CN111189796A - Solid infrared vacuum adsorption characterization system - Google Patents

Solid infrared vacuum adsorption characterization system Download PDF

Info

Publication number
CN111189796A
CN111189796A CN202010132302.XA CN202010132302A CN111189796A CN 111189796 A CN111189796 A CN 111189796A CN 202010132302 A CN202010132302 A CN 202010132302A CN 111189796 A CN111189796 A CN 111189796A
Authority
CN
China
Prior art keywords
valve body
vacuum
pipeline
gas
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010132302.XA
Other languages
Chinese (zh)
Inventor
黄华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Huasi Instrument Co ltd
Original Assignee
Hunan Huasi Instrument Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Huasi Instrument Co ltd filed Critical Hunan Huasi Instrument Co ltd
Priority to CN202010132302.XA priority Critical patent/CN111189796A/en
Publication of CN111189796A publication Critical patent/CN111189796A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0106General arrangement of respective parts
    • G01N2021/0112Apparatus in one mechanical, optical or electronic block

Abstract

The invention discloses a solid infrared vacuum adsorption characterization system, which comprises an air supplementing module, a vacuum module and an in-situ pool module; the air supply module comprises a gas tank and a liquid tank; the vacuum module comprises a vacuum mechanical pump, a molecular turbine pump and a composite vacuum gauge; the in-situ pool module comprises an in-situ pool and a detachable pipeline; the in-situ tank and the vacuum module outlet provided by the invention only need to be connected through one pipeline, so that the in-situ tank and the vacuum module outlet are very convenient; the gas tank and the liquid tank are connected with a gas source, a vacuum mechanical pump and an in-situ pool through valves, and can be vacuumized and inflated; during sample pretreatment, gas source gas directly enters the in-situ cell through the gas supplementing module, the sample is subjected to atmosphere pretreatment at a certain temperature, and then a vacuum pump is started for vacuumizing pretreatment; and then introducing adsorbed gas into the in-situ tank through the gas supplementing module at a certain temperature, and performing infrared characterization after the solid is stably adsorbed, so that the operation is simple and convenient.

