CN111199243A - 一种基于改进决策树的空中目标识别方法及系统 - Google Patents

一种基于改进决策树的空中目标识别方法及系统 Download PDF

Info

Publication number
CN111199243A
CN111199243A CN201911317701.7A CN201911317701A CN111199243A CN 111199243 A CN111199243 A CN 111199243A CN 201911317701 A CN201911317701 A CN 201911317701A CN 111199243 A CN111199243 A CN 111199243A
Authority
CN
China
Prior art keywords
target
decision tree
longitude
latitude
navigation track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911317701.7A
Other languages
English (en)
Other versions
CN111199243B (zh
Inventor
李珠峰
朱珊珊
胡瑞娟
唐慧丰
李勇
黄晓辉
余文涛
席耀一
王博
刘剑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Information Engineering University of PLA Strategic Support Force
Original Assignee
Information Engineering University of PLA Strategic Support Force
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Information Engineering University of PLA Strategic Support Force filed Critical Information Engineering University of PLA Strategic Support Force
Priority to CN201911317701.7A priority Critical patent/CN111199243B/zh
Publication of CN111199243A publication Critical patent/CN111199243A/zh
Application granted granted Critical
Publication of CN111199243B publication Critical patent/CN111199243B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2411Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Multimedia (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开一种基于改进决策树的空中目标识别方法,包括:构建目标航行轨迹数据集,分为训练集和测试集;对训练集和测试集进行特征提取、细化和离散化处理;基于处理后的训练集采用C4.5决策树算法构建目标分类决策树;将处理后的测试集输入目标分类决策树,按照目标分类决策树沿根节点分层判断,直至叶子节点的目标类型作为位置点的目标识别结果,该类型作为识别结果的支持度加1;遍历处理后的测试集中目标航行轨迹全部位置点,对识别结果进行统计,取支持度最高的识别结果作为目标航行轨迹的最终目标识别结果;本发明还公开一种基于改进决策树的空中目标识别系统。本发明可有效挖掘目标历史活动轨迹中的行为模式。

Description

一种基于改进决策树的空中目标识别方法及系统
技术领域
本发明属于机器学习技术领域,尤其涉及一种基于改进决策树的空中目标识别方法及系统。
背景技术
随着现代飞行器技术不断发展,遂行各类作战任务的航天器类型不断增加。现代战争中,对战场高价值空中目标及时准确地识别判证,可以保证对战场态势的全面掌控,有利于对战场情况实时分析研判,以做出及时响应。
现有的对空中目标自动识别方法,主要通过对同种或多种传感器感知的目标电磁特征、辐射源特征、光学成像特征或微波成像特征等进行目标识别,主要方法分为三类,一是针对空中目标旋转部件对雷达回波有调制作用的机理,对固定翼飞机目标和直升机飞机目标进行分类,二是利用信息融合的方法识别舰船或飞机型号,三是基于数据挖掘或神经网络方法,利用数据驱动的方法对飞机图像分类(朱进,胡斌,邵华.基于多重运动特征的轨迹相似性度量模型[J].武汉大学学报(信息科学版),2017,12:1703-1710.)。较少有从目标运动轨迹出发,利用目标的运动特性对目标进行识别的方法。因此目标的移动轨迹特征,尤其是历史轨迹没有得到充分的利用。
在少数利用目标运动轨迹特征进行目标识别的研究中,都是采用不同的方法将目标运动轨迹与历史轨迹进行匹配,根据相似度计算结果识别目标,不能有效挖掘目标历史活动轨迹中的行为模式(孙璐.海上目标多源时空数据挖掘分析关键技术研究[D].海军航空大学,2018.)。因此,基于目标历史运动轨迹识别目标类型的传统方法,仅建立在轨迹相似性度量的基础上,不能充分利用和挖掘目标行为模式。
发明内容
本发明针对现有少数利用目标运动轨迹特征进行目标识别的研究中,都是采用不同的方法将目标运动轨迹与历史轨迹进行匹配,根据相似度计算结果识别目标,不能有效挖掘目标历史活动轨迹中的行为模式的问题,提出一种基于改进决策树的空中目标识别方法及系统。
为了实现上述目的,本发明采用以下技术方案:
一种基于改进决策树的空中目标识别方法,包括:
步骤1:通过传感器探测空中目标在航行过程中的位置点集合,形成目标航行轨迹数据集,并将所述目标航行轨迹数据集分为训练集和测试集;
步骤2:对训练集和测试集进行特征提取:从目标航行轨迹数据中提取目标在各个位置点的运动特征,形成第一特征向量,所述运动特征包括位置发生时间、位置经度、位置纬度、位置高度、运动速度及运动方向;
步骤3:对特征提取后的训练集和测试集进行细化和离散化处理:对第一特征向量各个维度进行细化,将经纬度表示为区域栅格,即将区域栅格号替换运动特征中的位置经度和位置纬度,并将连续值属性进行离散化处理,得到第二特征向量;
步骤4:基于步骤3处理后的训练集采用C4.5决策树算法构建目标分类决策树;
步骤5:将步骤3处理后的测试集中目标航行轨迹各位置点对应的第二特征向量输入步骤4中构建的目标分类决策树,按照所述目标分类决策树沿根节点分层判断,直至叶子节点的目标类型作为位置点的目标识别结果,该类型作为识别结果的支持度加1;
步骤6:遍历步骤3处理后的测试集中目标航行轨迹全部位置点,对识别结果进行统计,取支持度最高的识别结果作为目标航行轨迹的最终目标识别结果。
进一步地,所述步骤3包括:
步骤3.1:将每个位置点的经纬度表示映射为区域栅格表示:
3.1a)将十分制表示的位置经度、位置纬度转化为分度表示;
3.1b)将位置经度、位置纬度分度值除以栅格单位a,向下取整,得到位置经度坐标α和位置纬度坐标β;
3.1c)计算栅格号G:
Figure BDA0002326289190000021
步骤3.2:对位置点对应的位置发生时间、位置高度和运动速度,进行离散化处理,映射为区间表示;
步骤3.3:根据栅格号G的计算结果和离散化结果,得到包括位置发生时间、栅格号、位置高度、运动速度、运动方向的位置点第二特征向量表示。
进一步地,所述步骤4包括:
步骤4.1:将训练集中第二特征向量中栅格号G的集合作为决策树分裂的首选属性,根据G的所有取值生成若干分支结点,将训练集分割成若干训练子集;
步骤4.2:在一个训练子集中,根据信息熵和信息增益率的计算结果,采用C4.5决策树算法,选择除栅格号G外其他维特征向量中信息增益率最大的属性作为分裂节点继续分裂并构建子树;
步骤4.3:对决策树剪枝,将具有相同子树的分支结点合并,得到目标分类决策树。
一种基于改进决策树的空中目标识别系统,包括:
采集模块,用于通过传感器探测空中目标在航行过程中的位置点集合,形成目标航行轨迹数据集,并将所述目标航行轨迹数据集分为训练集和测试集;
特征提取模块,用于对训练集和测试集进行特征提取:从目标航行轨迹数据中提取目标在各个位置点的运动特征,形成第一特征向量,所述运动特征包括位置发生时间、位置经度、位置纬度、位置高度、运动速度及运动方向;
细化和离散化处理模块,用于对特征提取后的训练集和测试集进行细化和离散化处理:对第一特征向量各个维度进行细化,将经纬度表示为区域栅格,即将区域栅格号替换运动特征中的位置经度和位置纬度,并将连续值属性进行离散化处理,得到第二特征向量;
目标分类决策树构建模块,用于基于细化和离散化处理模块处理后的训练集采用C4.5决策树算法构建目标分类决策树;
测试模块,用于将细化和离散化处理模块处理后的测试集中目标航行轨迹各位置点对应的第二特征向量输入目标分类决策树构建模块中构建的目标分类决策树,按照所述目标分类决策树沿根节点分层判断,直至叶子节点的目标类型作为位置点的目标识别结果,该类型作为识别结果的支持度加1;
目标识别模块,用于遍历细化和离散化处理模块处理后的测试集中目标航行轨迹全部位置点,对识别结果进行统计,取支持度最高的识别结果作为目标航行轨迹的最终目标识别结果。
进一步地,所述细化和离散化处理模块包括:
细化子模块,用于将每个位置点的经纬度表示映射为区域栅格表示:
将十分制表示的位置经度、位置纬度转化为分度表示;
将位置经度、位置纬度分度值除以栅格单位a,向下取整,得到位置经度坐标α和位置纬度坐标β;
计算栅格号G:
Figure BDA0002326289190000041
离散化子模块,用于对位置点对应的位置发生时间、位置高度和运动速度,进行离散化处理,映射为区间表示;
第二特征向量生成子模块,用于根据栅格号G的计算结果和离散化结果,得到包括位置发生时间、栅格号、位置高度、运动速度、运动方向的位置点第二特征向量表示。
进一步地,所述目标分类决策树构建模块包括:
训练集分割子模块,用于将训练集中第二特征向量中栅格号G的集合作为决策树分裂的首选属性,根据G的所有取值生成若干分支结点,将训练集分割成若干训练子集;
决策树构建子模块,用于在一个训练子集中,根据信息熵和信息增益率的计算结果,采用C4.5决策树算法,选择除栅格号G外其他维特征向量中信息增益率最大的属性作为分裂节点继续分裂并构建子树;
决策树优化子模块,用于对决策树剪枝,将具有相同子树的分支结点合并,得到目标分类决策树。
与现有技术相比,本发明具有的有益效果:
本发明从空中目标识别实际应用出发,考虑空中目标移动速度快、移动范围广的特点,给出了基于历史数据分析运动特征的一种基于改进决策树的空中目标识别方法及系统。具有以下优势:
1)由于空中飞行目标移动速度较快,活动区域较广,本发明采用细分位置单位的方式,在栅格内构建决策树区分目标类型,可以更准确识别目标类型。
2)根据目标的历史航行轨迹提取目标运动特征,在目标活动区域内划分栅格,构建目标运动规则决策树,挖掘目标历史活动模式,根据目标的历史活动规律识别目标类型。
附图说明
图1为本发明实施例一种基于改进决策树的空中目标识别方法的基本流程图;
图2为本发明实施例一种基于改进决策树的空中目标识别方法的栅格内子树示例图;
图3为本发明实施例一种基于改进决策树的空中目标识别系统的结构示意图。
具体实施方式
下面结合附图和具体的实施例对本发明做进一步的解释说明:
实施例1
如图1所示,一种基于改进决策树的空中目标识别方法,包括:
步骤S101:通过传感器探测空中目标在航行过程中的位置点集合,形成目标航行轨迹数据集,并将所述目标航行轨迹数据集分为训练集和测试集;
作为一种可实施方式,由传感器探测侦察机U2、战斗机F15、轰炸机B52、加油机KC135四类重点空中目标在航行过程中的位置点集合,形成目标航行轨迹(历史)数据集,每类型机包括500条完整轨迹。将采集的全部轨迹数据分为训练集和测试集,其中训练集包含400条完整轨迹,测试集包含100条完整轨迹,训练集和测试集间没有交叉内容。每条完整轨迹中的目标位置采样点(位置点)个数为m,有56≤m≤289。
步骤S102:对训练集和测试集进行特征提取:从目标航行轨迹数据中提取目标在各个位置点的运动特征,形成第一特征向量,所述运动特征包括位置发生时间T、位置经度X、位置纬度Y、位置高度H、运动速度S及运动方向A;
具体地,在第i个位置点目标运动特征包括位置发生时间Ti,该位置经度Xi、位置纬度Yi,位置高度Hi,运动速度Si,运动方向Ai。上述六个目标特征构成目标在i点的六维运动特征向量,以第i个位置点为例,该向量各维度内容如表1所示。
表1第i个位置点的第一特征向量各维度内容
Figure BDA0002326289190000051
值得说明的是,位置发生时间Ti采用“hh:mm:ss”的表示方式,位置经度Xi及位置纬度Yi采用以度为单位的十进制表示方式,精确到小数点后六位,位置高度Hi为非负整数,运动方向0≤Ai≤360。位置高度Hi以及运动方向Ai可以缺省。同时,运动速度Si可分为水平运动速度Sxi和垂直速度Syi两个分量。
步骤S103:对特征提取后的训练集和测试集进行细化和离散化处理:对第一特征向量各个维度进行细化,将经纬度表示为区域栅格,即将区域栅格号替换运动特征中的位置经度和位置纬度,并将连续值属性进行离散化处理,得到第二特征向量;
具体地,所述步骤S103包括:
步骤S103.1:将每个位置点的经纬度表示映射为区域栅格表示,具体地,栅格化映射算法如下:
S103.1a)将十分制表示的位置经度、位置纬度转化为分度表示;以步骤S102中示例位置点为例,结果所示:
(138.414445,29.35222)→(138°48′52″,29°21′8″);
S103.1b)将位置经度、位置纬度分度值除以栅格单位a,向下取整,得到位置经度坐标α和位置纬度坐标β;作为一种可实施方式,栅格单位a为5′,则1°单位经纬度以5′为单位划分为12×12个区域栅格;
Figure BDA0002326289190000061
S103.1c)计算栅格号G:
Figure BDA0002326289190000062
Figure BDA0002326289190000063
a为5′时,G为:
Figure BDA0002326289190000064
值得说明的是,依据数据密度不同,可选择以6′为栅格单位a将1°单位经纬度划分为10×10个区域栅格,或以3′为栅格单位a将1°单位经纬度划分为20×20个区域栅格,或类似以分为单位的划分方法。
步骤S103.2:对位置点对应的位置发生时间、位置高度和运动速度,进行离散化处理,映射为区间表示;根据数据实际情况,位置发生时间属性可采用间隔10min等宽离散化,即每个区间的间隔相等,位置高度属性和运动速度属性可采用等深离散化,即每个区间内的数据量相等;
步骤S103.3:根据栅格号G的计算结果和离散化结果,得到包括位置发生时间T、栅格号G、位置高度H、运动速度S、运动方向A的位置点第二特征向量表示;以步骤S102中示例为例,对应的第二特征向量各维度内容如表2所示。
表2第i个位置点的第二特征向量各维度内容
位置发生时间Ti 栅格号G<sub>i</sub> 位置高度H<sub>i</sub> 运动速度S<sub>i</sub> 运动方向A<sub>i</sub>
0903 138029057 H18 S09 257
步骤S104:基于步骤S103处理后的训练集采用C4.5决策树算法构建目标分类决策树;
具体地,所述步骤S104包括:
步骤S104.1:将训练集中第二特征向量中栅格号G的集合作为决策树分裂的首选属性,根据G的所有取值生成若干分支结点,将训练集分割成若干训练子集;
步骤S104.2:在一个训练子集中,根据信息熵和信息增益率的计算结果,采用C4.5决策树算法,选择除栅格号G外其他维特征向量中信息增益率最大的属性作为分裂节点继续分裂并构建子树;
步骤S104.3:对决策树剪枝,将具有相同子树的分支结点合并,得到目标分类决策树。
以步骤2中示例位置点所在栅格号为例,该栅格内子树如图2所示。
步骤S105:将步骤S103处理后的测试集中目标航行轨迹各位置点对应的第二特征向量输入步骤S104中构建的目标分类决策树,按照所述目标分类决策树沿根节点分层判断,直至叶子节点的目标类型作为位置点的目标识别结果,该类型作为识别结果的支持度加1;
步骤S106:遍历步骤S103处理后的测试集中目标航行轨迹全部位置点,对识别结果进行统计,取支持度最高的识别结果作为目标航行轨迹的最终目标识别结果。
在步骤S106之后,还可包括,通过传感器实时探测空中目标在航行过程中的位置点集合,形成目标航行轨迹,按照步骤S102对目标航行轨迹进行特征提取,按照步骤S103对特征提取后的目标航行轨迹进行细化和离散化处理,将细化和离散化处理后的目标航行轨迹输入步骤S104中构建的目标分类决策树进行目标识别,得出目标航行轨迹对应的空中目标类型。
为验证本发明效果,对测试集内数据进行目标识别,分别采用贝叶斯网络分类方法,和本发明一种基于改进决策树的空中目标识别方法,识别准确率对比如表3所示。
表3识别准确率对比结果
Figure BDA0002326289190000081
由表3可知,使用贝叶斯网络方法,根据历史航迹统计目标出现概率,对四类机型的平均识别率为83.75%,而使用本发明一种基于改进决策树的空中目标识别方法(基于栅格划分的决策树方式),四类机型的平均识别率为89.5%,相对有明显提升。
本发明从空中目标识别实际应用出发,考虑空中目标移动速度快、移动范围广的特点,给出了基于历史数据分析运动特征的一种基于改进决策树的空中目标识别方法。具有以下优势:
1)由于空中飞行目标移动速度较快,活动区域较广,本发明采用细分位置单位的方式,在栅格内构建决策树区分目标类型,可以更准确识别目标类型。
2)根据目标的历史航行轨迹提取目标运动特征,在目标活动区域内划分栅格,构建目标运动规则决策树,挖掘目标历史活动模式,根据目标的历史活动规律识别目标类型。
实施例2
如图3所示,一种基于改进决策树的空中目标识别系统,包括:
采集模块301,用于通过传感器探测空中目标在航行过程中的位置点集合,形成目标航行轨迹数据集,并将所述目标航行轨迹数据集分为训练集和测试集;
特征提取模块302,用于对训练集和测试集进行特征提取:从目标航行轨迹数据中提取目标在各个位置点的运动特征,形成第一特征向量,所述运动特征包括位置发生时间、位置经度、位置纬度、位置高度、运动速度及运动方向;
细化和离散化处理模块303,用于对特征提取后的训练集和测试集进行细化和离散化处理:对第一特征向量各个维度进行细化,将经纬度表示为区域栅格,即将区域栅格号替换运动特征中的位置经度和位置纬度,并将连续值属性进行离散化处理,得到第二特征向量;
目标分类决策树构建模块304,用于基于细化和离散化处理模块303处理后的训练集采用C4.5决策树算法构建目标分类决策树;
测试模块305,用于将细化和离散化处理模块303处理后的测试集中目标航行轨迹各位置点对应的第二特征向量输入目标分类决策树构建模块304中构建的目标分类决策树,按照所述目标分类决策树沿根节点分层判断,直至叶子节点的目标类型作为位置点的目标识别结果,该类型作为识别结果的支持度加1;
目标识别模块306,用于遍历细化和离散化处理模块303处理后的测试集中目标航行轨迹全部位置点,对识别结果进行统计,取支持度最高的识别结果作为目标航行轨迹的最终目标识别结果。
具体地,所述细化和离散化处理模块303包括:
细化子模块3031,用于将每个位置点的经纬度表示映射为区域栅格表示:
将十分制表示的位置经度、位置纬度转化为分度表示;
将位置经度、位置纬度分度值除以栅格单位a,向下取整,得到位置经度坐标α和位置纬度坐标β;
计算栅格号G:
Figure BDA0002326289190000091
离散化子模块3032,用于对位置点对应的位置发生时间、位置高度和运动速度,进行离散化处理,映射为区间表示;
第二特征向量生成子模块3033,用于根据栅格号G的计算结果和离散化结果,得到包括位置发生时间、栅格号、位置高度、运动速度、运动方向的位置点第二特征向量表示。
具体地,所述目标分类决策树构建模块304包括:
训练集分割子模块3041,用于将训练集中第二特征向量中栅格号G的集合作为决策树分裂的首选属性,根据G的所有取值生成若干分支结点,将训练集分割成若干训练子集;
决策树构建子模块3042,用于在一个训练子集中,根据信息熵和信息增益率的计算结果,采用C4.5决策树算法,选择除栅格号G外其他维特征向量中信息增益率最大的属性作为分裂节点继续分裂并构建子树;
决策树优化子模块3043,用于对决策树剪枝,将具有相同子树的分支结点合并,得到目标分类决策树。
本发明从空中目标识别实际应用出发,考虑空中目标移动速度快、移动范围广的特点,给出了基于历史数据分析运动特征的一种基于改进决策树的空中目标识别系统。具有以下优势:
1)由于空中飞行目标移动速度较快,活动区域较广,本发明采用细分位置单位的方式,在栅格内构建决策树区分目标类型,可以更准确识别目标类型。
2)根据目标的历史航行轨迹提取目标运动特征,在目标活动区域内划分栅格,构建目标运动规则决策树,挖掘目标历史活动模式,根据目标的历史活动规律识别目标类型。
以上所示仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.一种基于改进决策树的空中目标识别方法,其特征在于,包括:
步骤1:通过传感器探测空中目标在航行过程中的位置点集合,形成目标航行轨迹数据集,并将所述目标航行轨迹数据集分为训练集和测试集;
步骤2:对训练集和测试集进行特征提取:从目标航行轨迹数据中提取目标在各个位置点的运动特征,形成第一特征向量,所述运动特征包括位置发生时间、位置经度、位置纬度、位置高度、运动速度及运动方向;
步骤3:对特征提取后的训练集和测试集进行细化和离散化处理:对第一特征向量各个维度进行细化,将经纬度表示为区域栅格,即将区域栅格号替换运动特征中的位置经度和位置纬度,并将连续值属性进行离散化处理,得到第二特征向量;
步骤4:基于步骤3处理后的训练集采用C4.5决策树算法构建目标分类决策树;
步骤5:将步骤3处理后的测试集中目标航行轨迹各位置点对应的第二特征向量输入步骤4中构建的目标分类决策树,按照所述目标分类决策树沿根节点分层判断,直至叶子节点的目标类型作为位置点的目标识别结果,该类型作为识别结果的支持度加1;
步骤6:遍历步骤3处理后的测试集中目标航行轨迹全部位置点,对识别结果进行统计,取支持度最高的识别结果作为目标航行轨迹的最终目标识别结果。
2.根据权利要求1所述的一种基于改进决策树的空中目标识别方法,其特征在于,所述步骤3包括:
步骤3.1:将每个位置点的经纬度表示映射为区域栅格表示:
3.1a)将十分制表示的位置经度、位置纬度转化为分度表示;
3.1b)将位置经度、位置纬度分度值除以栅格单位a,向下取整,得到位置经度坐标α和位置纬度坐标β;
3.1c)计算栅格号G:
Figure FDA0002326289180000011
步骤3.2:对位置点对应的位置发生时间、位置高度和运动速度,进行离散化处理,映射为区间表示;
步骤3.3:根据栅格号G的计算结果和离散化结果,得到包括位置发生时间、栅格号、位置高度、运动速度、运动方向的位置点第二特征向量表示。
3.根据权利要求2所述的一种基于改进决策树的空中目标识别方法,其特征在于,所述步骤4包括:
步骤4.1:将训练集中第二特征向量中栅格号G的集合作为决策树分裂的首选属性,根据G的所有取值生成若干分支结点,将训练集分割成若干训练子集;
步骤4.2:在一个训练子集中,根据信息熵和信息增益率的计算结果,采用C4.5决策树算法,选择除栅格号G外其他维特征向量中信息增益率最大的属性作为分裂节点继续分裂并构建子树;
步骤4.3:对决策树剪枝,将具有相同子树的分支结点合并,得到目标分类决策树。
4.一种基于改进决策树的空中目标识别系统,其特征在于,包括:
采集模块,用于通过传感器探测空中目标在航行过程中的位置点集合,形成目标航行轨迹数据集,并将所述目标航行轨迹数据集分为训练集和测试集;
特征提取模块,用于对训练集和测试集进行特征提取:从目标航行轨迹数据中提取目标在各个位置点的运动特征,形成第一特征向量,所述运动特征包括位置发生时间、位置经度、位置纬度、位置高度、运动速度及运动方向;
细化和离散化处理模块,用于对特征提取后的训练集和测试集进行细化和离散化处理:对第一特征向量各个维度进行细化,将经纬度表示为区域栅格,即将区域栅格号替换运动特征中的位置经度和位置纬度,并将连续值属性进行离散化处理,得到第二特征向量;
目标分类决策树构建模块,用于基于细化和离散化处理模块处理后的训练集采用C4.5决策树算法构建目标分类决策树;
测试模块,用于将细化和离散化处理模块处理后的测试集中目标航行轨迹各位置点对应的第二特征向量输入目标分类决策树构建模块中构建的目标分类决策树,按照所述目标分类决策树沿根节点分层判断,直至叶子节点的目标类型作为位置点的目标识别结果,该类型作为识别结果的支持度加1;
目标识别模块,用于遍历细化和离散化处理模块处理后的测试集中目标航行轨迹全部位置点,对识别结果进行统计,取支持度最高的识别结果作为目标航行轨迹的最终目标识别结果。
5.根据权利要求4所述的一种基于改进决策树的空中目标识别系统,其特征在于,所述细化和离散化处理模块包括:
细化子模块,用于将每个位置点的经纬度表示映射为区域栅格表示:
将十分制表示的位置经度、位置纬度转化为分度表示;
将位置经度、位置纬度分度值除以栅格单位a,向下取整,得到位置经度坐标α和位置纬度坐标β;
计算栅格号G:
Figure FDA0002326289180000031
离散化子模块,用于对位置点对应的位置发生时间、位置高度和运动速度,进行离散化处理,映射为区间表示;
第二特征向量生成子模块,用于根据栅格号G的计算结果和离散化结果,得到包括位置发生时间、栅格号、位置高度、运动速度、运动方向的位置点第二特征向量表示。
6.根据权利要求4所述的一种基于改进决策树的空中目标识别系统,其特征在于,所述目标分类决策树构建模块包括:
训练集分割子模块,用于将训练集中第二特征向量中栅格号G的集合作为决策树分裂的首选属性,根据G的所有取值生成若干分支结点,将训练集分割成若干训练子集;
决策树构建子模块,用于在一个训练子集中,根据信息熵和信息增益率的计算结果,采用C4.5决策树算法,选择除栅格号G外其他维特征向量中信息增益率最大的属性作为分裂节点继续分裂并构建子树;
决策树优化子模块,用于对决策树剪枝,将具有相同子树的分支结点合并,得到目标分类决策树。
CN201911317701.7A 2019-12-19 2019-12-19 一种基于改进决策树的空中目标识别方法及系统 Active CN111199243B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911317701.7A CN111199243B (zh) 2019-12-19 2019-12-19 一种基于改进决策树的空中目标识别方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911317701.7A CN111199243B (zh) 2019-12-19 2019-12-19 一种基于改进决策树的空中目标识别方法及系统

Publications (2)

Publication Number Publication Date
CN111199243A true CN111199243A (zh) 2020-05-26
CN111199243B CN111199243B (zh) 2022-10-14

Family

ID=70745477

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911317701.7A Active CN111199243B (zh) 2019-12-19 2019-12-19 一种基于改进决策树的空中目标识别方法及系统

Country Status (1)

Country Link
CN (1) CN111199243B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112101282A (zh) * 2020-09-25 2020-12-18 北京瞰天科技有限公司 水上目标识别方法、装置及电子设备和存储介质
CN112990363A (zh) * 2021-04-21 2021-06-18 中国人民解放军国防科技大学 一种战场电磁态势感知与利用方法
CN114925833A (zh) * 2022-04-20 2022-08-19 中国人民解放军91977部队 一种基于能力数据底图的目标状态规律知识挖掘方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106096748A (zh) * 2016-04-28 2016-11-09 武汉宝钢华中贸易有限公司 基于聚类分析和决策树算法的装车工时预测模型
CN106228398A (zh) * 2016-07-20 2016-12-14 武汉斗鱼网络科技有限公司 基于c4.5决策树算法的特定用户挖掘系统及其方法
CN108733966A (zh) * 2017-04-14 2018-11-02 国网重庆市电力公司 一种基于决策树群的多维电能表现场状态检验方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106096748A (zh) * 2016-04-28 2016-11-09 武汉宝钢华中贸易有限公司 基于聚类分析和决策树算法的装车工时预测模型
CN106228398A (zh) * 2016-07-20 2016-12-14 武汉斗鱼网络科技有限公司 基于c4.5决策树算法的特定用户挖掘系统及其方法
CN108733966A (zh) * 2017-04-14 2018-11-02 国网重庆市电力公司 一种基于决策树群的多维电能表现场状态检验方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112101282A (zh) * 2020-09-25 2020-12-18 北京瞰天科技有限公司 水上目标识别方法、装置及电子设备和存储介质
CN112101282B (zh) * 2020-09-25 2024-04-26 北京瞰天科技有限公司 水上目标识别方法、装置及电子设备和存储介质
CN112990363A (zh) * 2021-04-21 2021-06-18 中国人民解放军国防科技大学 一种战场电磁态势感知与利用方法
CN114925833A (zh) * 2022-04-20 2022-08-19 中国人民解放军91977部队 一种基于能力数据底图的目标状态规律知识挖掘方法

Also Published As

Publication number Publication date
CN111199243B (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
CN111199243B (zh) 一种基于改进决策树的空中目标识别方法及系统
Liu et al. Predicting aircraft trajectories: A deep generative convolutional recurrent neural networks approach
CN105654139B (zh) 一种采用时间动态表观模型的实时在线多目标跟踪方法
CN114111764B (zh) 一种导航知识图谱构建及推理应用方法
CN107657224B (zh) 一种基于部件的多层并行网络sar图像飞机目标检测方法
CN103196430A (zh) 基于无人机的飞行轨迹与视觉信息的映射导航方法及系统
Zhang et al. An intruder detection algorithm for vision based sense and avoid system
CN106408030A (zh) 基于中层语义属性和卷积神经网络的sar图像分类方法
CN109753874A (zh) 一种基于机器学习的低慢小雷达目标分类方法
CN104008403B (zh) 一种svm(矢量机)模式的多目标识别判定方法
CN110018453A (zh) 基于飞机航迹特征的智能机型识别方法
CN107609590B (zh) 一种多尺度鼠标轨迹特征提取方法、装置和系统
CN105893621A (zh) 基于多维航迹聚类的目标行为规律挖掘方法
Li et al. Intelligent mobile drone system based on real-time object detection
CN113589272A (zh) 一种目标跟踪设备值班日志自动生成方法
CN106933977A (zh) 一种基于大数据挖掘分类剔除飞行参数野值的方法
Eroglu et al. A terrain referenced UAV localization algorithm using binary search method
Wen et al. Research on 3D point cloud de-distortion algorithm and its application on Euclidean clustering
CN115903900A (zh) 一种基于语义理解的无人机航线规划方法及系统
CN116304966A (zh) 基于多源数据融合的航迹关联方法
Bai et al. Semantic segmentation of sparse irregular point clouds for leaf/wood discrimination
CN106874928A (zh) 跟踪目标突发关键事件自动判决方法及系统
Ouyang et al. An algorithm for extracting similar segments of moving target trajectories based on shape matching
CN116089523B (zh) 基于低空雷达信息的大数据分析的处理系统
CN114359743B (zh) 一种基于多波段的低慢小目标识别方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant