训练,得到对象识别模型;及
识别步骤:接收某个用户发出的对象识别请求,解析得到所述请求携带的待识别区域的兴趣点的属性特征,将所述待识别区域的兴趣点的属性特征输入所述对象识别模型,得到所述待识别区域的识别结果,并将所述识别结果反馈至所述用户。
优选的,所述预设时间段内的位置信息为LBS点,所述基于预设算法对所述预设时间段内的位置信息执行聚类操作包括:
设置各LBS点之间的密度半径,及所述密度半径内最小的LBS点的数量,基于所述密度半径及所述最小的LBS点的数量,从所有LBS点中迭代计算得到核心LBS点、密度可达的LBS点以及边缘LBS点,将得到的核心LBS点、密度可达的LBS点以及边缘LBS点聚集成位置信息簇。
优选的,所述将得到的核心LBS点、密度可达的LBS点以及边缘LBS点聚集成位置信息簇包括:
获取所述核心LBS点的密度可达的LBS点,利用所述迭代计算得到的密度可达的LBS点,更新所述核心LBS点对应的聚类簇,直至获取到所述核心LBS点的位置信息簇。
优选的,所述训练步骤包括:
将所述样本集按预设比例分为训练集及验证集;
利用所述训练集的样本数据对随机森林模型进行训练,以确定模型的具体参数;
利用所述验证集的样本数据来验证模型的准确率,当所述准确率达到预设阈值时结束训练,得到所述对象识别模型,当所述准确率未达到预设阈值时,继续增加样本数据对随机森林模型进行训练。
为实现上述目的,本发明还提供一种计算机可读存储介质,所述计算机可读存储介质中包括基于大数据的对象识别程序,所述基于大数据的对象识别程序被处理器执行时,实现如上所述基于大数据的对象识别方法中的任意步骤。
本发明提出的基于大数据的对象识别方法、电子装置及存储介质,通过对获取的位置信息执行数据清洗处理和聚类处理后,将聚类得到的多个位置信息簇设置成对应的目标区域,获取个目标区域的所有兴趣点的属性特征,增加了样本数据的多样性,将目标区域的所有兴趣点的属性特征作为样本集构建对象识别模型,将待识别区域兴趣点的属性特征输入对象识别模型,得到待识别区域的识别结果。本发明通过对样本数据的处理,可以提高对象识别模型的泛化能力,从而提升对象识别的精准性。
附图说明
图1为本发明电子装置较佳实施例的示意图;
图2为图1中基于大数据的对象识别程序较佳实施例的模块示意图;
图3为本发明基于大数据的对象识别方法较佳实施例的流程图;
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参照图1所示,为本发明电子装置1较佳实施例的示意图。
该电子装置1包括但不限于:存储器11、处理器12、显示器13及网络接口14。所述电子装置1通过网络接口14连接网络,获取原始数据。其中,所述网络可以是企业内部网(Intranet)、互联网(Internet)、全球移动通讯系统(Global System of Mobilecommunication,GSM)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、4G网络、5G网络、蓝牙(Bluetooth)、Wi-Fi、通话网络等无线或有线网络。
其中,存储器11至少包括一种类型的可读存储介质,所述可读存储介质包括闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等)、随机访问存储器(RAM)、静态随机访问存储器(SRAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、可编程只读存储器(PROM)、磁性存储器、磁盘、光盘等。在一些实施例中,所述存储器11可以是所述电子装置1的内部存储单元,例如该电子装置1的硬盘或内存。在另一些实施例中,所述存储器11也可以是所述电子装置1的外部存储设备,例如该电子装置1配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。当然,所述存储器11还可以既包括所述电子装置1的内部存储单元也包括其外部存储设备。本实施例中,存储器11通常用于存储安装于所述电子装置1的操作系统和各类应用软件,例如基于大数据的对象识别程序10的程序代码等。此外,存储器11还可以用于暂时地存储已经输出或者将要输出的各类数据。
处理器12在一些实施例中可以是中央处理器(Central Processing Unit,CPU)、控制器、微控制器、微处理器、或其他数据处理芯片。该处理器12通常用于控制所述电子装置1的总体操作,例如执行数据交互或者通信相关的控制和处理等。本实施例中,所述处理器12用于运行所述存储器11中存储的程序代码或者处理数据,例如运行基于大数据的对象识别程序10的程序代码等。
显示器13可以称为显示屏或显示单元。在一些实施例中显示器13可以是LED显示器、液晶显示器、触控式液晶显示器以及有机发光二极管(Organic Light-EmittingDiode,OLED)触摸器等。显示器13用于显示在电子装置1中处理的信息以及用于显示可视化的工作界面,例如显示数据统计的结果。
网络接口14可选地可以包括标准的有线接口、无线接口(如WI-FI接口),该网络接口14通常用于在所述电子装置1与其它电子设备之间建立通信连接。
图1仅示出了具有组件11-14以及基于大数据的对象识别程序10的电子装置1,但是应理解的是,并不要求实施所有示出的组件,可以替代的实施更多或者更少的组件。
可选地,所述电子装置1还可以包括用户接口,用户接口可以包括显示器(Display)、输入单元比如键盘(Keyboard),可选的用户接口还可以包括标准的有线接口、无线接口。可选地,在一些实施例中,显示器可以是LED显示器、液晶显示器、触控式液晶显示器以及有机发光二极管(Organic Light-Emitting Diode,OLED)触摸器等。其中,显示器也可以适当的称为显示屏或显示单元,用于显示在电子装置1中处理的信息以及用于显示可视化的用户界面。
该电子装置1还可以包括射频(Radio Frequency,RF)电路、传感器和音频电路等等,在此不再赘述。
在上述实施例中,处理器12执行存储器11中存储的基于大数据的对象识别程序10时可以实现如下步骤:
获取步骤:获取预设用户群的终端设备的位置信息,对所述位置信息的数据执行数据清洗操作,从执行数据清洗后的位置信息中筛选出属于预设时间段内的位置信息;
聚类步骤:基于预设算法对所述预设时间段内的位置信息执行聚类操作,得到多个位置信息簇,将所述多个位置信息簇设置成对应的多个目标区域,分别获取各目标区域内的所有兴趣点的属性特征;
训练步骤:利用预设的标注规则对各所述目标区域进行标注,基于标注后的目标区域及各目标区域内的所有兴趣点的属性特征生成样本集,将所述样本集输入随机森林模型中进行训练,得到对象识别模型;及
识别步骤:接收某个用户发出的对象识别请求,解析得到所述请求携带的待识别区域的兴趣点的属性特征,将所述待识别区域的兴趣点的属性特征输入所述对象识别模型,得到所述待识别区域的识别结果,并将所述识别结果反馈至所述用户。
所述存储设备可以为电子装置1的存储器11,也可以为与电子装置1通讯连接的其它存储设备。
关于上述步骤的详细介绍,请参照下述图2关于基于大数据的对象识别程序10实施例的程序模块图以及图3关于基于大数据的对象识别方法实施例的流程图的说明。
在其他实施例中,所述基于大数据的对象识别程序10可以被分割为多个模块,该多个模块被存储于存储器12中,并由处理器13执行,以完成本发明。本发明所称的模块是指能够完成特定功能的一系列计算机程序指令段。
参照图2所示,为图1中基于大数据的对象识别程序10一实施例的程序模块图。在本实施例中,所述基于大数据的对象识别程序10可以被分割为:获取模块110、聚类模块120、训练模块130及识别模块140。
获取模块110,用于获取预设用户群的终端设备的位置信息,对所述位置信息的数据执行数据清洗操作,从执行数据清洗后的位置信息中筛选出属于预设时间段内的位置信息。
在本实施例中,可以使用大数据技术采集大量用户群的终端设备(例如,手机)的位置信息,位置信息可以是基于位置的服务即LBS信息,LBS信息是利用各类型的定位技术来获取定位终端设备当前的所在位置,通过移动互联网向定位终端设备提供信息资源和基础服务。获取的位置信息数据可能存在重复的信息和确实的信息,因此可以对获取的位置信息数据执行数据清洗,使用数据挖掘技术将获取过程中出现的缺失数据、异常数据、错误数据清除,从执行数据清洗后的位置信息中筛选出属于预设时间段内的位置信息,本实施例中,可以筛选出符合时间段(10:00-22:00)的位置信息数据。
在一个实施例中,对终端设备的位置信息的数据执行数据清洗操作包括:
选取信息完整的位置信息的数据作为清洗样本放入CART决策树的根部,并将清洗样本分为第一组数据和第二组数据,利用第一组数据建立决策树,并以该决策树内部每个节点信息作为分割依据,利用第二组数据修剪决策树,当决策树每个类只存在一个节点时,结束数据清洗。
聚类模块120,用于基于预设算法对所述预设时间段内的位置信息执行聚类操作,得到多个位置信息簇,将所述多个位置信息簇设置成对应的多个目标区域,分别获取各目标区域内的所有兴趣点的属性特征。
在本实施例中,基于DBSCAN算法对所述预设时间段内的位置信息执行聚类操作,DBSCAN算法是一种基于密度的聚类算法,该算法一般假定类别可以通过样本分布的紧密程度决定。同一类别的样本,他们之间是紧密相连的,也就是说,在该类别任意样本周围不远处一定有同类别的样本存在,通过将紧密相连的样本划为一类,这样就得到了一个聚类类别,通过将所有各组紧密相连的样本划为各个不同的类别,就得到最终的所有聚类类别结果。
首先设置各LBS点之间密度半径,及所述密度半径内最小的LBS点的数量(MinPts),基于所述密度半径及所述最小的LBS点的数量,从所有LBS点中迭代计算得到核心LBS点、密度可达的LBS点以及边缘LBS点,将得到的核心LBS点、密度可达的LBS点以及边缘LBS点聚集成位置信息簇。其中,将得到的核心LBS点、密度可达的LBS点以及边缘LBS点聚集成位置信息簇包括:获取所述核心LBS点的密度可达的LBS点,利用所述迭代计算得到的密度可达的LBS点,更新所述核心LBS点对应的聚类簇,直至获取到所述核心LBS点的位置信息簇。需要说明的是,对于样本集合D存在样本点p和q,如果q在p的邻域内,且p为核心样本点,那么样本点q从样本点p密度直达。对于样本集合D,给定样本点p1,p2,...pn,p=p1,q=pn,若样本点pi从pi-1密度直达,那么q从p密度可达。
具体地,A、初始化核心LBS点集合Ω=φ,初始化聚类的簇数k=0,初始化未访问样本集合Γ=D,簇划分C=φ;
B、对于预设时间段内的位置信息集D=(x1,x2,...xm),j=1,2,…m,通过距离度量方式(例如,欧式距离),找到样本xj的邻域子样本集N∈(xj),若子样本集样本个数满足|N∈(xj)|≥MinPts,将样本xj加入核心LBS点样本集合:Ω=Ω∪{xj};
C、如果核心LBS点集合Ω=φ,则算法结束,否则转入步骤D;
D、在核心LBS点集合Ω中,随机选择一个核心LBS点o,初始化当前簇核心LBS点队列Ωcur={o},初始化类别序号k=k+1,初始化当前簇样本集合Ck={o},更新样本集合Γ=Γ-{o};
E、如果当前簇核心LBS点队列Ωcur=φ,则当前聚类簇Ck生成完毕,更新簇划分C={C1,C21,...,Ck},更新核心LBS点集合Ω=Ω-Ck,转入步骤C,否则更新核心LBS点集合Ω=Ω-Ck;
F、在当前簇核心LBS点队列Ωcur中取出一个核心LBS点o′,通过邻域距离阈值∈找出所有的邻域子样本集N∈(o′),令Δ=N∈(o′)∩Γ,更新当前簇样本集合Ck=Ck∪Δ,更新未访问样本集合Γ=Γ-Δ,更新Ωcur=Ωcur∪(Δ∩Ω)-o′,转入步骤E,输出结果多个位置信息簇C={C1,C2,...Ck}。
将多个位置信息簇设置成对应的目标区域,位置信息簇的边界设置成目标区域的边界,根据目标区域的边界分别获取各目标区域内的所有兴趣点的属性特征,目标区域的属性特征包括:目标区域所有的兴趣点类型和兴趣点数量(例如,商业、工业、餐饮、公共事业、政府机构等)、兴趣点平均消费金额、兴趣点在不同时间段人流量。兴趣点(Point ofInterest,POI)在地理信息系统中,可以是一栋房子、一个商铺、一个邮筒、一个公交站等。
训练模块130,用于利用预设的标注规则对各所述目标区域进行标注,基于标注后的目标区域及各目标区域内的所有兴趣点的属性特征生成样本集,将所述样本集输入随机森林模型中进行训练,得到对象识别模型。
在本实施例中,获取各个目标区域内的所有兴趣点的属性特征后,利用预设的标注规则对各目标区域进行标注,将目标区域为商圈的目标区域标注为1,将各目标区域中不为商圈的目标区域标注为0。将标注后的目标区域作为因变量,各目标区域内的所有兴趣点的属性特征作为自变量生成样本集,将所述样本集输入随机森林模型中进行训练,得到对象识别模型。
进一步的,将所述样本集按预设比例分为训练集及验证集;
利用所述训练集的样本数据对随机森林模型进行训练,以确定模型的具体参数,利用所述验证集的样本数据来验证模型的准确率,当所述准确率达到预设阈值时结束训练,得到所述对象识别模型,当所述准确率未达到预设阈值时,继续增加样本数据对随机森林模型进行训练。
具体地,对样本集中各目标区域的样本进行有放回的抽样,构建出若干个子数据集,在若干个子数据集中对属性特征进行有放回的抽样,即选取部分属性特征和部分观测值进行子决策树的建立。其中,每个子决策树建立的过程包括:每次选取的用于分裂标准的属性特征都是使得决策树在这个节点时信息熵最小的特征,决策树建立完成后可以通过剪枝方法来防止出现过拟合。剪去分支的标准为防止误差增加,越小越先剪去,直到达到预设的最小节点数量时停止修剪。将所有的决策树预测结果结合起来,进行投票选择,选择数量较多的决策树投票结果作为最终识别结果。
识别模块140,用于接收某个用户发出的对象识别请求,解析得到所述请求携带的待识别区域的兴趣点的属性特征,将所述待识别区域的兴趣点的属性特征输入所述对象识别模型,得到所述待识别区域的识别结果,并将所述识别结果反馈至所述用户。
在本实施例中,以对象为商圈为例对本方案进行说明。接收某个用户发出的商圈识别的请求,解析请求获取请求中携带的待识别区域的兴趣点的属性特征(区域内所有的兴趣点类型和兴趣点数量,例如,商业、工业、餐饮、公共事业、政府机构、兴趣点平均消费金额、兴趣点在不同时间段人流量等),将待识别区域兴趣点的属性特征输入对象识别模型,得到待识别区域的识别结果,识别结果包括待识别的区域为每种分类结果的概率值,将识别结果反馈至用户。
此外,本发明还提供一种基于大数据的对象识别方法。参照图3所示,为本发明基于大数据的对象识别方法的实施例的方法流程示意图。电子装置1的处理器12执行存储器11中存储的基于大数据的对象识别程序10时实现基于大数据的对象识别方法的如下步骤:
步骤S10:获取预设用户群的终端设备的位置信息,对所述位置信息的数据执行数据清洗操作,从执行数据清洗后的位置信息中筛选出属于预设时间段内的位置信息。
在本实施例中,可以使用大数据技术采集大量用户群的终端设备(例如,手机)的位置信息,位置信息可以是基于位置的服务即LBS信息,LBS信息是利用各类型的定位技术来获取定位终端设备当前的所在位置,通过移动互联网向定位终端设备提供信息资源和基础服务。获取的位置信息数据可能存在重复的信息和确实的信息,因此可以对获取的位置信息数据执行数据清洗,使用数据挖掘技术将获取过程中出现的缺失数据、异常数据、错误数据清除,从执行数据清洗后的位置信息中筛选出属于预设时间段内的位置信息,本实施例中,可以筛选出符合时间段(10:00-22:00)的位置信息数据。
在一个实施例中,对终端设备的位置信息的数据执行数据清洗操作包括:
选取信息完整的位置信息的数据作为清洗样本放入CART决策树的根部,并将清洗样本分为第一组数据和第二组数据,利用第一组数据建立决策树,并以该决策树内部每个节点信息作为分割依据,利用第二组数据修剪决策树,当决策树每个类只存在一个节点时,结束数据清洗。
步骤S20:基于预设算法对所述预设时间段内的位置信息执行聚类操作,得到多个位置信息簇,将所述多个位置信息簇设置成对应的多个目标区域,分别获取各目标区域内的所有兴趣点的属性特征。
在本实施例中,基于DBSCAN算法对所述预设时间段内的位置信息执行聚类操作,DBSCAN算法是一种基于密度的聚类算法,该算法一般假定类别可以通过样本分布的紧密程度决定。同一类别的样本,他们之间是紧密相连的,也就是说,在该类别任意样本周围不远处一定有同类别的样本存在,通过将紧密相连的样本划为一类,这样就得到了一个聚类类别,通过将所有各组紧密相连的样本划为各个不同的类别,就得到最终的所有聚类类别结果。
首先设置各LBS点之间密度半径,及所述密度半径内最小的LBS点的数量(MinPts),基于所述密度半径及所述最小的LBS点的数量,从所有LBS点中迭代计算得到核心LBS点、密度可达的LBS点以及边缘LBS点,将得到的核心LBS点、密度可达的LBS点以及边缘LBS点聚集成位置信息簇。其中,将得到的核心LBS点、密度可达的LBS点以及边缘LBS点聚集成位置信息簇包括:获取所述核心LBS点的密度可达的LBS点,利用所述迭代计算得到的密度可达的LBS点,更新所述核心LBS点对应的聚类簇,直至获取到所述核心LBS点的位置信息簇。需要说明的是,对于样本集合D存在样本点p和q,如果q在p的邻域内,且p为核心样本点,那么样本点q从样本点p密度直达。对于样本集合D,给定样本点p1,p2,...pn,p=p1,q=pn,若样本点pi从pi-1密度直达,那么q从p密度可达。
具体地,A、初始化核心LBS点集合Ω=φ,初始化聚类的簇数k=0,初始化未访问样本集合Γ=D,簇划分C=φ;
B、对于预设时间段内的位置信息集D=(x1,x2,...xm),j=1,2,…m,通过距离度量方式(例如,欧式距离),找到样本xj的邻域子样本集N∈(xj),若子样本集样本个数满足|N∈(xj)|≥MinPts,将样本xj加入核心LBS点样本集合:Ω=Ω∪{xj};
C、如果核心LBS点集合Ω=φ,则算法结束,否则转入步骤D;
D、在核心LBS点集合Ω中,随机选择一个核心LBS点o,初始化当前簇核心LBS点队列Ωcur={o},初始化类别序号k=k+1,初始化当前簇样本集合Ck={o},更新样本集合Γ=Γ-{o};
E、如果当前簇核心LBS点队列Ωcur=φ,则当前聚类簇Ck生成完毕,更新簇划分C={C1,C21,...,Ck},更新核心LBS点集合Ω=Ω-Ck,转入步骤C,否则更新核心LBS点集合Ω=Ω-Ck;
F、在当前簇核心LBS点队列Ωcur中取出一个核心LBS点o′,通过邻域距离阈值∈找出所有的邻域子样本集N∈(o′),令Δ=N∈(o′)∩Γ,更新当前簇样本集合Ck=Ck∪Δ,更新未访问样本集合Γ=Γ-Δ,更新Ωcur=Ωcur∪(Δ∩Ω)-o′,转入步骤E,输出结果多个位置信息簇C={C1,C2,...Ck}。
将多个位置信息簇设置成对应的目标区域,位置信息簇的边界设置成目标区域的边界,根据目标区域的边界分别获取各目标区域内的所有兴趣点的属性特征,目标区域的属性特征包括:目标区域所有的兴趣点类型和兴趣点数量(例如,商业、工业、餐饮、公共事业、政府机构等)、兴趣点平均消费金额、兴趣点在不同时间段人流量。兴趣点(Point ofInterest,POI)在地理信息系统中,可以是一栋房子、一个商铺、一个邮筒、一个公交站等。
步骤S30:利用预设的标注规则对各所述目标区域进行标注,基于标注后的目标区域及各目标区域内的所有兴趣点的属性特征生成样本集,将所述样本集输入随机森林模型中进行训练,得到对象识别模型。
在本实施例中,获取各个目标区域内的所有兴趣点的属性特征后,利用预设的标注规则对各目标区域进行标注,将目标区域为商圈的样本标注为1,将各目标区域中不是商圈的目标区域标注为0。将标注后的目标区域作为因变量,各目标区域内的所有兴趣点的属性特征作为自变量生成样本集,将所述样本集输入随机森林模型中进行训练,得到对象识别模型。
进一步的,将所述样本集按预设比例分为训练集及验证集;
利用所述训练集的样本数据对随机森林模型进行训练,以确定模型的具体参数,利用所述验证集的样本数据来验证模型的准确率,当所述准确率达到预设阈值时结束训练,得到对象识别模型,当所述准确率未达到预设阈值时,继续增加样本数据对随机森林模型进行训练。
具体地,对样本集中各目标区域的样本进行有放回的抽样,构建出若干个子数据集,在若干个子数据集中对属性特征进行有放回的抽样,即选取部分属性特征和部分观测值进行子决策树的建立。其中,每个子决策树建立的过程包括:每次选取的用于分裂标准的属性特征都是使得决策树在这个节点时信息熵最小的特征,决策树建立完成后可以通过剪枝方法来防止出现过拟合。剪去分支的标准为防止误差增加,越小越先剪去,直到达到预设的最小节点数量时停止修剪。将所有的决策树预测结果结合起来,进行投票选择,选择数量较多的决策树投票结果作为最终识别结果。
步骤S40:接收某个用户发出的对象识别请求,解析得到所述请求携带的待识别区域的兴趣点的属性特征,将所述待识别区域的兴趣点的属性特征输入所述对象识别模型,得到所述待识别区域的识别结果,并将所述识别结果反馈至所述用户。
在本实施例中,以对象为商圈为例对本方案进行说明。接收某个用户发出的商圈识别的请求,解析请求获取请求中携带的待识别区域的兴趣点的属性特征(区域内所有的兴趣点类型和兴趣点数量,例如,商业、工业、餐饮、公共事业、政府机构、兴趣点平均消费金额、兴趣点在不同时间段人流量等),将待识别区域兴趣点的属性特征输入对象识别模型,得到待识别区域的识别结果,识别结果包括待识别的区域为每种分类结果的概率值,将识别结果反馈至用户。
此外,本发明实施例还提出一种计算机可读存储介质,该计算机可读存储介质可以是硬盘、多媒体卡、SD卡、闪存卡、SMC、只读存储器(ROM)、可擦除可编程只读存储器(EPROM)、便携式紧致盘只读存储器(CD-ROM)、USB存储器等等中的任意一种或者几种的任意组合。所述计算机可读存储介质中包括基于大数据的对象识别程序10,所述基于大数据的对象识别程序10被处理器执行时实现如下操作:
获取步骤:获取预设用户群的终端设备的位置信息,对所述位置信息的数据执行数据清洗操作,从执行数据清洗后的位置信息中筛选出属于预设时间段内的位置信息;
聚类步骤:基于预设算法对所述预设时间段内的位置信息执行聚类操作,得到多个位置信息簇,将所述多个位置信息簇设置成对应的多个目标区域,分别获取各目标区域内的所有兴趣点的属性特征;
训练步骤:利用预设的标注规则对各所述目标区域进行标注,基于标注后的目标区域及各目标区域内的所有兴趣点的属性特征生成样本集,将所述样本集输入随机森林模型中进行训练,得到对象识别模型;及
识别步骤:接收某个用户发出的对象识别请求,解析得到所述请求携带的待识别区域的兴趣点的属性特征,将所述待识别区域的兴趣点的属性特征输入所述对象识别模型,得到所述待识别区域的识别结果,并将所述识别结果反馈至所述用户。
本发明之计算机可读存储介质的具体实施方式与上述基于大数据的对象识别方法的具体实施方式大致相同,在此不再赘述。
需要说明的是,上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。并且本文中的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、装置、物品或者方法不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、装置、物品或者方法所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、装置、物品或者方法中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,电子装置,或者网络设备等)执行本发明各个实施例所述的方法。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
Claims (10)
1.一种基于大数据的对象识别方法,应用于电子装置,其特征在于,所述方法包括:
获取步骤:获取预设用户群的终端设备的位置信息,对所述位置信息的数据执行数据清洗操作,从执行数据清洗后的位置信息中筛选出属于预设时间段内的位置信息;
聚类步骤:基于DBSCAN算法对所述预设时间段内的位置信息执行聚类操作,得到多个位置信息簇,将所述多个位置信息簇设置成对应的多个目标区域,分别获取各目标区域内的所有兴趣点的属性特征;
训练步骤:利用预设的标注规则对各所述目标区域进行标注,基于标注后的目标区域及各目标区域内的所有兴趣点的属性特征生成样本集,将所述样本集输入随机森林模型中进行训练,得到对象识别模型;及
识别步骤:接收某个用户发出的对象识别请求,解析得到所述请求携带的待识别区域的兴趣点的属性特征,将所述待识别区域的兴趣点的属性特征输入所述对象识别模型,得到所述待识别区域的识别结果,并将所述识别结果反馈至所述用户。
2.如权利要求1所述的基于大数据的对象识别方法,其特征在于,所述预设时间段内的位置信息为LBS点,所述基于DBSCAN算法对所述预设时间段内的位置信息执行聚类操作包括:
设置各LBS点之间的密度半径,及所述密度半径内最小的LBS点的数量,基于所述密度半径及所述最小的LBS点的数量,从所有LBS点中迭代计算得到核心LBS点、密度可达的LBS点以及边缘LBS点,将得到的核心LBS点、密度可达的LBS点以及边缘LBS点聚集成位置信息簇。
3.如权利要求2所述的基于大数据的对象识别方法,其特征在于,所述将得到的核心LBS点、密度可达的LBS点以及边缘LBS点聚集成位置信息簇包括:
获取所述核心LBS点的密度可达的LBS点,利用所述迭代计算得到的密度可达的LBS点,更新所述核心LBS点对应的聚类簇,直至获取到所述核心LBS点的位置信息簇。
4.如权利要求1所述的基于大数据的对象识别方法,其特征在于,所述训练步骤包括:
将所述样本集按预设比例分为训练集及验证集;
利用所述训练集的样本数据对随机森林模型进行训练,以确定模型的具体参数;
利用所述验证集的样本数据来验证模型的准确率,当所述准确率达到预设阈值时结束训练,得到所述对象识别模型,当所述准确率未达到预设阈值时,继续增加样本数据对随机森林模型进行训练。
5.如权利要求1至4任意一项所述的基于大数据的对象识别方法,其特征在于,所述对所述位置信息的数据执行数据清洗操作包括:
选取信息完整的终端设备的位置信息的数据作为清洗样本放入CART决策树的根部,并将所述清洗样本分为第一组数据和第二组数据;
利用所述第一组数据建立决策树,并以该决策树内部每个节点信息作为分割依据;
利用所述第二组数据修剪决策树,当决策树每个类只存在一个节点时,结束数据清洗。
6.一种电子装置,该电子装置包括存储器及处理器,其特征在于,所述存储器上存储基于大数据的对象识别程序,所述基于大数据的对象识别程序被所述处理器执行,实现如下步骤:
获取步骤:获取预设用户群的终端设备的位置信息,对所述位置信息的数据执行数据清洗操作,从执行数据清洗后的位置信息中筛选出属于预设时间段内的位置信息;
聚类步骤:基于DBSCAN算法对所述预设时间段内的位置信息执行聚类操作,得到多个位置信息簇,将所述多个位置信息簇设置成对应的多个目标区域,分别获取各目标区域内的所有兴趣点的属性特征;
训练步骤:利用预设的标注规则对各所述目标区域进行标注,基于标注后的目标区域及各目标区域内的所有兴趣点的属性特征生成样本集,将所述样本集输入随机森林模型中进行训练,得到对象识别模型;及
识别步骤:接收某个用户发出的对象识别请求,解析得到所述请求携带的待识别区域的兴趣点的属性特征,将所述待识别区域的兴趣点的属性特征输入所述对象识别模型,得到所述待识别区域的识别结果,并将所述识别结果反馈至所述用户。
7.如权利要求6所述的电子装置,其特征在于,所述预设时间段内的位置信息为LBS点,所述基于DBSCAN算法对所述预设时间段内的位置信息执行聚类操作包括:
设置各LBS点之间的密度半径,及所述密度半径内最小的LBS点的数量,基于所述密度半径及所述最小的LBS点的数量,从所有LBS点中迭代计算得到核心LBS点、密度可达的LBS点以及边缘LBS点,将得到的核心LBS点、密度可达的LBS点以及边缘LBS点聚集成位置信息簇。
8.如权利要求7所述的电子装置,其特征在于,所述将得到的核心LBS点、密度可达的LBS点以及边缘LBS点聚集成位置信息簇包括:
获取所述核心LBS点的密度可达的LBS点,利用所述迭代计算得到的密度可达的LBS点,更新所述核心LBS点对应的聚类簇,直至获取到所述核心LBS点的位置信息簇。
9.如权利要求8所述的电子装置,其特征在于,所述训练步骤包括:
将所述样本集按预设比例分为训练集及验证集;
利用所述训练集的样本数据对随机森林模型进行训练,以确定模型的具体参数;
利用所述验证集的样本数据来验证模型的准确率,当所述准确率达到预设阈值时结束训练,得到所述对象识别模型,当所述准确率未达到预设阈值时,继续增加样本数据对随机森林模型进行训练。
10.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中包括基于大数据的对象识别程序,所述基于大数据的对象识别程序被处理器执行时,实现如权利要求1至5中任一项所述基于大数据的对象识别方法的步骤。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010002168.1A CN111210269B (zh) | 2020-01-02 | 2020-01-02 | 基于大数据的对象识别方法、电子装置及存储介质 |
PCT/CN2020/098978 WO2021135105A1 (zh) | 2020-01-02 | 2020-06-29 | 基于大数据的对象识别方法、装置、设备及存储介质 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010002168.1A CN111210269B (zh) | 2020-01-02 | 2020-01-02 | 基于大数据的对象识别方法、电子装置及存储介质 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111210269A CN111210269A (zh) | 2020-05-29 |
CN111210269B true CN111210269B (zh) | 2020-09-18 |
Family
ID=70789576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010002168.1A Active CN111210269B (zh) | 2020-01-02 | 2020-01-02 | 基于大数据的对象识别方法、电子装置及存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111210269B (zh) |
WO (1) | WO2021135105A1 (zh) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111210269B (zh) * | 2020-01-02 | 2020-09-18 | 平安科技(深圳)有限公司 | 基于大数据的对象识别方法、电子装置及存储介质 |
CN111612100B (zh) * | 2020-06-04 | 2023-11-03 | 商汤集团有限公司 | 对象再识别方法、装置、存储介质及计算机设备 |
CN111860575B (zh) * | 2020-06-05 | 2023-06-16 | 百度在线网络技术(北京)有限公司 | 物品属性信息的处理方法、装置、电子设备和存储介质 |
CN111510752B (zh) * | 2020-06-18 | 2021-04-23 | 平安国际智慧城市科技股份有限公司 | 数据传输方法、装置、服务器及存储介质 |
CN112052848B (zh) * | 2020-08-24 | 2022-09-20 | 腾讯科技(深圳)有限公司 | 街区标注中样本数据的获取方法及装置 |
CN112016326A (zh) * | 2020-09-25 | 2020-12-01 | 北京百度网讯科技有限公司 | 一种地图区域词识别方法、装置、电子设备和存储介质 |
CN112294197A (zh) * | 2020-11-04 | 2021-02-02 | 深圳市普森斯科技有限公司 | 扫地机的清扫控制方法、电子装置及存储介质 |
CN112364135B (zh) * | 2020-12-03 | 2023-11-07 | 中国平安财产保险股份有限公司 | 基于多源数据的对象推送方法、装置、设备及存储介质 |
CN112380316B (zh) * | 2020-12-09 | 2022-03-22 | 浙江浙蕨科技有限公司 | 一种出行情况数据处理方法及存储介质 |
CN113051490A (zh) * | 2021-04-19 | 2021-06-29 | 北京百度网讯科技有限公司 | 新增兴趣点预测模型训练、新增兴趣点预测方法及装置 |
CN113779248A (zh) * | 2021-08-30 | 2021-12-10 | 北京沃东天骏信息技术有限公司 | 数据分类模型训练方法、数据处理方法及存储介质 |
CN113961655A (zh) * | 2021-09-01 | 2022-01-21 | 深圳数研锦瀚智慧科技有限公司 | 非法消纳场的识别方法、装置、系统及存储介质 |
CN114397244B (zh) * | 2022-01-14 | 2024-07-23 | 长春工业大学 | 一种金属增材制造制件缺陷的识别方法及相关设备 |
CN114943892A (zh) * | 2022-04-25 | 2022-08-26 | 三一汽车起重机械有限公司 | 一种场所类型识别方法、装置、计算机设备和存储介质 |
CN115134407B (zh) * | 2022-06-27 | 2024-04-26 | 平安银行股份有限公司 | 活跃区域确定方法、装置、计算机设备及存储介质 |
CN115022965B (zh) * | 2022-07-25 | 2024-04-09 | 中国联合网络通信集团有限公司 | 小区定位方法、装置、电子设备及存储介质 |
CN115438138B (zh) * | 2022-11-09 | 2023-04-07 | 北京市城市规划设计研究院 | 就业中心识别方法、装置、电子设备及存储介质 |
CN115938031B (zh) * | 2022-12-02 | 2024-06-28 | 深圳市鼎山科技有限公司 | 一种基于大数据的数据识别管理系统及方法 |
CN116827899B (zh) * | 2023-08-30 | 2023-12-01 | 湖南于一科技有限公司 | 一种基于互联网工具app的对象添加方法及装置 |
CN117251650B (zh) * | 2023-11-20 | 2024-02-06 | 之江实验室 | 地理热点中心识别方法、装置、计算机设备和存储介质 |
CN117909745B (zh) * | 2024-03-19 | 2024-08-20 | 北京大也智慧数据科技服务有限公司 | 露营地识别模型的训练方法及露营地识别方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110210973A (zh) * | 2019-05-31 | 2019-09-06 | 三峡大学 | 基于随机森林与朴素贝叶斯模型的内幕交易识别方法 |
CN110634028A (zh) * | 2019-09-18 | 2019-12-31 | 名创优品(横琴)企业管理有限公司 | 一种商品结构配置方法及系统 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150058088A1 (en) * | 2013-08-22 | 2015-02-26 | Mastercard International Incorporated | Method and system for using transaction data to assign a trade area to a merchant location |
US10402882B2 (en) * | 2014-08-05 | 2019-09-03 | Mastercard International Incorporated | Method and system for integration of merchant trade areas into search results |
CN106649331B (zh) * | 2015-10-29 | 2020-09-11 | 阿里巴巴集团控股有限公司 | 商圈识别方法及设备 |
WO2017198749A1 (en) * | 2016-05-19 | 2017-11-23 | Visiana Aps | Image processing apparatus and method |
CN107862347A (zh) * | 2017-12-04 | 2018-03-30 | 国网山东省电力公司济南供电公司 | 一种基于随机森林的窃电行为的发现方法 |
CN108596648B (zh) * | 2018-03-20 | 2020-07-17 | 阿里巴巴集团控股有限公司 | 一种商圈判定方法和装置 |
CN109189917B (zh) * | 2018-06-27 | 2020-07-28 | 华南师范大学 | 一种融合景观和社会特征的城市功能区划分方法及系统 |
CN109684563A (zh) * | 2018-11-19 | 2019-04-26 | 银联智惠信息服务(上海)有限公司 | 商圈识别方法、装置以及计算机存储介质 |
CN109685573A (zh) * | 2018-12-25 | 2019-04-26 | 拉扎斯网络科技(上海)有限公司 | 一种商圈数据的处理方法、装置、电子设备和存储介质 |
CN110619090B (zh) * | 2019-08-05 | 2022-01-21 | 香港理工大学深圳研究院 | 一种区域吸引力评估方法及设备 |
CN110597943B (zh) * | 2019-09-16 | 2022-04-01 | 腾讯科技(深圳)有限公司 | 基于人工智能的兴趣点处理方法、装置及电子设备 |
CN111210269B (zh) * | 2020-01-02 | 2020-09-18 | 平安科技(深圳)有限公司 | 基于大数据的对象识别方法、电子装置及存储介质 |
-
2020
- 2020-01-02 CN CN202010002168.1A patent/CN111210269B/zh active Active
- 2020-06-29 WO PCT/CN2020/098978 patent/WO2021135105A1/zh active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110210973A (zh) * | 2019-05-31 | 2019-09-06 | 三峡大学 | 基于随机森林与朴素贝叶斯模型的内幕交易识别方法 |
CN110634028A (zh) * | 2019-09-18 | 2019-12-31 | 名创优品(横琴)企业管理有限公司 | 一种商品结构配置方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN111210269A (zh) | 2020-05-29 |
WO2021135105A1 (zh) | 2021-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111210269B (zh) | 基于大数据的对象识别方法、电子装置及存储介质 | |
CN104298679B (zh) | 应用业务推荐方法及装置 | |
CN110019616B (zh) | 一种poi现势状态获取方法及其设备、存储介质、服务器 | |
CN112861972B (zh) | 一种展业区域的选址方法、装置、计算机设备和介质 | |
CN112328909B (zh) | 信息推荐方法、装置、计算机设备及介质 | |
CN109816321A (zh) | 一种服务管理方法、装置、设备和计算机可读存储介质 | |
CN112311612B (zh) | 一种信息构建方法、装置及存储介质 | |
CN113220734A (zh) | 课程推荐方法、装置、计算机设备及存储介质 | |
CN115345390B (zh) | 一种行为轨迹预测方法、装置、电子设备及存储介质 | |
CN115293919B (zh) | 面向社交网络分布外泛化的图神经网络预测方法及系统 | |
CN112686418A (zh) | 一种履约时效预测方法和装置 | |
CN111681049A (zh) | 用户行为的处理方法、存储介质及相关设备 | |
CN114359582A (zh) | 一种基于神经网络的小样本特征提取方法及相关设备 | |
CN114265927A (zh) | 数据查询方法及装置、存储介质及电子装置 | |
CN115186151A (zh) | 简历筛选方法、装置、设备及存储介质 | |
CN109214578B (zh) | 电子装置、基于决策树模型的建筑物用电负荷预测方法及存储介质 | |
CN103475532A (zh) | 硬件检测方法和系统 | |
CN114238764A (zh) | 基于循环神经网络的课程推荐方法、装置及设备 | |
CN112235714B (zh) | 基于人工智能的poi定位方法、装置、计算机设备及介质 | |
CN111143568A (zh) | 一种论文分类时的缓冲方法、装置、设备及存储介质 | |
CN113254672B (zh) | 异常账号的识别方法、系统、设备及可读存储介质 | |
CN110062112A (zh) | 数据处理方法、装置、设备及计算机可读存储介质 | |
CN115525841A (zh) | 兴趣点信息的获取方法、电子设备及存储介质 | |
CN112598540B (zh) | 物资储备推荐方法、设备及存储介质 | |
CN114638308A (zh) | 一种获取对象关系的方法、装置、电子设备和存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |