CN111203178A - 一种基于氧化石墨烯的吸附剂及其制备方法与应用 - Google Patents

一种基于氧化石墨烯的吸附剂及其制备方法与应用 Download PDF

Info

Publication number
CN111203178A
CN111203178A CN202010039620.1A CN202010039620A CN111203178A CN 111203178 A CN111203178 A CN 111203178A CN 202010039620 A CN202010039620 A CN 202010039620A CN 111203178 A CN111203178 A CN 111203178A
Authority
CN
China
Prior art keywords
graphene oxide
hydrotalcite
composite material
prepared
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010039620.1A
Other languages
English (en)
Inventor
戈明亮
席壮壮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202010039620.1A priority Critical patent/CN111203178A/zh
Publication of CN111203178A publication Critical patent/CN111203178A/zh
Priority to PCT/CN2020/124994 priority patent/WO2021143275A1/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种基于氧化石墨烯的吸附剂及其制备方法与应用。本发明提供的吸附剂对水污染物具有良好的吸附作用。该方法包括:先将Hummers法制备的氧化石墨烯超声分散在水中,再将水热合成法制备的水滑石加入到分散性良好的氧化石墨烯水溶液中,搅拌,带负电荷的氧化石墨烯会由于静电作用,插层到水滑石层间,并且会与水滑石共同沉淀,静置分层,倒掉上清液,干燥下层沉淀,获得氧化石墨烯‑水滑石复合材料,可以有效地降低氧化石墨烯的团聚现象。本发明采用水滑石加入到氧化石墨烯溶液中,简单操作,制备了氧化石墨烯‑水滑石复合材料,由于复合材料中氧化石墨烯团聚现象被抑制,因此复合材料的吸附性能更优。

Description

一种基于氧化石墨烯的吸附剂及其制备方法与应用
技术领域
本发明涉及氧化石墨烯复合材料制备领域,具体涉及一种基于氧化石墨烯的吸附剂及其制备方法与应用。
背景技术
氧化石墨烯(Graphene Oxide,GO)是石墨烯的氧化产物,可以在水中形成带负电的薄片,具备很大的比表面积,并且含有多种活性含氧基团,可提供较多的活性位点,因此氧化石墨烯可以作为一种吸附剂用来去除废水中的多种污染物,
水滑石又称为层状双金属氢氧化物(Layered double hydroxides,LDH),它是一种天然存在的层状粘土材料,LDH的微观结构主要包括主层板和层间阴离子,其中主层板带有正电荷,层间阴离子带负电荷,两者有序的组装在一起,主层板上的金属种类和电荷密度具有可调控性,层间阴离子也具有可交换性。
氧化石墨烯极易团聚,降低了其吸附效果,研究表明,水滑石可以与氧化石墨烯结合,防止氧化石墨烯的团聚,增强其吸附能力。Garcia-Gallastegui等人(Garcia-Gallastegui A,Iruretagoyena D,Gouvea V,et al.Graphene oxide assupport forlayered double hydroxides:enhancing the CO2 adsorption capacity[J].Chemistryof Materials.2012,24(23):4531-4539.)将氧化石墨烯分散在水中,超声处理,获得分散性良好的氧化石墨烯溶液,然后依次加入氢氧化钠、碳酸钠、硝酸镁和硝酸铝,搅拌均匀,最后在60℃下老化12h,将镁铝型水滑石原位生长在氧化石墨烯上,通过原位生长法,制备了氧化石墨烯-镁铝型水滑石复合材料,研究结果表明,复合材料对CO2具有良好的吸附作用;Zheng等人(ZhengY Q,Cheng B,You W,etal.3D hierarchical grapheneoxide-NiFe LDH composite with enhanced adsorption affinity to Congo red,methyl orange and Cr(VI)ions[J].Journalof Hazardous Materials.2019.369:214-225.)将氧化石墨烯分散液与Ni2+、Fe2+、尿素混合,采用原位生长法制备了氧化石墨烯-镍铁型水滑石复合材料,研究结果表明,复合材料对刚果红、甲基橙和Cr6+具有良好的吸附作用。
然而,原位生长法需要在氧化石墨烯的存在下,制备水滑石,因此制备的复合材料中的氧化石墨烯和水滑石存在缺陷;并且制备氧化石墨烯的分散液,其浓度较低,通常情况下1g氧化石墨烯需要1L水才能分散好,而制备水滑石时,所需要的水较少,通常情况下,1L水可以制备100g水滑石,因此通过原位生长法制备的复合材料中氧化石墨烯含量较少,且不能很好地控制氧化石墨烯与水滑石的比例;其次,原位生长法操作复杂,实验要求条件多。
发明内容
本发明的目的在于针对目前氧化石墨烯复合材料成本较高,且吸附后不易去除等问题,提出了一种基于氧化石墨烯的吸附剂及其制备方法与应用。本发明提供的吸附剂是一种利用共沉淀法制备的氧化石墨烯-水滑石复合材料,并且能够应用于吸附水污染物领域。该方法具体将氧化石墨烯在水中剥离分散,加入水滑石,超声分散后剧烈搅拌,氧化石墨烯可以在水中剥离成带负电的薄片,而水滑石主层板带有正电荷,意味着氧化石墨烯与水滑石层板可以通过静电作用,自组装制备氧化石墨烯-水滑石复合材料。
本发明的目的通过如下技术方案实现。
本发明提供的一种基于氧化石墨烯的吸附剂的制备方法,包括以下步骤:
(1)将氧化石墨烯加入到水中,超声处理,获得分散均匀的氧化石墨烯溶液;
(2)将水滑石加入到步骤(1)所述氧化石墨烯溶液中,超声处理,然后机械搅拌,得到混合液;
(3)将步骤(2)所述混合液静置后发生分层现象,氧化石墨烯与水滑石共同沉淀,去除上清液后真空干燥并研磨沉淀物,得到所述基于氧化石墨烯的吸附剂。
进一步地,步骤(1)所述氧化石墨烯溶液的浓度为1mg/ml-4mg/ml。
优选的,步骤(1)中,所述氧化石墨烯溶液的浓度为2mg/ml。
优选地,步骤(1)所述氧化石墨烯为Hummers法制备的。
进一步地,步骤(1)所述超声处理的时间为12h-48h。
优选地,步骤(1)所述超声处理的时间为24h。
进一步地,步骤(2)所述水滑石为水热法人工合成的水滑石。
进一步地,步骤(2)所述水滑石是镁铝型水滑石。
进一步地,步骤(2)所述水滑石的质量为步骤(1)所述氧化石墨烯质量的4-19倍。
优选的,步骤(2)中,所述加入的水滑石的质量为氧化石墨烯质量的9倍。
进一步地,步骤(2)所述超声处理的时间为1-4h,机械搅拌的时间为2-8h。
优选地,步骤(2)所述超声处理的时间为1h。
优选地,步骤(2)所述机械搅拌的时间为2h。
进一步地,步骤(3)所述静置的时间为12-24h。
优选地,步骤(3)所述静置的时间为24h。
本发明提供一种由上述的制备方法得到的基于氧化石墨烯的吸附剂。
本发明提供的基于氧化石墨烯的吸附剂在吸附水污染物中的应用。
氧化石墨烯可以在水中剥离形成带负电荷的薄片,而水滑石主层板带有正电荷,氧化石墨烯与水滑石主层板可以通过静电作用,自组装制备得到氧化石墨烯-水滑石复合材料。
氧化石墨烯吸附亚甲基蓝主要是利用其较大的比表面积,水滑石对亚甲基蓝没有吸附作用,氧化石墨烯极易团聚,会降低吸附效果。复合材料的吸附效果主要来自于氧化石墨烯,形成复合材料后,氧化石墨烯团聚现象被抑制,所以其吸附效果要好于团聚的氧化石墨烯。
本发明通过共沉淀法制备氧化石墨烯-水滑石复合材料,一方面可以抑制氧化石墨烯的团聚现象,另一方面水滑石可以与氧化石墨烯共同沉淀,吸附后容易去除并且不会产生新的污染。因此氧化石墨烯-水滑石复合材料的吸附效果优于团聚的氧化石墨烯,最重要的是,氧化石墨烯-水滑石复合材料能大幅度降低氧化石墨烯的使用成本。
本发明先分别制备氧化石墨烯与水滑石,然后通过超声波和搅拌处理,剥离分层氧化石墨烯和水滑石,氧化石墨烯和水滑石会由于静电作用自组装在一起,然后共同沉淀,此方法便于操作,制备复合材料的过程中不会破坏氧化石墨烯与水滑石的结构,并且可以准确地控制复合材料中氧化石墨烯与水滑石的比例。
与现有技术相比,本发明具有如下优点和有益效果:
本发明提供的基于氧化石墨烯的吸附剂,氧化石墨烯的含量仅为5%-25%,但是其吸附效率远高于氧化石墨烯或水滑石,降低了氧化石墨烯作为吸附剂的使用成本;最为重要的是,吸附完成后,所述基于氧化石墨烯的吸附剂会自然沉淀,无需离心等复杂操作,提高了其实际应用价值。
附图说明
图1为实施例1制得的基于氧化石墨烯的吸附剂的红外光谱图;
图2为实施例中水滑石、氧化石墨烯和基于氧化石墨烯的吸附剂对亚甲基蓝的去除效率柱形图。
具体实施方式
以下结合具体实施例及附图对本发明技术方案作进一步详细的描述,但本发明的保护范围及实施方式不限于此。
实施例1
一种基于氧化石墨烯的吸附剂的制备方法,具体步骤如下:
(1)将1g Hummers法制备的氧化石墨烯加入到500mL去离子水中,超声处理24h,获得分散均匀的氧化石墨烯溶液;
(2)将4g水热合成法制备的镁铝型水滑石加入到步骤(1)所述氧化石墨烯溶液中,超声处理1h,然后用搅拌桨搅拌2h,得到混合液;
(3)将步骤(2)所述混合液静置24h,可以观察到氧化石墨烯与水滑石共同沉淀,溶液发生分层现象,倒掉上清液,真空干燥、研磨下层沉淀物,得到所述基于氧化石墨烯的吸附剂。
实施例1制得的基于氧化石墨烯的吸附剂的红外光谱图如图1所示。
将实施例1制得的基于氧化石墨烯的吸附剂用于吸附水污染物领域,本实施案例为亚甲基蓝,具体步骤如下:
(1)配置10mg/L的亚甲基蓝溶液,分别称量40ml亚甲基蓝溶液加入到三个100ml的烧杯中,往这3个烧杯中分别加入40mg的水滑石、氧化石墨烯和基于氧化石墨烯的吸附剂,将三个烧杯均水浴震荡1h,研究三种吸附剂对亚甲基蓝的吸附效果;
(2)吸附完成后,用移液管吸取上清液,用紫外分光光度计测量上清液吸光度,分别算出水滑石、氧化石墨烯和氧化石墨烯-水滑石复合材料对亚甲基蓝的去除效率。
水滑石、氧化石墨烯和基于氧化石墨烯的吸附剂对亚甲基蓝的去除效率如图2所示,图2中的LDH表示水滑石,GO表示氧化石墨烯,GO-LDH表示基于氧化石墨烯的吸附剂,从图2可以看到,所述基于氧化石墨烯的吸附剂对亚甲基蓝的去除率为98.02%,远远高于氧化石墨烯对亚甲基蓝的去除率90.53%和水滑石对亚甲基蓝的去除率28.51%。
实施例2
一种基于氧化石墨烯的吸附剂的制备方法,具体步骤如下:
(1)将1gHummers法制备的氧化石墨烯加入到500mL去离子水中,超声处理12h,获得分散均匀的氧化石墨烯溶液;
(2)将9g水热合成法制备的镁铝型水滑石加入到步骤(1)所述氧化石墨烯溶液中,超声处理2h,然后用搅拌桨搅拌4h,得到混合液;
(3)将步骤(2)所述混合液静置12h,可以观察到氧化石墨烯与水滑石共同沉淀,溶液发生分层现象,倒掉上清液,真空干燥、研磨下层沉淀物,得到所述基于氧化石墨烯的吸附剂。
实施例2制得的基于氧化石墨烯的吸附剂对亚甲基蓝同样具有良好的去除效果,可参照图2所示。
实施例3
一种基于氧化石墨烯的吸附剂的制备方法,具体步骤如下:
(1)将1gHummers法制备的氧化石墨烯加入到500mL去离子水中,超声处理48h,获得分散均匀的氧化石墨烯溶液;
(2)将19g水热合成法制备的镁铝型水滑石加入到步骤(1)所述氧化石墨烯溶液中,超声处理4h,然后用搅拌桨搅拌8h,得到混合液;
(3)将步骤(2)所述混合液静置18h,可以观察到氧化石墨烯与水滑石共同沉淀,溶液发生分层现象,倒掉上清液,真空干燥、研磨下层沉淀物,得到所述基于氧化石墨烯的吸附剂。
实施例3制得的基于氧化石墨烯的吸附剂对亚甲基蓝同样具有良好的去除效果,可参照图2所示。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种基于氧化石墨烯的吸附剂的制备方法,其特征在于,包括以下步骤:
(1)将氧化石墨烯加入到水中,超声处理,获得氧化石墨烯溶液;
(2)将水滑石加入到步骤(1)所述氧化石墨烯溶液中,超声处理,然后机械搅拌,得到混合液;
(3)将步骤(2)所述混合液静置后发生分层现象,去除上清液后干燥并研磨沉淀物,得到所述基于氧化石墨烯的吸附剂。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)所述氧化石墨烯溶液的浓度为1mg/ml-4mg/ml。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)所述超声处理的时间为12h-48h。
4.根据权利要求1所述的制备方法,其特征在于,步骤(2)所述水滑石为水热法人工合成的水滑石。
5.根据权利要求1所述的制备方法,其特征在于,步骤(2)所述水滑石是镁铝型水滑石。
6.根据权利要求1所述的制备方法,其特征在于,步骤(2)所述水滑石的质量为步骤(1)所述氧化石墨烯质量的4-19倍。
7.根据权利要求1所述的制备方法,其特征在于,步骤(2)所述超声处理的时间为1-4h,机械搅拌的时间为2-8h。
8.根据权利要求1所述的制备方法,其特征在于,步骤(3)所述静置的时间为12-24h。
9.权利要求1-8任一项所述的制备方法得到的基于氧化石墨烯的吸附剂。
10.权利要求9所述的基于氧化石墨烯的吸附剂在吸附水污染物中的应用。
CN202010039620.1A 2020-01-15 2020-01-15 一种基于氧化石墨烯的吸附剂及其制备方法与应用 Pending CN111203178A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010039620.1A CN111203178A (zh) 2020-01-15 2020-01-15 一种基于氧化石墨烯的吸附剂及其制备方法与应用
PCT/CN2020/124994 WO2021143275A1 (zh) 2020-01-15 2020-10-30 一种基于氧化石墨烯的吸附剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010039620.1A CN111203178A (zh) 2020-01-15 2020-01-15 一种基于氧化石墨烯的吸附剂及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN111203178A true CN111203178A (zh) 2020-05-29

Family

ID=70780752

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010039620.1A Pending CN111203178A (zh) 2020-01-15 2020-01-15 一种基于氧化石墨烯的吸附剂及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN111203178A (zh)
WO (1) WO2021143275A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112076753A (zh) * 2020-09-08 2020-12-15 黎云 一种印染废水用处理剂及其制备方法
WO2021143275A1 (zh) * 2020-01-15 2021-07-22 华南理工大学 一种基于氧化石墨烯的吸附剂及其制备方法与应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114988401B (zh) * 2022-05-16 2023-06-09 南通赛可特电子有限公司 一种pcb板改性氧化石墨烯直接黑孔化的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013132259A1 (en) * 2012-03-09 2013-09-12 Bio Nano Consulting Graphene and graphene oxide aerogels/xerogels for co2 capture
US20170266639A1 (en) * 2016-03-15 2017-09-21 Vaon, Llc Graphene-containing nanocomposite materials for sequestration of carbon dioxide
CN109775794A (zh) * 2019-01-29 2019-05-21 南昌大学 一种ldh处理有机废水后的废弃物的回收方法及其产品和用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111203178A (zh) * 2020-01-15 2020-05-29 华南理工大学 一种基于氧化石墨烯的吸附剂及其制备方法与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013132259A1 (en) * 2012-03-09 2013-09-12 Bio Nano Consulting Graphene and graphene oxide aerogels/xerogels for co2 capture
US20170266639A1 (en) * 2016-03-15 2017-09-21 Vaon, Llc Graphene-containing nanocomposite materials for sequestration of carbon dioxide
CN109775794A (zh) * 2019-01-29 2019-05-21 南昌大学 一种ldh处理有机废水后的废弃物的回收方法及其产品和用途

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LEI WANG等: "Layered assembly of graphene oxide and Co–Al layered double hydroxide nanosheets as electrode materials for supercapacitors", 《CHEM. COMMUN.》 *
冯广京: "锌铝水滑石/氧化石墨烯纳米复合材料的制备及其去除水中铬离子的研究", 《厦门大学硕士学位论文》 *
林雅洁: "石墨烯-层状双氢氧化物纳米复合材料在环境修复中的应用综述", 《环境与可持续发展》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021143275A1 (zh) * 2020-01-15 2021-07-22 华南理工大学 一种基于氧化石墨烯的吸附剂及其制备方法与应用
CN112076753A (zh) * 2020-09-08 2020-12-15 黎云 一种印染废水用处理剂及其制备方法
CN112076753B (zh) * 2020-09-08 2021-09-17 浙江中科环境股份有限公司 一种印染废水用处理剂及其制备方法

Also Published As

Publication number Publication date
WO2021143275A1 (zh) 2021-07-22

Similar Documents

Publication Publication Date Title
Liu et al. 3D graphene/δ-MnO 2 aerogels for highly efficient and reversible removal of heavy metal ions
Zahed et al. Synthesis and functionalization of graphene oxide (GO) for salty water desalination as adsorbent
Feng et al. A review on heavy metal ions adsorption from water by layered double hydroxide and its composites
Son et al. A novel approach to developing a reusable marine macro-algae adsorbent with chitosan and ferric oxide for simultaneous efficient heavy metal removal and easy magnetic separation
Hu et al. High-efficient adsorption of phosphates from water by hierarchical CuAl/biomass carbon fiber layered double hydroxide
Ali et al. Encapsulated green magnetic nanoparticles for the removal of toxic Pb2+ and Cd2+ from water: Development, characterization and application
CN111203178A (zh) 一种基于氧化石墨烯的吸附剂及其制备方法与应用
Tang et al. Facile and green fabrication of magnetically recyclable carboxyl-functionalized attapulgite/carbon nanocomposites derived from spent bleaching earth for wastewater treatment
Cui et al. Synthesis of a novel magnetic Caragana korshinskii biochar/Mg–Al layered double hydroxide composite and its strong adsorption of phosphate in aqueous solutions
Rahimi et al. Removal of toxic metal ions from sungun acid rock drainage using mordenite zeolite, graphene nanosheets, and a novel metal–organic framework
Jiang et al. Realization of super high adsorption capability of 2D δ-MnO2/GO through intra-particle diffusion
EP2892853B1 (en) Particle for recovering an anion from an aqueous solution
Koilraj et al. Novel approach for selective phosphate removal using colloidal layered double hydroxide nanosheets and use of residue as fertilizer
RezaeiKalantary et al. Adsorption and magnetic separation of lead from synthetic wastewater using carbon/iron oxide nanoparticles composite
US20120168383A1 (en) Graphene-iron oxide complex and fabrication method thereof
Zhou et al. Preparation of Fe 3 O 4-embedded graphene oxide for removal of methylene blue
Junyong et al. Magnetic graphene oxides as highly effective adsorbents for rapid removal of a cationic dye rhodamine B from aqueous solutions
Sajjadi et al. Double-layer magnetized/functionalized biochar composite: Role of microporous structure for heavy metal removals
KR20120021993A (ko) 산화철 나노 입자를 포함하는 메조포러스 카본의 제조방법
CN108043356B (zh) 一种磁性核壳型多孔硅酸钙材料及其制备方法
Abdullah et al. Facile and green preparation of magnetite/zeolite nanocomposites for energy application in a single-step procedure
Jana et al. Tuning of graphene oxide intercalation in magnesium aluminium layered double hydroxide and their immobilization in polyacrylonitrile beads by single step mussel inspired phase inversion: A super adsorbent for lead
Hu et al. Recyclable graphene oxide-covalently encapsulated magnetic composite for highly efficient Pb (II) removal
CN108889266A (zh) 一种磁性镁铝复合氧化物及其制备方法和应用
CN106904705A (zh) 一种高效可循环的酸性含As(V)废水处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200529