CN111209920A - 一种复杂动态背景下飞机检测方法 - Google Patents

一种复杂动态背景下飞机检测方法 Download PDF

Info

Publication number
CN111209920A
CN111209920A CN202010010529.7A CN202010010529A CN111209920A CN 111209920 A CN111209920 A CN 111209920A CN 202010010529 A CN202010010529 A CN 202010010529A CN 111209920 A CN111209920 A CN 111209920A
Authority
CN
China
Prior art keywords
target
background
distance
points
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010010529.7A
Other languages
English (en)
Other versions
CN111209920B (zh
Inventor
牛军浩
李玉虎
戴冰
许川佩
朱爱军
陈涛
张本鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN202010010529.7A priority Critical patent/CN111209920B/zh
Publication of CN111209920A publication Critical patent/CN111209920A/zh
Application granted granted Critical
Publication of CN111209920B publication Critical patent/CN111209920B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • G06V10/443Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/22Matching criteria, e.g. proximity measures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/136Segmentation; Edge detection involving thresholding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/194Segmentation; Edge detection involving foreground-background segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种复杂动态背景下飞机检测方法,复杂动态背景下飞机检测方法包括基于ORB算法提取目标图像的特征点,并进行特征点统计分布;获取目标ROI区域外的区域标记为背景区域,并构建k‑dimensiona树,计算第t帧和第t+Δt帧的背景特征点描述子间的距离,判断背景特征点匹配是否成功;基于匹配成功的背景特征点计算两帧间的单应矩阵H,并基于RANSAC算法优化得到目标单应矩阵Hbest,基于目标单应矩阵Hbest在两帧之间进行透视变换进行运动补偿;对运动补偿后的图像进行双阈值差分处理,得到检测图像。实现排除误匹配点,建立对于不同场景的动态变化均具有自适应性的背景模型,准确检测出飞机。

Description

一种复杂动态背景下飞机检测方法
技术领域
本发明涉及图像处理技术领域,尤其涉及一种复杂动态背景下飞机检测方法。
背景技术
空中飞机机检测技术主要有声学、雷达、视频等检测手段,声学检测是将声学传感器收录的音频信息与数据库的声音信号匹配检测所需目标,该方法原理简单,但是检测距离通常在500米以内且受噪声干扰较大,当目标处于高速飞机状态时,由于声音速度较慢,定位与实际目标位置相距较大;雷达监测使用电磁波反射原理,也是当前飞机检测的主要手段,随着飞机隐身性能更强,当飞机近地飞行时,雷达更难以发现目标;基于视频的运动目标检测作为一个集合图像、数学、计算机于一体的交叉学科,是近年来图像处理领域的热门方向,已在自动驾驶、智能交通等领域得到应用。
运动摄像机下空中飞机检测相对于静态摄像机情境下又有其特殊难点,主要表现为飞机运动的同时摄像机也在运动,天空场景复杂,亮度不均匀等现实问题。现有技术对飞机的检测效果不佳。
发明内容
本发明的目的在于提供一种复杂动态背景下飞机检测方法,旨在解决现有技术对飞机检测效果不佳的问题。
为实现上述目的,本发明提供了一种复杂动态背景下飞机检测方法,包括:
基于ORB算法提取目标图像的特征点,并进行特征点统计分布;
获取目标ROI区域外的区域标记为背景区域,并构建k-dimensiona树,计算第t帧和第t+Δt帧的背景特征点描述子间的距离,判断背景特征点匹配是否成功;
基于匹配成功的背景特征点计算两帧间的单应矩阵H,并基于RANSAC算法优化得到目标单应矩阵Hbest,基于目标单应矩阵Hbest在两帧之间进行透视变换进行运动补偿;
对运动补偿后的图像进行双阈值差分处理,得到检测图像。
在一实施方式中,基于ORB算法提取目标图像的特征点,并进行特征点统计分布,具体包括:
获取视频窗大小C×R,视频窗设置的n个子区域Wn,计算子区域特征点与坐标中心的平均欧几里得距离
Figure BDA0002356983260000021
Figure BDA0002356983260000022
其中,xi,yi为特征点的横纵坐标,
Figure BDA0002356983260000023
为子区域所有特征点横纵坐标均值;Un为每个子区域中特征点个数。
在一实施方式中,基于ORB算法提取目标图像的特征点,并进行特征点统计分布,具体还包括:
基于子窗口评分公式判断存在预设概率的目标区域,其中,所述子窗口评分公式为:
Figure BDA0002356983260000024
其中,Un为每个子区域中特征点个数;
Figure BDA0002356983260000025
为子区域特征点与坐标中心的平均欧几里得距离。
在一实施方式中,基于子窗口评分公式判断存在预设概率的目标区域,具体包括:
获取评分Sn降序排列在前的三块子区域A、B、C;
若SB≥0.7SA,SC≥0.7SB,则存在预设概率的目标区域为A、B、C;
若SB≥0.7SA,SC<0.7SB,则存在预设概率的目标区域为A、B;
若SB<0.7SA,则存在预设概率的目标区域为A。
在一实施方式中,获取目标ROI区域外的区域标记为背景区域,并构建k-dimensiona树,计算第t帧和第t+Δt帧的背景特征点描述子间的距离,判断背景特征点匹配是否成功,包括:
基于邻比值法,判断背景特征点匹配是否成功;
查找两帧图像的特征描述子的第一距离和第二距离,若第一距离小于第一阈值,且第一距离与第二距离的比值小于第二阈值,则匹配成功,其中,第一距离和第二距离为两帧图像的特征描述子的距离升序排列在前两位的距离。
在一实施方式中,基于匹配成功的背景特征点计算两帧间的单应矩阵H,并基于RANSAC算法优化得到目标单应矩阵Hbest,基于目标单应矩阵Hbest在两帧之间进行透视变换进行运动补偿,包括:
获取已匹配特征点对样本集合S,从样本集合S中随机选取四对不共线特征点样本子集M对初始化单应矩阵,并采用RANSAC算法优化得到目标单应矩阵Hbest对获取目标图像I的所有像素进行投射,得到新的像素值IT;其中,IT=HbestI。
在一实施方式中,对运动补偿后的图像进行双阈值差分处理,得到检测图
像,包括:
获取四帧图像It,It+Δt,It+2Δt,It+3Δt,基于三帧差对ROI区域背景进行消除。
本发明的一种复杂动态背景下飞机检测方法,通过基于ORB算法提取目标图像的特征点,并进行特征点统计分布;获取目标ROI区域外的区域标记为背景区域,并构建k-dimensiona树,计算第t帧和第t+Δt帧的背景特征点描述子间的距离,判断背景特征点匹配是否成功;基于匹配成功的背景特征点计算两帧间的单应矩阵H,并基于RANSAC算法优化得到目标单应矩阵Hbest,基于目标单应矩阵Hbest在两帧之间进行透视变换进行运动补偿;对运动补偿后的图像进行双阈值差分处理,得到检测图像。实现通过评分确定目标区域,排除前景目标特征点,保留背景特征点;运用加入RANSAC算法,排除背景特征点误匹配点,得到最优单应矩阵,补偿相机运动,建立对于不同场景的动态变化均具有自适应性的背景模型,减少动态场景变化对运动分割的影响,双阈值差分再次对前景目标和背景目标进行区分,选取合适的差分阈值准确检测出飞机。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种复杂动态背景下飞机检测方法的流程示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
请参阅图1,图1是本发明实施例提供的一种复杂动态背景下飞机检测方法的流程示意图。具体的,所述复杂动态背景下飞机检测方法可以包括以下步骤:
S101、基于ORB算法提取目标图像的特征点,并进行特征点统计分布;
本发明实施例中,ORB算法(Oriented FAST and Rotated BRIEF)是一种快速特征点提取和描述的算法。ORB算法分为两部分,分别是特征点提取和特征点描述。ORB算法的速度是sift算法的100倍,是surf算法的10倍。
获取视频窗大小C×R,视频窗设置的n个子区域Wn,计算子区域特征点与坐标中心的平均欧几里得距离
Figure BDA0002356983260000041
Figure BDA0002356983260000042
其中,xi,yi为特征点的横纵坐标,
Figure BDA0002356983260000043
为子区域所有特征点横纵坐标均值;
Un为每个子区域中特征点个数。
如视频窗设置九个子区域Wn(xt,yt,xb,yb),n=1,2,…9,(xt,yt)为子窗口左顶点坐标,(xb,yb)为子窗口右下点坐标,个子区域长度分别为
Figure BDA0002356983260000044
基于子窗口评分公式判断存在预设概率的目标区域,其中,所述子窗口评分公式为:
Figure BDA0002356983260000045
其中,Un为每个子区域中特征点个数;
Figure BDA0002356983260000046
为子区域特征点与坐标中心的平均欧几里得距离。实验表明,Un越大,
Figure BDA0002356983260000051
越小,子区域含有目标的概率越高。
对于运动摄像机下飞机的检测,因飞机距离镜头距离远,在整个视频窗内占据像素点为少部分,获取评分Sn降序排列在前的三块子区域A、B、C;
若SB≥0.7SA,SC≥0.7SB,则存在预设概率的目标区域为A、B、C;
若SB≥0.7SA,SC<0.7SB,则存在预设概率的目标区域为A、B;
若SB<0.7SA,则存在预设概率的目标区域为A。
当目标跨越子区域存在,目标不能完整检测,为保证目标检测的完整性,设目标可能存在子区域扩大20%作为初步目标ROI区域。
S102、获取目标ROI区域外的区域标记为背景区域,并基于k-dimensiona树搜索背景特征点,计算第t帧和第t+Δt帧的特征描述子间的距离,判断背景特征点匹配是否成功;
本发明实施例中,ROI区域为感兴趣区域,是从被处理的图像以方框、圆、椭圆、不规则多边形等方式勾勒出需要处理的区域。k-dimensiona树是每个节点都为k维点的二叉树。所有非叶子节点可以视作用一个超平面把空间分割成两部分。在超平面左边的点代表节点的左子树,在超平面右边的点代表节点的右子树。超平面的方向可以用下述方法来选择:每个节点都与k维中垂直于超平面的那一维有关。因此,如果选择按照x轴划分,所有x值小于指定值的节点都会出现在左子树,所有x值大于指定值的节点都会出现在右子树。这样,超平面可以用该x值来确定,其法矢为x轴的单位向量。
提取到的ORB特征点既包括前景特征点、背景特征点,噪声点,在进行特征点匹配之前,先初步剔除目标特征点,提取到的目标ROI区域外的特征点视为背景特征点。ORB特征描述子是由0、1代码构成,采用k-dimensiona树快速搜索计算机特征点间的汉明距离进行匹配,汉明距离是使用在数据传输差错控制编码里面的,汉明距离是一个概念,它表示两个(相同长度)字对应位不同的数量,我们以d(x,y)表示两个字x,y之间的汉明距离。对两个字符串进行异或运算,并统计结果为1的个数,那么这个数就是汉明距离。计算第t帧和第t+Δt帧的特征描述子间的距离,判断特征点匹配成功的判定规则为单一阈值、最近邻法或最近邻比值法。
基于邻比值法,判断背景特征点匹配是否成功;
查找两帧图像的特征描述子的第一距离和第二距离,若第一距离小于第一阈值L,且第一距离与第二距离的比值小于第二阈值MinRatio,则匹配成功,其中,第一距离和第二距离为两帧图像的特征描述子的距离升序排列在前两位的距离。S103、基于匹配成功的背景特征点计算两帧间的单应矩阵H,并基于RANSAC算法优化得到目标单应矩阵Hbest,基于目标单应矩阵Hbest在两帧之间进行透视变换进行运动补偿;
本发明实施例中,单应矩阵是表示在齐次坐标系下,一个平面到另一平面的映射关系。在两帧图像中已匹配的特征点Pt(xt,yt),Pt+Δt(xt+Δt,yt+Δt),则其次坐标为(xt,yt,1)T,(xt+Δt,yt+Δt,1)T,则有
Figure BDA0002356983260000061
Figure BDA0002356983260000062
Figure BDA0002356983260000063
基于约束项,h33=1,则
Figure BDA0002356983260000064
Figure BDA0002356983260000065
单应矩阵H有8个自由度,需要四对特征匹配点求解H。
xt(h31xt+Δt+h32yt+Δt+1)-h11xt+Δt-h12yt+Δt-h13=0; (6)
yt(h31xt+Δt+h32yt+Δt+1)-h21xt+Δt-h22yt+Δt-h23=0; (7)
Figure BDA0002356983260000071
特征点匹配是基于ROI区域外特征点完成,其大概率情况为背景特征,不能保证完全是背景特征,同时特征匹配会有两种误配情况,假阳性匹配,将非匹配点错误的匹配;假阴性匹配,正确匹配点没有成功匹配。在单应矩阵估算时加入将RANSAC算法进行优化以提高鲁棒性。RANSAC算法可以从一组包含“局外点”的观测数据集中,通过迭代方式估计数学模型的参数。它是一种不确定的算法——它有一定的概率得出一个合理的结果;为了提高概率必须提高迭代次数。数据由“局内点”组成,例如:数据的分布可以用一些模型参数来解释;“局外点”是不能适应该模型的数据;除此之外的数据属于噪声。局外点产生的原因有:噪声的极值;错误的测量方法;对数据的错误假设。RANSAC也做了以下假设:给定一组(通常很小的)局内点,存在一个可以估计模型参数的过程;而该模型能够解释或者适用于局内点。
获取已匹配特征点对样本集合S,从样本集合S中随机选取四对不共线特征点样本子集M对初始化单应矩阵,由式(8)求得HM,计算集合S中所有样本与模型HM的投影误差,令源匹配特征点P(xi,yi),目标特征点P(x′i,y′i),由式(4)(5)可得:
Figure BDA0002356983260000072
dx=ww×(h11xi+h12yi+h13)-x′i; (10)
dy=ww×(h21xi+h22yi+h23)-y'y; (11)
Figure BDA0002356983260000073
erri小于阈值T,则归为内点,否则为外点,当前内点集J元素个数大于最优内点集Jbest则更新Jbest=J,直到迭代次数K到达Kmax,满足最优内点集的模型为最优模型。获取目标图像I的所有像素进行投射,得到新的像素值IT
其中,IT=HbestI。
S104、对运动补偿后的图像进行双阈值差分处理,得到检测图像。
本发明实施例中,获取四帧图像It,It+Δt,It+2Δt,It+3Δt,分别求取It+Δt,It+2Δt,It+3Δt和It的单应矩阵Ht,t+Δt,Ht,t+2Δt,Ht,t+3Δt,并计算出透射图像,
Figure BDA0002356983260000088
三帧图像都是以It为参考进行补偿,这使配准误差达到最小化,背景的运动补偿将会更有效,由于摄像机的运动速度和方向,补偿后的图像会出现黑边条,本文不将它作为背景,相应的像素设置为零以提高持久力和鲁棒性。
基于三帧差对ROI区域背景进行消除:
Figure BDA0002356983260000081
Figure BDA0002356983260000082
对ΔIt1,ΔIt2二值化阈值得到Dt=Dt1∩Dt2得到目标图像
此处的阈值T将会影响目标检测的效果,若设置固定阈值则对环境的适应性变差,本文采用动态双阈值方法检测飞机目标,第一次阈值用来初始分割前景与背景,设初始阈值:
Figure BDA0002356983260000083
计算初始分割后的背景、前景的平均像素:
Figure BDA0002356983260000084
Figure BDA0002356983260000085
Figure BDA0002356983260000086
Figure BDA0002356983260000087
T2=α1α2(Tb+Tp) (20)
对于摄像机引入的成像噪声,需要对其过滤,高斯滤波作为低通滤波器,可以减少图像的高频分量,常应用于目标检测的边缘细化,以改进算法性能。由于相机运动估计误差带来的噪声无法通过滤波进行消除,因此,应用连通分量分析的方法改善背景消除。
本发明的一种复杂动态背景下飞机检测方法,通过基于ORB算法提取目标图像的特征点,并进行特征点统计分布;获取目标ROI区域外的区域标记为背景区域,并构建k-dimensiona树,计算第t帧和第t+Δt帧的背景特征点描述子间的距离,判断背景特征点匹配是否成功;基于匹配成功的背景特征点计算两帧间的单应矩阵H,并基于RANSAC算法优化得到目标单应矩阵Hbest,基于目标单应矩阵Hbest在两帧之间进行透视变换进行运动补偿;对运动补偿后的图像进行双阈值差分处理,得到检测图像。实现通过评分确定目标区域,排除前景目标特征点,保留背景特征点;运用加入RANSAC算法排除背景特征点误匹配点,得到最优单应矩阵,补偿相机运动,建立对于不同场景的动态变化均具有自适应性的背景模型,双阈值差分再次对前景目标和背景目标进行区分,选取合适的差分阈值准确检测出飞机运动目标。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (7)

1.一种复杂动态背景下飞机检测方法,其特征在于,包括:
基于ORB算法提取目标图像的特征点,并进行特征点统计分布;
获取目标ROI区域外的区域标记为背景区域,并构建k-dimensiona树,计算第t帧和第t+Δt帧的背景特征点描述子间的距离,判断背景特征点匹配是否成功;
基于匹配成功的背景特征点计算两帧间的单应矩阵H,并基于RANSAC算法优化得到目标单应矩阵Hbest,基于目标单应矩阵Hbest在两帧之间进行透视变换进行运动补偿;
对运动补偿后的图像进行双阈值差分处理,得到检测图像。
2.如权利要求1所述的复杂动态背景下飞机检测方法,其特征在于,基于ORB算法提取目标图像的特征点,并进行特征点统计分布,具体包括:
获取视频窗大小C×R,视频窗设置的n个子区域Wn,计算子区域特征点与坐标中心的平均欧几里得距离
Figure FDA0002356983250000011
Figure FDA0002356983250000012
其中,xi,yi为特征点的横纵坐标,
Figure FDA0002356983250000013
为子区域所有特征点横纵坐标均值;Un为每个子区域中特征点个数。
3.如权利要求2所述的复杂动态背景下飞机检测方法,其特征在于,基于ORB算法提取目标图像的特征点,并进行特征点统计分布,具体还包括:
基于子窗口评分公式判断存在预设概率的目标区域,其中,所述子窗口评分公式为:
Figure FDA0002356983250000014
其中,Un为每个子区域中特征点个数;
Figure FDA0002356983250000015
为子区域特征点与坐标中心的平均欧几里得距离。
4.如权利要求3所述的复杂动态背景下飞机检测方法,其特征在于,基于子窗口评分公式判断存在预设概率的目标区域,具体包括:
获取评分Sn降序排列在前的三块子区域A、B、C;
若SB≥0.7SA,SC≥0.7SB,则存在预设概率的目标区域为A、B、C;
若SB≥0.7SA,SC<0.7SB,则存在预设概率的目标区域为A、B;
若SB<0.7SA,则存在预设概率的目标区域为A。
5.如权利要求1所述的复杂动态背景下飞机检测方法,其特征在于,获取目标ROI区域外的区域标记为背景区域,并构建k-dimensiona树,计算第t帧和第t+Δt帧的背景特征点描述子间的距离,判断背景特征点匹配是否成功,包括:
基于邻比值法,判断背景特征点匹配是否成功;
查找两帧图像的特征描述子的第一距离和第二距离,若第一距离小于第一阈值,且第一距离与第二距离的比值小于第二阈值,则匹配成功,其中,第一距离和第二距离为两帧图像的特征描述子的距离升序排列在前两位的距离。
6.如权利要求1所述的复杂动态背景下飞机检测方法,其特征在于,基于匹配成功的背景特征点计算两帧间的单应矩阵H,并基于RANSAC算法优化得到目标单应矩阵Hbest,基于目标单应矩阵Hbest在两帧之间进行透视变换进行运动补偿,包括:
获取已匹配特征点对样本集合S,从样本集合S中随机选取四对不共线特征点样本子集M对初始化单应矩阵,并采用RANSAC算法优化得到目标单应矩阵Hbest对获取目标图像I的所有像素进行投射,得到新的像素值IT;其中,IT=HbestI。
7.如权利要求6所述的复杂动态背景下飞机检测方法,其特征在于,对运动补偿后的图像进行双阈值差分处理,得到检测图像,包括:
获取四帧图像It,It+Δt,It+2Δt,It+3Δt,基于三帧差对ROI区域背景进行消除。
CN202010010529.7A 2020-01-06 2020-01-06 一种复杂动态背景下飞机检测方法 Active CN111209920B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010010529.7A CN111209920B (zh) 2020-01-06 2020-01-06 一种复杂动态背景下飞机检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010010529.7A CN111209920B (zh) 2020-01-06 2020-01-06 一种复杂动态背景下飞机检测方法

Publications (2)

Publication Number Publication Date
CN111209920A true CN111209920A (zh) 2020-05-29
CN111209920B CN111209920B (zh) 2022-09-23

Family

ID=70786701

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010010529.7A Active CN111209920B (zh) 2020-01-06 2020-01-06 一种复杂动态背景下飞机检测方法

Country Status (1)

Country Link
CN (1) CN111209920B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111738211A (zh) * 2020-07-17 2020-10-02 浙江大学 基于动态背景补偿与深度学习的ptz摄像机运动目标检测与识别方法
CN112070814A (zh) * 2020-08-31 2020-12-11 杭州迅蚁网络科技有限公司 一种靶标角度识别方法、装置
CN112949736A (zh) * 2021-03-15 2021-06-11 浙江中控技术股份有限公司 一种特征匹配方法及相关设备
CN114820332A (zh) * 2021-01-28 2022-07-29 广州汽车集团股份有限公司 一种车载监控画面优化方法
CN116612390A (zh) * 2023-07-21 2023-08-18 山东鑫邦建设集团有限公司 一种建筑工程用的信息管理系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103700069A (zh) * 2013-12-11 2014-04-02 武汉工程大学 一种基于orb算子的无参考视频平滑度的评价方法
CN103886611A (zh) * 2014-04-08 2014-06-25 西安煤航信息产业有限公司 一种适合于航空摄影飞行质量自动检查的影像匹配方法
CN104484668A (zh) * 2015-01-19 2015-04-01 武汉大学 一种无人机多重叠遥感影像的建筑物轮廓线提取方法
CN104766309A (zh) * 2015-03-19 2015-07-08 江苏国典艺术品保真科技有限公司 一种平面特征点导航定位方法与装置
CN106534616A (zh) * 2016-10-17 2017-03-22 北京理工大学珠海学院 一种基于特征匹配与运动补偿的视频稳像方法及系统
CN108010045A (zh) * 2017-12-08 2018-05-08 福州大学 基于orb的视觉图像特征点误匹配提纯方法
CN109544592A (zh) * 2018-10-26 2019-03-29 天津理工大学 针对相机移动的运动目标检测算法
CN109934131A (zh) * 2019-02-28 2019-06-25 南京航空航天大学 一种基于无人机的小目标检测方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103700069A (zh) * 2013-12-11 2014-04-02 武汉工程大学 一种基于orb算子的无参考视频平滑度的评价方法
CN103886611A (zh) * 2014-04-08 2014-06-25 西安煤航信息产业有限公司 一种适合于航空摄影飞行质量自动检查的影像匹配方法
CN104484668A (zh) * 2015-01-19 2015-04-01 武汉大学 一种无人机多重叠遥感影像的建筑物轮廓线提取方法
CN104766309A (zh) * 2015-03-19 2015-07-08 江苏国典艺术品保真科技有限公司 一种平面特征点导航定位方法与装置
CN106534616A (zh) * 2016-10-17 2017-03-22 北京理工大学珠海学院 一种基于特征匹配与运动补偿的视频稳像方法及系统
CN108010045A (zh) * 2017-12-08 2018-05-08 福州大学 基于orb的视觉图像特征点误匹配提纯方法
CN109544592A (zh) * 2018-10-26 2019-03-29 天津理工大学 针对相机移动的运动目标检测算法
CN109934131A (zh) * 2019-02-28 2019-06-25 南京航空航天大学 一种基于无人机的小目标检测方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KUANG HAILAN等: "An improved Robot’s localization and mapping method based on ORB-SLAM", 《2017 10TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID)》 *
ZHANG Z等: "Pedestrian detection aided by fusion of binocular information[", 《PATTERN RECOGNITION》 *
孙丰等: "一种针对移动相机的实时视频背景减除算法", 《计算机辅助设计与图形学学报》 *
李玉虎: "运动摄像机下飞机目标检测、识别与跟踪方法研究", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技II辑》 *
薛丽霞等: "动态背景下基于 ORB 特征匹配的运动目标检测算法", 《计算机应用与软件》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111738211A (zh) * 2020-07-17 2020-10-02 浙江大学 基于动态背景补偿与深度学习的ptz摄像机运动目标检测与识别方法
CN111738211B (zh) * 2020-07-17 2023-12-19 浙江大学 基于动态背景补偿与深度学习的ptz摄像机运动目标检测与识别方法
CN112070814A (zh) * 2020-08-31 2020-12-11 杭州迅蚁网络科技有限公司 一种靶标角度识别方法、装置
CN114820332A (zh) * 2021-01-28 2022-07-29 广州汽车集团股份有限公司 一种车载监控画面优化方法
CN112949736A (zh) * 2021-03-15 2021-06-11 浙江中控技术股份有限公司 一种特征匹配方法及相关设备
CN112949736B (zh) * 2021-03-15 2023-07-21 浙江中控技术股份有限公司 一种特征匹配方法及相关设备
CN116612390A (zh) * 2023-07-21 2023-08-18 山东鑫邦建设集团有限公司 一种建筑工程用的信息管理系统
CN116612390B (zh) * 2023-07-21 2023-10-03 山东鑫邦建设集团有限公司 一种建筑工程用的信息管理系统

Also Published As

Publication number Publication date
CN111209920B (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
CN111209920B (zh) 一种复杂动态背景下飞机检测方法
CN108470332B (zh) 一种多目标跟踪方法及装置
US9224070B1 (en) System for three-dimensional object recognition and foreground extraction
CN111222395B (zh) 目标检测方法、装置与电子设备
US8744168B2 (en) Target analysis apparatus, method and computer-readable medium
US9008366B1 (en) Bio-inspired method of ground object cueing in airborne motion imagery
CN112184759A (zh) 一种基于视频的运动目标检测与跟踪方法及系统
WO2022141073A1 (zh) 车牌识别方法、装置及电子设备
CN108447060B (zh) 基于rgb-d图像的前后景分离方法及其前后景分离装置
CN111886600A (zh) 一种用于图像的实例级别分割的设备和方法
CN111898428A (zh) 一种基于orb的无人机特征点匹配方法
JP2018142189A (ja) プログラム、測距方法、及び測距装置
CN115375917B (zh) 一种目标边缘特征提取方法、装置、终端及存储介质
CN114463619B (zh) 基于集成融合特征的红外弱小目标检测方法
Minematsu et al. Adaptive background model registration for moving cameras
Fengping et al. Road extraction using modified dark channel prior and neighborhood FCM in foggy aerial images
Tarchoun et al. Hand-Crafted Features vs Deep Learning for Pedestrian Detection in Moving Camera.
CN110288040B (zh) 一种基于拓扑验证的图像相似评判方法及设备
CN107368826B (zh) 用于文本检测的方法和装置
CN113436251A (zh) 一种基于改进的yolo6d算法的位姿估计系统及方法
CN113096016A (zh) 一种低空航拍图像拼接方法和系统
Gökçe et al. Recognition of dynamic objects from UGVs using Interconnected Neuralnetwork-based Computer Vision system
CN109241865B (zh) 一种弱对比度交通场景下的车辆检测分割算法
CN116310128A (zh) 基于实例分割与三维重建的动态环境单目多物体slam方法
CN115861352A (zh) 单目视觉、imu和激光雷达的数据融合和边缘提取方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20200529

Assignee: Guangxi Baise Chenhai Technology Co.,Ltd.

Assignor: GUILIN University OF ELECTRONIC TECHNOLOGY

Contract record no.: X2023980044733

Denomination of invention: A Method for Aircraft Detection in Complex Dynamic Background

Granted publication date: 20220923

License type: Common License

Record date: 20231030

EE01 Entry into force of recordation of patent licensing contract