Description

Solid infrared vacuum adsorption characterization system
Technical Field
The invention relates to the field of catalyst structure characterization instruments, in particular to a solid infrared vacuum adsorption characterization system capable of being used for determining the adsorption state of a solid surface.
Background
The vacuum infrared adsorption is widely used for indirectly characterizing the structure and the property of the catalyst, and can be used for carrying out adsorption characterization on probe molecules on a catalyst sample. For example to realize gases (CO, CO)2NH3, etc.) and liquids (Pyridine, Methanol, Ethanol, H)2O, etc.) and can determine the noble metal structure, valence state, etc. through the characteristic infrared absorption peak of CO adsorptionInformation; the acid-base strength and the amount of acid-base on the sample surface can be determined by the characteristic infrared absorption peak of Pyridine adsorption.
At present, most laboratories adopt a combination device of a vacuum system and an infrared spectrometer, wherein the combination device is made of glass materials researched and developed by large connected objects, but the combination device is very huge and occupies a large area, and the vacuum system is made of glass and is easy to break and disassemble and repair. Compared with the prior art, the metal pool is matched with the vacuum pump set, so that the vacuum pump set has the advantages of convenience in operation, firmness in skin, durability and the like. The applicant applies for the detection device on 20.5.2013, application number 201310187522.2, and the name is a solid surface adsorption infrared detection device made of metal, but an in-situ pool in the device has a complex structure and comprises more than two interfaces, and the device is not easy to install; the mixer is used for filling the adsorption gas, so that the dead volume is large and the cleaning is difficult. And the valve is difficult to realize the switching and continuous use of the whole large pressure range of high vacuum and normal pressure by uniformly using a vacuum valve or a conventional normal pressure valve.
Therefore, how to provide a solid infrared vacuum adsorption characterization system with simple and reasonable structure and convenient operation is a problem that needs to be solved urgently by the technical personnel in the field.
Disclosure of Invention
In view of this, the present invention provides a solid infrared vacuum adsorption characterization system, which aims to solve the above technical problems.
In order to achieve the purpose, the invention adopts the following technical scheme:
a solid infrared vacuum sorption characterization system, comprising: the system comprises a gas supplementing module, a vacuum module and an in-situ pool module;
the air supply module comprises a gas tank and a liquid tank;
the vacuum module comprises a vacuum mechanical pump, a molecular turbine pump and a composite vacuum gauge;
the in-situ pool module comprises an in-situ pool and a detachable pipeline;
the air exhaust end of the gas tank is connected with an external gas source through a pipeline, and a first valve body is mounted on the air exhaust end; the gas blowing end of the gas tank is connected with the detachable pipeline through a pipeline, and a valve body II, a valve body seventh and a valve body eighth are sequentially arranged on the gas blowing end of the gas tank; the detachable pipeline is communicated with the in-situ tank; the liquid tank is communicated with a pipeline between the second valve body and the seventh valve body through a pipeline, and a third valve body is arranged on the liquid tank; the vacuum mechanical pump is communicated with the molecular turbine pump through a pipeline, and a valve body IV is arranged on the vacuum mechanical pump; the molecular turbopump is communicated with a pipeline between the valve body seven and the valve body eight through a pipeline, is provided with a valve body six, and is communicated with the composite vacuum gauge through a pipeline in an extending way; and the vacuum mechanical pump is communicated with the pipeline between the valve body six and the valve body eight through a pipeline, and a valve body five is arranged on the vacuum mechanical pump.
Through the technical scheme, the in-situ tank and the vacuum module outlet are connected through only one pipeline, and the length of the pipeline can be changed according to the distance between the in-situ tank and the vacuum module and the operation convenience, so that the in-situ tank and the vacuum module outlet are very convenient; the gas tank and the liquid tank are connected with a gas source, a vacuum mechanical pump and an in-situ pool through valves, and can be vacuumized and inflated; during sample pretreatment, gas source gas directly enters the in-situ cell through the gas supplementing module, the sample is subjected to atmosphere pretreatment at a certain temperature, and then a vacuum pump is started for vacuumizing pretreatment; and then introducing adsorbed gas into the in-situ tank through the gas supplementing module at a certain temperature, and performing infrared characterization after the solid is stably adsorbed, so that the operation is simple and convenient.
Preferably, in the above solid infrared vacuum adsorption characterization system, the first valve body, the second valve body and the third valve body are constant pressure valves. Can meet the use requirement.
Preferably, in the above solid infrared vacuum adsorption characterization system, the valve body four, the valve body five, the valve body six, the valve body seven and the valve body eight are vacuum diaphragm valves. The vacuum degree of the pipeline can be improved.
Preferably, in the above solid infrared vacuum adsorption characterization system, the external gas source is a single or multiple steel cylinders or gas bags, and has a detachable interface or a gas distribution box communicated with the first valve body. Can meet the supply requirement of an air source.
Preferably, in the above solid infrared vacuum adsorption characterization system, the external gas source is positive pressure. Can meet the supply requirement of an air source.
Preferably, in the solid infrared vacuum adsorption characterization system, the pipeline in the vacuum module is a vacuum bellows. Can meet the vacuum requirement of the pipeline.
Preferably, in the above solid infrared vacuum adsorption characterization system, the detachable pipe is a corrugated pipe. Can meet the vacuum requirement of the pipeline.
Preferably, in the above solid infrared vacuum adsorption characterization system, the composite vacuum gauge is a pirani vacuum gauge, or consists of a resistance gauge and an ionization gauge. The pressure can be measured.
According to the technical scheme, compared with the prior art, the solid infrared vacuum adsorption characterization system is provided, the in-situ tank and the vacuum module outlet are connected through only one pipeline, the length of the pipeline can be changed according to the distance between the in-situ tank and the vacuum module and the operation convenience, and the system is very convenient; the gas tank and the liquid tank are connected with a gas source, a vacuum mechanical pump and an in-situ pool through valves, and can be vacuumized and inflated; during sample pretreatment, gas source gas directly enters the in-situ cell through the gas supplementing module, the sample is subjected to atmosphere pretreatment at a certain temperature, and then a vacuum pump is started for vacuumizing pretreatment; and then introducing adsorbed gas into the in-situ tank through the gas supplementing module at a certain temperature, and performing infrared characterization after the solid is stably adsorbed, so that the operation is simple and convenient.
Drawings
In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the description of the embodiments or the prior art will be briefly described below, it is obvious that the drawings in the following description are only embodiments of the present invention, and for those skilled in the art, other drawings can be obtained according to the provided drawings without creative efforts.
FIG. 1 is a schematic diagram of a system according to the present invention.
Wherein:
1-a gas supplementing module;
11-a gas tank;
12-a liquid tank;
13-valve body one;
14-valve body two;
15-valve body III;
2-a vacuum module;
21-a vacuum mechanical pump;
22-molecular turbopump;
23-a compound vacuum gauge;
24-valve body four;
25-valve body five;
26-valve body six;
27-valve body seven;
28-valve body eight;
3-an in-situ pool module;
31-an in-situ pool;
32-removable pipe.
Detailed Description
The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
Referring to the attached figure 1, the embodiment of the invention discloses a solid infrared vacuum adsorption characterization system, which comprises: the system comprises a gas supplementing module 1, a vacuum module 2 and an in-situ tank module 3;
the air supply module 1 comprises a gas tank 11 and a liquid tank 12;
the vacuum module 2 comprises a vacuum mechanical pump 21, a molecular turbine pump 22 and a composite vacuum gauge 23;
the in-situ pool module 3 comprises an in-situ pool 31 and a detachable pipeline 32;
the air exhaust end of the gas tank 11 is connected with an external air source through a pipeline, and a first valve body 13 is installed on the air exhaust end; the gas blowing end of the gas tank 11 is connected with a detachable pipeline 32 through a pipeline, and a valve body II 14, a valve body seventh 27 and a valve body eighth 28 are sequentially arranged on the gas blowing end; the detachable pipeline 32 is communicated with the in-situ tank 31; the liquid tank 12 is communicated with a pipeline between the second valve body 14 and the seventh valve body 27 through a pipeline, and a third valve body 15 is arranged on the liquid tank; the vacuum mechanical pump 21 is communicated with the molecular turbine pump 22 through a pipeline, and a valve body IV 24 is arranged on the vacuum mechanical pump; the molecular turbine pump 22 is communicated with a pipeline between the valve body seven 27 and the valve body eight 28 through a pipeline, a valve body six 26 is arranged on the molecular turbine pump, and the molecular turbine pump is extended and communicated with a composite vacuum gauge 23 through a pipeline; the vacuum mechanical pump 21 is communicated with a pipe between the valve body six 26 and the valve body eight 28 through a pipe, and the valve body five 25 is mounted thereon.
In order to further optimize the technical scheme, the first valve body 13, the second valve body 14 and the third valve body 15 are constant pressure valves.
In order to further optimize the technical scheme, the valve body four 24, the valve body five 25, the valve body six 26, the valve body seven 27 and the valve body eight 28 are vacuum diaphragm valves.
In order to further optimize the technical scheme, the external gas source is a single or a plurality of steel cylinders or gas bags, and is provided with a detachable interface or a gas distribution box which is communicated with the valve body I13.
In order to further optimize the technical scheme, the external air source is positive pressure.
In order to further optimize the above technical solution, the pipe inside the vacuum module 2 is a vacuum bellows.
In order to further optimize the above technical solution, the pipe inside the vacuum module 2 is a vacuum bellows.
In order to further optimize the technical scheme, the composite vacuum gauge 23 is a Pirani vacuum gauge or consists of a resistance gauge and an ionization gauge.
The specific test operation process of the invention is divided into a pretreatment stage and a test stage, wherein the test stage comprises a sample adsorption stage and a sample test stage. The specific process is as follows: closing the valve body III 15, opening the valve body I13, the valve body II 14, the valve body seven 27 and the valve body eight 28, closing other valve bodies, heating the in-situ tank 31 to a certain treatment temperature, introducing gas with a certain pressure into the in-situ tank 31 through an external gas source, closing the valve body II 14 and the valve body seven 27, opening the vacuum mechanical pump 21 and the valve body five 25, vacuumizing the in-situ tank 31 through the vacuum mechanical pump 21, repeatedly inflating and vacuumizing for a plurality of times, so that pretreatment and vacuumizing of a sample in the in-situ tank 31 can be realized, closing the valve body II 14, the valve body seven 27 and the valve body five 25 before the last vacuumizing, and opening the turbo molecular pump 22 and the corresponding valve body four 24 and the valve body six 26 to perform vacuum treatment on the in-situ tank 31. In addition, the in-situ tank 31 can also be directly subjected to vacuum high-temperature pretreatment, after the in-situ tank 31 reaches a certain temperature, the second valve body 14 and the third valve body 15 are closed, the fourth valve body 24, the sixth valve body 26 and the seventh valve body 27 are closed, and the vacuum mechanical pump 21 and the fifth valve body 25 are opened to perform primary vacuum pumping on the in-situ tank 31; after a period of time, valve five 25 is closed and turbomolecular pump 22 and corresponding valve four 24 and valve six 26 are opened to perform a secondary vacuum on in-situ cell 31. After the vacuum pumping is finished, the seventh valve body 27 is opened, the second valve body 14 or the third valve body 15 can be selectively opened, the adsorbed gas or the adsorbed liquid steam with certain pressure can be introduced into the in-situ tank 31, the pressure is measured by the composite vacuum gauge 23, after the sample is adsorbed and balanced, the fourth valve body 24 and the sixth valve body 26 are closed, the fifth valve body 25 is opened to vacuum the in-situ tank 31, so that the adsorbed gas remained in the pipeline of the vacuum module 2 and the in-situ tank 31 and the adsorbed gas with weaker solid surface adsorption can be pumped away, and the infrared absorption characterization can be carried out on the sample. It is to be noted that the background of the sample is measured before the adsorbed gas is introduced into the in situ cell 31, so that after adsorption, the measured signal is reflected as gas adsorption on the surface of the sample.
The device is simple in-situ pool structure, only has one corrugated pipe connector, and the corrugated pipe length can be changed according to the distance between the in-situ pool and the vacuum module and the convenience in operation, and is very convenient. The internal pipeline of the vacuum module is directly adopted to fill the adsorption gas so as to reduce the dead volume, so that the vacuum pump is convenient to extract, or the corrugated pipe is directly removed, and the cleaning is convenient. In addition, the air supply module is connected by a conventional normal pressure valve, the vacuum diaphragm valves are adopted in the vacuum module, the air supply module and the in-situ tank part, the good vacuum degree of the vacuum part is ensured by closing the vacuum diaphragm valves, and the introduction and adsorption of adsorbed gas in the in-situ tank can be realized.
The embodiments in the present description are described in a progressive manner, each embodiment focuses on differences from other embodiments, and the same and similar parts among the embodiments are referred to each other. The device disclosed by the embodiment corresponds to the method disclosed by the embodiment, so that the description is simple, and the relevant points can be referred to the method part for description.
The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims (8)

1. A solid infrared vacuum sorption characterization system, comprising: the system comprises a gas supplementing module (1), a vacuum module (2) and an in-situ tank module (3);
the air supply module (1) comprises a gas tank (11) and a liquid tank (12);
the vacuum module (2) comprises a vacuum mechanical pump (21), a molecular turbopump (22) and a composite vacuum gauge (23);
the in-situ pool module (3) comprises an in-situ pool (31) and a detachable pipeline (32);
the air exhaust end of the gas tank (11) is connected with an external air source through a pipeline, and a first valve body (13) is mounted on the air exhaust end; the gas blowing end of the gas tank (11) is connected with the detachable pipeline (32) through a pipeline, and a valve body II (14), a valve body seventh (27) and a valve body eighth (28) are sequentially arranged on the gas blowing end; the detachable pipeline (32) is communicated with the in-situ tank (31); the liquid tank (12) is communicated with a pipeline between the second valve body (14) and the seventh valve body (27) through a pipeline, and a third valve body (15) is installed on the liquid tank; the vacuum mechanical pump (21) is communicated with the molecular turbine pump (22) through a pipeline, and a valve body IV (24) is mounted on the vacuum mechanical pump; the molecular turbine pump (22) is communicated with a pipeline between the valve body seven (27) and the valve body eight (28) through a pipeline, is provided with a valve body six (26), and is communicated with the composite vacuum gauge (23) through a pipeline in an extending way; the vacuum mechanical pump (21) is communicated with a pipeline between the valve body six (26) and the valve body eight (28) through a pipeline, and a valve body five (25) is installed on the vacuum mechanical pump.
2. The solid infrared vacuum adsorption characterization system of claim 1, wherein the first valve body (13), the second valve body (14), and the third valve body (15) are constant pressure valves.
3. The solid infrared vacuum adsorption characterization system of claim 1, wherein the valve body four (24), the valve body five (25), the valve body six (26), the valve body seven (27), and the valve body eight (28) are vacuum diaphragm valves.
4. The solid state infrared vacuum adsorption characterization system of claim 1, wherein the external gas source is one or more steel cylinders or gas bags, and has a detachable interface or gas distribution box in communication with the first valve body (13).
5. The solid infrared vacuum adsorption characterization system of claim 1, wherein the external gas source is positive pressure.
6. A solid infrared vacuum adsorption characterization system according to claim 1, wherein the conduit within the vacuum module (2) is a vacuum bellows.
7. A solid infrared vacuum adsorption characterization system according to claim 1, wherein the detachable tube (32) is a bellows.
8. The solid infrared vacuum adsorption characterization system of claim 1, wherein the composite vacuum gauge (23) is a pirani vacuum gauge or is composed of a resistance gauge and an ionization gauge.
CN202010132302.XA 2020-02-29 2020-02-29 Solid infrared vacuum adsorption characterization system Pending CN111189796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010132302.XA CN111189796A (en) 2020-02-29 2020-02-29 Solid infrared vacuum adsorption characterization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010132302.XA CN111189796A (en) 2020-02-29 2020-02-29 Solid infrared vacuum adsorption characterization system

Publications (1)

Publication Number Publication Date
CN111189796A true CN111189796A (en) 2020-05-22

Family

ID=70706788

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010132302.XA Pending CN111189796A (en) 2020-02-29 2020-02-29 Solid infrared vacuum adsorption characterization system

Country Status (1)

Country Link
CN (1) CN111189796A (en)

Similar Documents

Publication Publication Date Title
CN209238628U (en) Non-methane total hydrocarbons samples airbag automatic flushing device
CN112697832B (en) In-situ and quasi-in-situ heterogeneous catalysis electron paramagnetic resonance platform and use method
CN211825677U (en) Solid infrared vacuum adsorption characterization system
CN202159050U (en) Device for evaluating hydrogen production performance of photocatalyst
CN111189796A (en) Solid infrared vacuum adsorption characterization system
CN113804854B (en) Device and method for testing gas component distribution in hydrogen-doped natural gas
CN107035675A (en) The small-sized cryogenic liquid Pump Characteristic Test System of vacuum insulation protection
CN210037675U (en) A high stability distillation plant for soil detection
CN104865043B (en) A kind of LNG cold flow characteristics experimental provision
CN210180752U (en) Sampling and testing device for shale gas exploitation
CN113406243B (en) System and method for detecting components of gas decomposition products
CN213875393U (en) Electronic-grade nitrogen trifluoride finished product analysis pipeline system
CN108692892A (en) A kind of device for detecting airtightness of corrugated tube and detection method
CN210487397U (en) Special gas sampling device
CN203425820U (en) Vacuumizing device of parallel reactor
CN203396553U (en) A tightness inspecting apparatus for glass perfusion apparatuses
CN206847871U (en) A kind of device for the leak detection of high-pressure oil pipe high pressure
CN216050986U (en) Portable low-temperature liquid-gas sampling container with self-pressurization device in test
CN218172981U (en) Portable air pressure control measuring tool assembly
CN220872081U (en) Novel cold and hot impact equipment for engine test
CN205483437U (en) Vehicle fuel vaporization system gas tightness check out test set
CN204042081U (en) A kind of high-vacuum glass four-way valve device for on-line period system
CN209640195U (en) A kind of fully automatic vacuum In-situ Infrared processing system
CN215492300U (en) Fluid valve's leakproofness test system
CN206906130U (en) A kind of Water Test Kits with High-temperature Digestion function

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination